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This paper reports on the effect of nonlinear damping on certain nonlinear oscillators, where
analytical estimates provided by the Melnikov theory are obtained. We assume general non-
linear damping terms proportional to the power of velocity. General and useful expressions for
the nonlinearly damped Duffing oscillator and for the nonlinearly damped simple pendulum are
computed. They provide the critical parameters in terms of the damping coefficient and damp-
ing exponent, that is, the power of the velocity, for which complicated behavior is expected.
We also consider generalized nonlinear damped systems, which may contain several nonlinear
damping terms. Using the idea of Melnikov equivalence, we show that the effect of nonlinear
dissipation can be equivalent to a linearly damped nonlinear oscillator with a modified damping
coefficient.

1. Introduction

Dissipation plays an important role in modeling
nonlinear dynamical systems. In spite of its com-
plicated physical origin, linear dissipative forces de-
pending on the velocity are commonly used. How-
ever the frictional or drag forces which describe the
motion of an object through a fluid or gas are usu-
ally very complex, and power-law dissipative terms
in the velocity are used.

The mathematical form of the drag forces is
usually experimentally determined with the use of
wind tunnels or water tanks. Among the possible
models, one of the simplest empirical mathematical
model of the drag force is taken as f(v) ∝ v|v|p−1,
where v represents the velocity of the object.
Phenomenological models accounting for nonlin-
ear dissipation seem to be natural and have been
considered in many applied sciences, such as ship
dynamics, vibration engineering, the study of the
dynamics of galaxies, and the motion of projec-
tiles [Bikdash et al., 1994; Falzarano et al., 1992;

Huilgol et al., 1995; Ravindra & Mallik, 1994a,
1994b; Sanjuán, 1999; Pfenniger & Norman, 1990;
De Mestre, 1990].

The effect of some physical parameters, such
as wave amplitude and nonlinear damping on the
transient motions and the global system behavior
of a capsizing ship was investigated by Falzarano
et al. [1992]. In particular they use a model
of a double-well and single-well Duffing oscillator
with a linear plus a quadratic viscous damping
term. A similar model for the motion of a mass
hanging from a overhead crane, using a pendulum
with a quadratic friction term was used by Huilgol
et al. [1995]. In a recent work by Litak et al. [1999]
the dynamical behavior of the Froude pendulum is
analyzed, which may be understood as a pendu-
lum with linear plus cubic damping terms, in par-
ticular the nonlinear damping term is of Rayleigh
type. The stability of a nonlinearly damped hard
Duffing oscillator has been analyzed in [Ravindra &
Mallik, 1994a]. Furthermore, the role of nonlinear
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dissipation in soft Duffing oscillators has received
some attention in [Ravindra & Mallik, 1994b], with
the conclusion that nonlinear damping terms affects
notably the onset of the period-doubling route to
chaos. However, they underestimated the effect of
nonlinear damping terms on the structure of the
chaotic attractors. A simple nonlinear oscillator
with a quadratic friction term, that does not change
its sign depending on the sign of the velocity, in re-
lation to the dynamics of avalanches in real sand-
piles was considered by Linz [1995]. A model of
a parametrically forced pendulum with a quadratic
damping term is used by Pfenniger and Norman
[1990] to model dissipation in barred galaxies, that
is, ovally distorted galaxies in the region where their
rotation curve is steep. Xie and Hue [1995] stud-
ied the dynamics of a double-well Duffing oscillator
with a nonlinear damping term, where a paramet-
ric perturbation plays the role of the damping co-
efficient. Awrejcewicz and Holicke [1999] analyzed
a nonlinear oscillator with a different type of non-
linear damping to model dry friction and stick-slip
chaotic oscillations. Also related to dry friction, nu-
merical investigations have been done by Lim and
Chen [1998]. The role of nonlinear dissipation on
some properties of the dynamics of the universal
escape oscillator, such as the threshold of period-
doubling bifurcations, fractal basin boundaries and
the destruction of basins of attraction was consid-
ered by Sanjuán [1999].

