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Abstract— A pendulum whose support is subjected to a periodic non-harmonic oscillation in the vertical
direction is considered. The subharmonic Melnikov functions for the oscillating and for the rotating
motions are explicitly constructed. It is shown that both functions converge towards the homoclinic
Melnikov function and furthermore all the results for the harmonic perturbation are recovered. © 1998
Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

A well known characteristic precursor to chaotic motion is the appearance of subharmonics. In
this paper we focus the attention on the subharmonic motions, either oscillations or rotations,
of a pendulum whose support is subjected to a vertical non-harmonic periodic oscillation. A
perturbation of this kind using elliptic functions has been considered by different authors [1-6]
and, among other interesting aspects of its use has the advantage that introduces a new extra
parameter and its Fourier spectrum contains more peaks than the ordinary trigonometric func-
tions. Moreover, elliptic functions contain as limiting cases, the trigonometric functions. For this
reason sometimes they have been called generalized sine or cosine. Besides that, they are the
natural solutions of many nonlinear dynamical systems, the pendulum included and other poly-
nomials nonlinear oscillators such as Duffing oscillator. In most of these references, [1--5], it has
been stressed the fact that using this kind of perturbation transitions from periodic motion into
chaotic motion and vice versa are possible. They have also been used to introduce the concept
of geometrical resonance [5] as a way of explaining a chaos eliminating mechanism. However, in
[6] an alternative way of switching among periodic orbits of different periodicity, once the rest
of the parameters are fixed, by simply varying the elliptic parameter of the perturbation is
introduced. In any case the use of this driving is not well understood and it possesses many
aspects still not investigated.

The parametrically excited pendulum using a harmonic forcing has received considerable
attention throughout the years. Among other authors, it has been studied analytically, numeri-
cally and experimentally by [7-10]. It may be said that it constitutes a paradigm for a nonlinear
dynamical system parametrically perturbed and it is also connected to the nonlinear Mathieu
equation. The boundaries of subharmonic and homoclinic bifurcations for the harmonically
driven pendulum were explicitely calculated on the basis of Melnikov theory by [9]. They obtained
explicit formulas for the subharmonic bifurcations corresponding to oscillating and rotating
motions and they showed that the homoclinic bifurcation is the limit of a sequence of subharmonic
saddle-node bifurcations, the oscillating converging from below and the rotational converging
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Fig. I. Pendulum with a periodic non-harmonic oscillating vertical support.

from above. Our goal here is to evaluate the subharmonic Melnikov functions for the oscillating
and rotating motions of the pendulum perturbed by an elliptic function and to study the existing
relationship to the homoclinic bifurcations which were previously analyzed in [4]. Consequently
this allows us to predict that the occurrence of subharmonic bifurcations as a parameter is varied,
showing the relation between homoclinic and subharmonic bifurcations and the corresponding
connection between periodic motion and complicated behaviour, which is clearly shown. Qur
results contain, as a particular case, the previous results by Koch and Leven [9].

2. PARAMETRICALLY DRIVEN PENDULUM

We consider a pendulum with a periodic oscillating support in the vertical direction, see Fig.
1. The periodic oscillation is provided by the Jacobi cosine amplitude elliptic function, cn(wt,k),
of frequency w = 4K(k)/T and elliptic modulus k. The equations of motion for the parametrically
forced pendulum with linear dissipation are given by

X+ efx+ (1 +eAcn(wik))sinx = 0. (1)
Written as a system of first order differential equations reads
X =u, (2)
0= —¢effv—(1+eAcn(wtk)sin x,

where (x,0)eS' x R, and f,4,w are positive constants, with 0 <¢ < 1.
The Jacobi elliptic functions are periodic functions of period T = 4K(k), where K(k) is the
complete elliptic integral of the first kind which is defined as

2 ]H
K(k) = J ———— 3)
o /1 —k*sin*0

For a better understanding of the driving we use, Fig. 2 shows the dependence versus time of the
cn(1,k) for some values of k, while Fig. 3 depicts the Fast Fourier Transform, where an increasing
number of peaks is shown for k£ #0. The function cn(z,k) has two limiting values, cos 7 as k-0
and secht when k— 1. Further information on elliptic functions can be found in [11, 12].
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Fig. 2. The figure shows the variation of the cosine amplitude Jacobi elliptic function versus time for different values of
m = k. Note that this is the relationship existing between the elliptic modulus & and the elliptic parameter .