In the present work we study the effect of the
nonlinear dissipation on the dynamics of certain
nonlinear oscillators. One possible way of classify-
ing nonlinear oscillators is according to its behavior
to external driving. Those oscillators which pos-
sess a stable limit cycle without external driving
are called self-excited, and those which tend to rest
when not driven are called strictly dissipative os-
cillators. One type of self-excited oscillator is the
Van der Pol oscillator which possesses a nonlinear
damping term. However, in all our analysis we will
assume strictly dissipative forces. In particular, we
analyze the double-well Duffing oscillator and the
simple pendulum. We use the Melnikov method to
evaluate the critical parameters for which compli-
cated behavior is expected. This type of analysis
has been done by different authors [Bikdash et al.,
1994; Falzarano et al., 1992; Huilgol et al., 1995,
Ravindra & Mallik, 1994b; Sanjuán, 1999; Litak
et al., 1999]. Our analysis consider generalized non-
linear damping terms including every positive power

of the velocity, and the Melnikov technique, ap-
plied to our models, allows us to obtain generalized
expressions for the critical parameters for which
fractal basin boundaries are created [Moon & Li,
1985], which may include as particular cases most
of the analyses previously done. In this respect,
our computations are indeed useful, since they can
automatically provide the right results of previous
works [Falzarano et al., 1992; Huilgol et al., 1995;
Ravindra & Mallik, 1994b; Litak et al., 1999].
Moreover, using the equivalence criterium intro-
duced by Bikdash et al. [1994], we have developed
the concept of Melnikov-equivalent damped oscilla-
tors. With it, we have shown that the introduction
of a nonlinear damping term in a previously linearly
damped oscillator may be equivalent, in the sense
of Melnikov analysis, to a shift in the coefficient of
the linear damping term.

2. The Nonlinearly Damped
Double-Well Duffing Oscillator

One of the models of nonlinear oscillators that tra-
ditionally has received much attention in the liter-
ature is probably the Duffing oscillator. Besides its
multiple applications in many different fields, it con-
stitutes also a paradigm in the study of nonlinear
oscillations where many new ideas can be tested.
In this context we want to use it to check the effect
on its dynamics of introducing nonlinear damping
terms.

We consider the following equation of motion
for the driven double-well Duffing oscillator with a
nonlinear damping term

ẍ+ αpẋ|ẋ|p−1 − x+ x3 = F cos ωt , (1)

where F is the amplitude and ω the frequency of
the external perturbation. The nonlinear damping
term is taken to be proportional to the power of
the velocity, in the form αpẋ|ẋ|p−1, where p ≥ 1 is
the damping exponent, and αp is the correspond-
ing damping coefficient. A similar model was used
previously by Ravindra and Mallik [1994a, 1994b] in
their work on the role of nonlinear damping on some
soft Duffing oscillators and by Sanjuán [1999] in his
study of the nonlinearly damped escape oscillator.
In the previous model of the nonlinearly damped
double-well Duffing oscillator, the case p = 1 corre-
sponds to the linear viscous damping term, which
is rather well known in the literature.
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Our purpose is to analytically estimate how cer-
tain nonlinear damping terms affects the dynamics
of the nonlinear oscillator. Numerical experiments
show that changing the damping exponent has a
considerable effect on the global pattern of bifurca-
tions of the dynamical system under consideration.
The Melnikov method is one of the few analytical
tools to study the global behavior of the system
and, in particular, it gives a procedure for analyz-
ing and estimating when a chaotic behavior of a
certain dynamical system is expected. In order to
apply this technique and to carry out this study, we
need to consider the external forcing and the dissi-
pation as small perturbations to the Hamiltonian
system ẍ − x + x3 = 0. A corresponding Melnikov
analysis for the linearly damped double-well Duff-
ing oscillator, p = 1 in our model, has been consid-
ered extensively and as a reference it may be found
in [Wiggins, 1990; Nayfeh & Balachandran, 1995].
One basic step for the application of the method is
the calculation of the fixed points in phase space
of the unperturbed integrable system. This system
has two elliptic fixed points located at (±1, 0) and
a hyperbolic fixed point located at (0, 0). More-
over we need to compute the homoclinic orbits, that
is, the solutions of the unperturbed system starting
and ending at the hyperbolic fixed point. For that
we simply need to integrate the system for the ini-
tial conditions (±