For completeness we review in this section the results for the homoclinic bifurcations, which
appear in [4] and show the explicit solutions of the unperturbed pendulum for the different
motions it possesses. The unperturbed pendulum has a Hamiltonian which may be written as

2
H=_-—cosx. 4)
2
The phase space of the pendulum is 27-periodic with hyperbolic saddles in ( +7,0) and an elliptic
center in (0,0). There are three different kind of orbits for the unperturbed pendulum: rotations,
oscillations and separatrix motion. The rotations are the unbounded motions, the oscillations
are the bounded ones and the separatrix motion correspond to an oscillation of infinite period.
Both hyperbolic saddles can be identified constructing a cylindrical phase space, and subsequently
we speak about homoclinic connections and homoclinic motions, which correspond to the
separatrix motion, instead of the heteroclinic ones. The solutions for the oscillating orbits can be
expressed in terms of the Jacobi elliptic functions as

(X0, D0, (1)) = (2sin~ ' (ksn(1,k)),2kcn(t,k)). (5)

The elliptic modulus & is related to the energy or Hamiltonian of the unperturbed pendulum
through the expression

H = 2k*—1, (6)

in such a way that it labels the different orbits. From the expression above, we can obtain the
solutions for the homoclinic orbit, taking the limit k— 1 for the elliptic modulus. A physical and
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Fig. 3. Fast Fourier Transform of the cosine amplitude Jacobi elliptic function for different values of the elliptic parameter
m =k

intuitive picture of the meaning of & is obtained by thinking in the unperturbed orbits in phase
space inside a separatrix orbit. The parameter & is used to label energy of the orbits inside the
separatrix. For orbits with energy very small in absolute terms, k—0, the complete elliptic integral
of the first kind K(k)—n/2 and consequently the period becomes T—2x. This corresponds to the
period for the linear oscillations around the elliptic fixed point. However for values of the energy
close to the separatrix, which means k— 1, the complete elliptic integral of the first kind diverges
logarithmically and the period becomes infinity. The homoclinic solutions are then

(x,{0),6,(1)) = (2tanh rsech ¢, 2 sech 7). )
The Melnikov function has to be evaluated for the homoclinic orbit and takes the following
expression in our case

Py

Mk.w;t,) = J 0l = 10){ — Acn(tk)sin(x(t— 1)) — fo, (1~ 1)} d. (8)

—

To calculate this integral, which involves the cosine Jacobi elliptic function, we consider its
Fourier expansion, which is given by

1 x K 2j+ Drwt
cr{wtm) = 3 % _Z) sech[(2j+ l)%Jcos [sz_]()?z_ci] %)
K&

where K(k) denotes the complete elliptic integral of the first kind, K’ = K(k') and k’ is the
complementary elliptic modulus which satisfy the relation k> = 1 — 2 Thus the homoclinic
Melnikov function takes the form
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-+ o + o
M(k,w;ty) = —44 f en(a(t + to))sec A (z)tanh tdt — 4 J' sec h*(1)dr
ln & . K’ (2j+ Dnwt,
= ~8/j_4AE E/Z‘o sech[(Z_H—l)zk]cos[ 5K ]
o nwt
X J sec A’t tanh T sin [(2j+ I)EEJ dr. (10)

After evaluation of this last integral we may write the Melnikov function as
M(k.w:ty) = — 8B +8AJ,(k,w3t,), (an

where J,(k,w;t,) is defined as

| ro® & . nK (2j+ DHrw
Jilk,wity) = ﬂ E@,Z‘D 2j+1) SCChl:(2j+l)—27(—jICSCh[*—Z—K—*—
.| @i+ Dnwt,
Al antatty | 12
X Sln|: K ( )