√
2, 0), and the results are given

by

(x±sx(t), y
±
sx(t))=(±

√
2 sech t, ∓

√
2 sech t tanh t) ,

(2)

where the signs refer to the right and left half
planes. Both solutions determine the separatrix or-
bit, since it separates two types of orbits in phase
space.

According to Melnikov theory we need the pre-
vious ingredients in order to calculate the Mel-
nikov function, which is associated with each homo-
clinic orbit. This function is calculated through the
expression

M±(t0, ω, p) = −αp
∫ +∞

−∞
|y±sx(t)|p+1dt

+ F

∫ +∞

−∞
y±sx(t) cos ω(t+ t0)dt .

(3)

After substitution of the homoclinic solutions,
where the Melnikov function need to be evaluated,

it appears as

M±(t0, ω, p)

=−2
p+1

2 αp

∫ +∞

−∞
sechp+1t tanhp+1 t dt (4)

∓
√

2F sin ωt0

∫ +∞

−∞
sech t tanh t sin ωt dt .

(5)

The evaluation of the last integrals appear in the
Appendix [Eqs. (A.1) and (A.3)], therefore

M±(t0, ω, p) = −αp2
p+1

2 B

(
p+ 2

2
,
p+ 1

2

)

± F
√

2πω sech

[
πω

2

]
sin ωt0 . (6)

In this equation appears the function B(r, s), which
is the Euler Beta function and it can be easily
evaluated in terms of the Euler Gamma function
[Abramowitz & Stegun, 1970]. These functions are
easily evaluated with the help of software packages
such as Maple or Mathematica.

According to Melnikov theory, this function is
related to the distance between the stable and the
unstable manifolds associated with the hyperbolic
fixed point, when destroyed by the perturbation.
When this function has simple zeros, it implies that
there is a critical parameter Fcp corresponding to
the external forcing, for which homoclinic tangles
intersect. For a certain frequency ω this critical pa-
rameter depends on the damping exponent p and
the damping coefficient αp. This critical parameter
may be written as

Fcp = αp
2
p
2

πω
B

(
p+ 2

2
,
p+ 1

2

)
cosh

[
πω

2

]
. (7)

We define the function D(ω, p) = Fcp/αp, as the
ratio between the external forcing and the damp-
ing coefficient and then we have the following
expression

D(ω, p) =
2
p
2

πω
B

(
p+ 2

2
,
p+ 1

2

)
cosh

[
πω

2

]
. (8)

This last function is the one that provides informa-
tion about the effect of the nonlinear damping on
the threshold of homoclinic chaos and the appear-
ance of fractal boundaries, as proved by Moon and
Li [1985]. Accordingly, given a set of parameters of
the system we may know when it is expected to find
chaotic behavior in its dynamics.
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(a)

(b)

Fig. 1. Variation of the ratio D(ω, p) versus p corresponding
to the Duffing oscillator ẍ+αpẋ|ẋ|p−1−x+x3 = F cos ωt for
the angular frequencies ω = 1 (thin line), ω = 1.5 (medium
line) and ω = 2 (thick line). (a) Standard scale; (b) semi-
logarithmic scale.

In order to have a visual information about this
last result, we have plotted in Fig. 1(a) the depen-
dence of the function D(ω, p) with respect to the
damping exponent p for different values of the fre-
quency of the external forcing, ω = 1, ω = 1.5 and
ω = 2. One clear observation from this figure is
that, for a fixed ω, the ratio of the external forc-
ing to the damping coefficient, decreases when the
damping exponent increases. This means that for
higher values of the damping exponent, the crit-
ical parameter for which homoclinic chaos exist,
decreases. In other words, with a smaller forcing
parameter we may enter into a chaotic state. More-
over, this dependence is almost exponential, as is

(a)

(b)

Fig. 2. Variation of the ratio D(ω, p) versus ω correspond-
ing to the Duffing oscillator ẍ+αpẋ|ẋ|p−1−x+x3 = F cos ωt
for the damping exponents p = 1 (thin line), p = 2 (medium
line) and p = 3 (thick line). (a) Standard scale; (b) semi-
logarithmic scale.

shown in Fig. 1(b), where a semi-logarithmic scale
has been used. We have plotted in Fig. 2(a) the
dependence of D(ω, p) with respect to the angular
frequency ω for different values of the damping ex-
ponent, p = 1, p = 2 and p = 3. This appears to
be more clear in Fig. 2(b) where a semi-logarithmic
scale is used. Consequently, what this figure shows
is that for a fixed value of ω, the threshold for ho-
moclinic chaos to occur decreases as the damping
exponent p increases.

Numerical evidence shows that, for a fixed
set of parameters, a period-doubling bifurcation is
observed at a certain critical forcing amplitude.
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Keeping fixed all the parameters, we have observed
that the critical forcing amplitude decreases when
the damping exponent increases.

3. The Nonlinearly Damped
Simple Pendulum

Another paradigm in nonlinear dynamics is consti-
tuted by the simple pendulum. Analogously as in
the case of the Duffing oscillator it has been used as
a practical model for many different applications in
science and engineering. As in the previous case, we
consider in our model a damping term which is pro-
portional to a power of the velocity, therefore the
model equation for the nonlinearly damped simple
pendulum is

θ̈ + αpθ̇|θ̇|p−1 + sin θ = F cos ωt . (9)

For different values of the damping exponent p, a
different dissipative force acts on the system. Nu-
merical evidence also shows that different damping
exponents produce a global pattern of bifurcations.
Our aim here is to apply Melnikov method in or-
der to obtain an analytical estimate of the effect
of nonlinear damping on the dynamics of the sim-
ple pendulum. All we need is to compute the Mel-
nikov function associated to this system. For that,
we consider the external forcing and the nonlinear
damping as a Hamiltonian perturbation to the sim-
ple pendulum with equation θ̈ + sin θ = 0. The
Hamiltonian function for (θ, θ̇) ∈ [−π, π]×R is

H(θ, θ̇) =
1

2
θ̇2 − cos θ . (10)

The phase space of the pendulum is 2π-periodic in
θ with hyperbolic saddles in (±π, 0) and an ellip-
tic centre in (0, 0). This system has three kinds of
solutions: Oscillations, rotations and a separatrix
orbit. The solutions for the oscillating orbits can
be expressed [Koch & Leven, 1985; Sanjuán, 1996]
as

(θ(t), θ̇(t))=(2kcn(Ωt, k)dn(Ωt, k), 2kcn(Ωt, k)) ,

(11)

where the functions cn(Ωt, k) and dn(Ωt, k)
are Jacobi Elliptic Functions [Lawden, 1989;
Abramowitz & Stegun, 1970] of frequency Ω and el-
liptic modulus k. It should be noted that sometimes
the elliptic parameter m is used instead, where
m = k2. The solutions for the heteroclinic orbits

are obtained by simply taking the limit k → 1 for
the elliptic modulus. The solutions are given by in-
tegrating H(θ, θ̇) = h. For h = 1, then we have a
pair of heteroclinic solutions given by

θ±0 (t) = ±2 arctan[sinh t] = ±2 tanh t sech t (12)

θ̇±0 (t) = ±2 sech t , (13)

subjected to the initial conditions (θ±0 (0), θ̇±0 (0)) =
(0, ±2). Thus the Melnikov function can be written
as

M±(t0, ω, p) = −αp
∫ +∞

−∞
|θ̇±0 (t)|p+1dt

± F cos ωt0

∫ +∞

−∞
sin(θ±0 (t))

× θ̇±0 (t) cos ωt dt . (14)

After substitution of the heteroclinic solutions, the
evaluation of these integrals [see Eqs. (A.1) and
(A.2)] gives

M±(t0, ω, p) = −αp2p+1B

(
1

2
,
p+ 1

2

)

± 2πF sech

(
πω

2

)
cos ωt0 , (15)

where B(r, s) is the Euler Beta function
[Abramowitz & Stegun, 1970].