The condition for the homoclinic tangencies to occur is produced when the Melnikov function
changes sign at some f,, and in our case this implies that

p

7 2 Nk, (13)
where J(k,w) is defined as
| rfo? & nK’ (2j+ DHrw
Jitk,w) % S /;0 +1) sech[(2j+ 1) 2K ]csch[ 4K (14)

The equality indicates the onset of homoclinic bifurcations above this value, the crossing of the
stable and the unstable manifolds of the saddle point (n,0) for the Poincaré map gives rise to
homoclinic chaos.

3. SUBHARMONIC MELNIKOV FUNCTIONS

The subharmonic Melnikov theory and its bifurcations has deserved attention by several
authors [9, 13-15]. Our main interest here is to evaluate the subharmonic Melnikov functions for
the oscillating and for the rotation motions in the pendulum parametrically driven by the cosine
amplitude Jacobi elliptic function and to relate them to the homoclinic ones.

The subharmonic Melnikov function is defined as

'mT

M"Mt,) = f v(t— to,k) [ — A en(wt,k)sin(x(1 — 1,),k) — Bo(t — t,,k)]. (15)

0

We look for periodic orbits in the perturbed system that are in resonance with the external forcing
and that satisfy the resonance relation - T* = m - T, where T* denotes the period of the resonant
orbits. The period of the external perturbation is T = {4K(k)/w]. The resonance condition for the
oscillating motions is 4K(k) = T m/n, from where the k values follow, and m and 7 are relatively
prime numbers. For the rotating motions the resonance condition is
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3.1. Oscillating motions

The calculations for the oscillating motion are given by

'mT
M7 (1) = —4A4k? J cen(wt,k)dn(t — to,k)sn(f — to,k)en(t — to,k)dr —

0

'mT
—4pK> J r(i— iy f)dt,  (16)

0

where sn(-), en( ) and dn(-) are Jacobi elliptic functions [12]. We take into account again the
Fourier expansion of the cosine amplitude Jacobi elliptic function, (equation (9)), and we then
have

’

,n LRI DU ¢
My = —44k i > sech[(2j+!) 2K]

j=0

T 2 + 1 f
x J cos [(—-:’ ~72—K’“" "} dn(t — tok)sn(t — to.k)ent — to.)dt
0

2y
— 4Bk J enX(t — to,k)dt. (17)

0

The first integral vanishes except for n = 1 and even m. Thus we arrive to

M (10) = AJy(k,wity) = 16B{ E(k)—k *K(k)}, (18)
where E(k) is the complete elliptic integral of the second kind and J,(k,w;¢,) is defined as
o’ & " nK’ 2j+ DrawkK’
SLk,wity) = —= i+ 1)° ] —_—
Jok,wity) Py ”ZU i+ 1D sech[(2/+l) 2K]csch|: 5K ]
| 2+ Drwt, ;
x sm[v-—-—iiv- . (19)

Thus the condition for the ocurrence of bifurcations for oscillating motions is given by

A _ 16LE(R) —k KUk

BT hkw) =R v
where J,(k,w) is defined as
e ) nK’ Q2j+ HnwK’
- ) 2 . seh| -2 St
J>(k,w) e ”;)(_H—]) sech[(2j+])2K](sch[ 3K 21

and where m take even values.
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3.2. Rotating motions

The solutions for the rotating orbits can be expressed in terms of the Jacobi elliptic functions
as

(X0 1:2,01) = (2sin~'(sn(kr,1/k)). 2kdn(kt,1/k)). (22)

For the rotating part we have the following expression:

cn ((x)r,k)dn(k(t —1o)s }() sn (k( t—1y), %) cn (k( t—1y), %) dt

mT l
—4/3k3J dn’ <k(1— fo) ~)d1.
o k

Using again the Fourier expansion for the cosine amplitude (equation (9)), we then have