As a consequence of the Melnikov theory, the
zeros of the Melnikov function provides the criti-
cal parameter Fcp, which depends on the damping
exponent p, for which the stable and unstable man-
ifolds associated with the hyperbolic saddle point
intersect, is given by

Fcp = αp
2p

π
B

(
1

2
,
p+ 1

2

)
cosh

[
πω

2

]
. (16)

As in the previous case, we define the ratio of the
forcing with respect to the damping as P (ω, p) =
Fcp/αp, and then we have the following function for
the pendulum

P (ω, p) =
2p

π
B

(
1

2
,
p+ 1

2

)
cosh

[
πω

2

]
. (17)

Similarly to the Duffing oscillator, we visualize this
information, given by the analytical methods, by
plotting in Fig. 3(a) the dependence of P (ω, p) with
respect to the damping exponent p, for different
frequencies of the external perturbation, ω = 1,
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(a)

(b)

Fig. 3. Dependence of the ratio P (p, ω) versus p correspond-
ing to the simple pendulum θ̈+αpθ̇|θ̇|p−1 + sin θ = F cos ωt
for the angular frequencies ω = 1 (thin line), ω = 1.5
(medium line) and ω = 2 (thick line). (a) Standard scale;
(b) semi-logarithmic scale.

ω = 1.5 and ω = 2. Contrary to the case of
the Duffing oscillator, this ratio increases when the
damping exponent p increases. That is, for higher
values of the damping exponent the threshold in-
creases for the homoclinic chaos to occur. This idea
appears to be more clearly illustrated in Fig. 3(b),
where a semi-logarithmic scale is used. On the other
hand, Fig. 4(a) shows the dependence of P (ω, p)
with respect to the angular frequency for the damp-
ing exponents p = 1, p = 2 and p = 3. Similarly we
use a semi-logarithmic scale in Fig. 4(b).

We have numerically simulated the system and,
for a chosen set of parameters, we have observed

(a)

(b)

Fig. 4. Dependence of the ratio P (p, ω) versus ω corre-
sponding to the simple pendulum θ̈ + αpθ̇|θ̇|p−1 + sin θ =
F cos ωt for the damping exponent p = 1 (thin line), p = 2
(medium line) and p = 3 (thick line). (a) Standard scale;
(b) semi-logarithmic scale.

that increasing the damping exponent produces the
effect of decreasing the critical forcing amplitude for
which a period-doubling bifurcation occurs.

4. Melnikov-Equivalent Damped
Oscillators

4.1. Duffing oscillator

The previous analysis for the nonlinearly damped
Duffing oscillator and for the nonlinearly damped
pendulum can be easily generalized to the case in
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which more powers of velocity are included. In par-
ticular, and for the nonlinearly damped Duffing os-
cillator, we may find

ẍ+
N∑
i=1

αpiẋ|ẋ|pi−1 − x+ x3 = F cos ωt , (18)

where N different nonlinear damping terms, with
damping coefficients αpi , pi ≥ 1, are included. The
application of Melnikov analysis to this system pro-
vides a Melnikov function that takes the form

M±(t0, ω, pi) = −
N∑
i=1

2
pi+1

2 αpiB

(
pi + 2

2
,
pi + 1

2

)

±
√

2F πω sech

(
πω

2

)
sin ωt0 ,

(19)

and consequently the critical parameter of the
external perturbation is given by

Fcpi =cosh

(
πω

2

) N∑
i=1

2pi/2

πω
αpiB

(
pi+2

2
,
pi+1

2

)
.

(20)

A damping term like the one we have just intro-
duced can be called a generalized nonlinear damping
term. On the other hand, the usual linear damping
term which appears in the ordinary Duffing oscilla-
tor is called a simple linear damping term

ẍ+ µẋ− x+ x3 = F cos ωt . (21)

Our aim here is to analyze what is the effect
of the generalized nonlinear damping term with re-
spect to the simple damping term. The analy-
sis done above allows us to use the criterium of
Melnikov equivalence, that is, two generalized non-
linearly damped systems, having the same unper-
turbed differential equation, are Melnikov-equivalent
if they have the same Melnikov function. This cri-
terium has been introduced in [Bikdash et al., 1994]
to study the influence of different damping models
on the nonlinear roll dynamics of ships. To be pre-
cise, what we try to answer is when a nonlinear
oscillator with a simple damping term is Melnikov-
equivalent to a nonlinear oscillator with a general-
ized damping term.

The Melnikov function associated to the Duff-
ing oscillator with a simple damping term is given
by

M±(t0) = −4

3
µ±
√

2F πω sech

(
πω

2

)
sin ωt0 .

(22)

Now we have two Duffing oscillators with different
types of damping, one with a generalized nonlinear
damping term and another one with a simple linear
damping term. We have evaluated the correspond-
ing Melnikov functions and according to the concept
of Melnikov-equivalence that we have previously in-
troduced, we conclude that both Melnikov functions
are equal when the following condition holds

µ = 3
N∑
i=1

2
pi−3

2 B

(
pi + 2

2
,
pi + 1

2

)
αpi . (23)

The meaning of this expression is the following.
Given a Duffing oscillator with a nonlinear general-
ized damping term, in which the set of parameters
(αpi , F, ω) are fixed, then there exists a Duffing os-
cillator with a simple linear damping term, which is
Melnikov-equivalent under the following conditions:
(i) The parameters F , ω are equal in both systems,
and (ii) The parameter µ is related to the set of pa-
rameters αpi through Eq. (23). It is interesting to
note from this result that the damping coefficient µ
is a linear function of the damping coefficients αpi .

4.1.1. Numerical simulation

Next, we consider a particular case for which we
attempt to apply this result and to numerically ex-
plore its dynamical behavior. We consider a non-
linear Duffing oscillator including a simple linear
damping term plus a cubic damping term given by
the following expression

ẍ+ α1ẋ+ α3ẋ
3 − x+ x3 = F cos ωt . (24)

According to our previous result this system should
be Melnikov-equivalent to the Duffing oscillator

ẍ+ µẋ− x+ x3 = F cos(ωt) , (25)

if the damping coefficient µ satisfies the condition

µ = α1 +
12

35
α3 . (26)

As an easy application of Melnikov theory, we can
evaluate the critical parameter Fcp,1 of the general-
ized nonlinearly damped Duffing oscillator from the
general expression (20), which is given by

Fcp,1 =

√
2

πω
cosh

(
πω

2

)(
2

3
α1 +

8

35
α3

)
. (27)



2264 J. L. Trueba et al.

Analogously, the critical parameter Fcp,2 of the sim-
ple linearly damped Duffing oscillator is provided
by

Fcp,2 =

√
2

πω
cosh

(
πω

2

)
2

3
µ . (28)

The critical parameters that are obtained from
both nonlinear oscillators are equal in the case
where condition (26) is fulfilled.

We have numerically simulated the dynam-
ics of the nonlinear oscillators using a fixed-step-
size fourth-order Runge–Kutta numerical integra-
tion and its associated 2D Poincaré map. For our
numerical computations we have fixed the param-
eters ω = 1, α1 = 0.1, α3 = 0.01 in the system
(24), that is, the one with a generalized nonlin-
ear damping term. This gives an equivalent sim-
ple damped system (25) with a damping coefficient
µ = 0.10343 that we have computed by using con-
dition (26), and the critical parameter is then given
by Fcp = Fcp,1 = Fcp,2 = 0.07788.