'mT
M) = —4Ak J

[}

. &
M7(t) = —4/1/(1[" Z S€Ch[(2j+ l)zKil

kK’ 0
ml (2j+ Drwt 1 1 1
XL cos [ Y dn (k(’_’“)v} sn (k(t—t(,),,; cn (k(l—tu), k)
; mT 1
—4Bk‘j dn3<k(1v10), k> dr. 24
0

The first integral vanishes except for the case # = 1 and the result of the calculation is

1
M7 (t) = AJ%(kﬂ);’u)_SﬁkE(k)n (25)
where J,(k,w;t,) is defined as
i 1
2/+ DrwK’ <>
Ik =225 @4 1 sech] 2+ DK Lesen ¢
J(k,w;ity) = K i+ 1) sech| (2j+ 2K s T !
. [ @i+ Drot, ] - ,
X sm[ 5K ] (26)

From this equation the condition for the ocurrence of the subharmonic bifurcations is then given

by
M(‘_)
4 k
R (27)

B ey = o

where J4(k,w) is defined as
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1
Q2j+ Dok’ (1?)
oy =2 o vseenl @i D desenl Y (28)
3(k,) = 5K "ZO( j+ 1) sech| (2/+ )ZK cse %K :

3.3. Relationship between oscillating and rotating subharmonic and homoclinic melnikov functions

We are going now to study the limiting behaviour of the subharmonic functions M7, (1) and
M (1,) for the case in which m— oo, or equivalently k—1.

According to the asymptotic values of the complete elliptic integrals and taking into account
that as it can be seen ,},iln, Jylk,w) = 8J,(k.w), then this implies that

Jim M2 (1) = A4S (k.) = 168 = 2M (1) (29)
On the other hand for the rotating motions we have that 'lm_Jg(k,a)) = 4J,(k,w) what makes
that

lim M7, (1)) = 44J,(k,w) = 8f = M(1,). (30)

[ R

Finally we conclude that
1. , :
é"llLH} M7 (1) = "]Lnl M7 (L) = M(1,). (31

It clearly follows from this expression that the homoclinic bifurcation is the limit of a sequence
of subharmonic saddle-node bifurcations. The oscillating subharmonics converging from below
and the rotating subharmonics converging from above.

3.4. Limiting case

Once we have obtained the results for the pendulum perturbed by an elliptic function, we want
to address the limiting case for which £—0. The values the elliptic parameter may take are
comprised between 0<k<1. For small values of the elliptic parameter the cosine amplitude
Jacobi elliptic function becomes the cosine trigonometric function. The limit A—0 of our model
equation (equation (1)) coincides with the model used by Koch and Leven [9] for the pendulum
parametrically excited by a trigonometric cosine function, then our results for small values of &
need to coincide with those obtained by Koch and Leven [9]. For small values of &, the complete
elliptic integral of first kind has the limiting value K(k)—n/2, and after some algebra it may be
proved for the boundary subharmonic functions J,(k,w) and J;(k,w) to have the following limiting
values

2nw?

wK’ (E)

sin A

lim Jy(k,w) = — (33)
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Consequently introducing the limiting values of the functions J(k,w) and J;(k,w), equations (32)
and (33), into the results which give the parameter values for the occurrence of subharmonic
bifurcations, equations (20) and (27), all the results given in [9] are recovered.

4. CONCLUSIONS

Subharmonic Melnikov functions for the pendulum parametrically excited by periodic non-
harmonic pulses are explicitly constructed. They tell us for which system parameter values the
occurence of subharmonic bifurcations takes place. It is shown that the corresponding functions
for oscillating and for rotating motions converge towards the homoclinic function, the oscillating
from below and the rotating from above. Moreover when the elliptic modulus is very small the
perturbation we use, coincides with the harmonic perturbation used by Koch and Leven, and
consequently all their results are recovered. Thus, the work done on homoclinic bifurcations by
[4] on the same model is also extended, and the results we have obtained represent a generalization
of previous results which are contained in ours as a particular case.
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