For these conditions we have plotted in Fig. 5
the behavior of the stable and unstable manifolds

of the system (24) with ω = 1, α1 = 0.1, α2 = 0.01,
and the equivalent system (25) with ω = 1, µ =
0.10343. Figure 5(a) refers to the situation in which
the forcing amplitude is given by F = 0.075 for the
generalized nonlinearly damped system (24), which
is below the critical parameter Fcp = 0.07788. It
can be observed that the stable and unstable man-
ifolds do not intersect. However, in Fig. 5(b), we
consider the case F = 0.081, in which is shown that
the invariant manifolds clearly intersect. The in-
variant manifolds for the simple Duffing oscillator
are depicted in Fig. 5(c) with the forcing parameter
F = 0.075. It is very interesting to note the similar-
ity with the case in which a generalized nonlinear
damping term is used, which is shown in Fig. 5(a).
The equivalent system with F = 0.081 is shown
in Fig. 5(d), with results very similar to Fig. 5(b).
As a consequence, the computations agree with our
theoretical discussions.

From Fig. 5, it may be observed that the
invariant manifolds of both nonlinear oscillators
are almost identical. This fact has dynamical

Fig. 5. Stable and unstable manifolds for different values of the parameters corresponding to the nonlinearly damped Duffing
oscillator ẍ + α1ẋ + α3ẋ

3 − x + x3 = F cos ωt. (a) α1 = 0.1, α3 = 0.01, F = 0.075. (b) α1 = 0.1, α3 = 0.01, F = 0.081.
(c) α1 = 0.1034, α3 = 0, F = 0.075. (d) α1 = 0.1034, α3 = 0, F = 0.081.
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consequences, not only because we have detected
the critical parameters for which the tangencies oc-
cur, but also because the basins of attraction of
both systems are quite similar. In relation to these
ideas, we have investigated the energy dissipation
and the force- and frequency-response behavior for
both oscillators near the critical parameters, show-
ing that both of them have an almost indistinguish-
able free-decay behavior and identical steady-state
forced-oscillation behavior.

4.2. Pendulum

A similar analysis can be done for the pendulum.
When more nonlinear damping terms are intro-
duced the pendulum equation becomes

θ̈ +
N∑
i=1

αpi θ̇|θ̇|pi−1 + sin θ = F cos ωt , (29)

which contains a generalized nonlinear damping

term. The Melnikov function results in

M±(t0) = −
N∑
i=1

2pi+1αpiB

(
1

2
,
pi + 1

2

)

+ 2πF sech

(
πω

2

)
cos ωt0 , (30)

and the critical parameter of the external perturba-
tion is given by

Fcp = cosh

(
πω

2

) N∑
i=1

2pi

π
αpiB

(
1

2
,
pi + 1

2

)
. (31)

The generalized nonlinearly damped pendulum is
Melnikov-equivalent to the simple damped pendu-
lum with equation

θ̈ + µθ̇ + sin θ = F cos ωt , (32)

if the amplitude F and frequency ω of the exter-
nal forcing are equal in both systems, and the pa-
rameter µ in (32) is a linear function of the set of

Fig. 6. Stable and unstable manifolds for different values of the parameters corresponding to the nonlinearly damped simple
pendulum θ̈ + α1θ̇ + α3θ̇

3 + sin θ = F cos ωt. (a) α1 = 0.1, α3 = 0.01, F = 0.39. (b) α1 = 0.1, α3 = 0.01, F = 0.41.
(c) α1 = 0.1267, α3 = 0, F = 0.39. (d) α1 = 0.1267, α3 = 0, F = 0.41.
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parameters αpi given by

µ =
N∑
i=1

2pi−2B

(
1

2
,
pi + 1

2

)
αpi . (33)

4.2.1. Numerical simulation

The particular case of the generalized damped pen-
dulum (29) studied here is

θ̈ + α1θ̇ + α3θ̇
3 + sin θ = F cos ωt , (34)

which is Melnikov-equivalent to the simple system
(32) if

µ = α1 +
8

3
α3 . (35)

The critical parameter for the generalized nonlin-
early damped pendulum (34), and its associated
Melnikov-equivalent simple system, is

Fcp =
4

π
cosh

(
πω

2

)(
α1 +

8

3
α3

)
. (36)

For the numerical computations, the parame-
ters were taken to be ω = 1, α1 = 0.1, α3 = 0.01
in the generalized system (34). The equivalent
simple damped system has a damping coefficient
µ = 0.12667 according to the relation (35), and the
critical parameter is Fcp = 0.40468.

As in the case of the Duffing oscillator, Fig. 6
shows the stable and unstable manifolds of the gen-
eralized system with ω = 1, α1 = 0.1, α3 = 0.01,
and the equivalent simple system with ω = 1,
µ = 0.12667. In Fig. 6(a) appears the plot of the in-
variant manifolds when F = 0.39 for the generalized
system, which is below the critical parameter. How-
ever in Fig. 6(b) the case F = 0.41, which is above
the critical forcing, is shown. The invariant man-
ifolds for the simple damped pendulum are shown
in Fig. 6(c), which corresponds to the equivalent
simple system with forcing parameter F = 0.39,
that is, below the critical forcing. The same sit-
uation is described in Fig. 6(d) for the parameter
value F = 0.41, which is above the critical forcing.
Again, theory and computations agree.

Analogously as was described previously for
the Duffing oscillator, we have observed the dy-
namical consequences of the similarities of the in-
variant manifolds for our damped pendulum equa-
tions. The results of our investigation show
that the free-decay behavior and the steady-state

forced-oscillation behavior are equivalent for both,
the linearly damped and the nonlinearly damped
pendulum.

5. Concluding Remarks

As it was pointed out in the introduction, dissipa-
tion plays an important role in dynamical systems.
Indeed most dynamical systems may be classified
as dissipative systems. In spite of the enormous
efforts to analyze these systems, very few works
appear to exist, in which nonlinear dissipation is
considered. As a matter of fact, it seems that the
effect of nonlinear dissipation on certain nonlinear
dynamical systems has been missed or underesti-
mated. In this work we analyze the Duffing oscilla-
tor and the simple pendulum, with nonlinear damp-
ing terms proportional to the power of the velocity.
We have analytically computed, using the Melnikov
method, the threshold parameters for which homo-
clinic or heteroclinic chaos is expected. Our analysis
has provided some useful general expressions which
can be of application to many different models in
sciences and technology, where nonlinear damping
terms proportional to the power of the velocity are
included. For the nonlinearly damped Duffing os-
cillator, with a single nonlinear damping term pro-
portional to the power of the velocity, our analytical
results show that the critical parameter for which
homoclinic chaos exist, decreases when the damp-
ing exponent, that is the power of the velocity,
increases. For the nonlinearly damped simple pen-
dulum with a single nonlinear damping term pro-
portional to the power of the velocity, the analytical
results show that the critical parameter increases
when the damping exponent increases. Using the
concept of Melnikov equivalence and the general-
ized nonlinear damping term, which includes several
nonlinear damping terms, we have shown that the
effect of nonlinear dissipation can be equivalent to a
linearly damped nonlinear oscillator with a modified
damping coefficient. The investigation of the energy
dissipation and the force- and frequency-response
behavior of the nonlinearly damped and the Mel-
nikov equivalent linearly damped oscillators show
that both of them have an almost indistinguish-
able free-decay and steady-state forced-oscillation
behavior. Accordingly, all these results show the
importance of studying the role of the nonlinear dis-
sipative forces in dynamical systems.
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Appendix A

All the integrals used for the computation of
Melnikov functions are:∫ +∞

−∞
dt

sinhµ(t)

coshν(t)
= B

(
µ+ 1

2
,
ν − µ

2

)
(A.1)

∫ +∞

−∞
dt sechAt cos Bt =

π

A
sech

(
πB

2A

)
(A.2)

∫ +∞

−∞
dt sechAt tanh At sin Bt =

πB

A2
sech

(
πB

2A

)
(A.3)

The Euler Beta functions are related to the
Gamma Euler Function through the expression:

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
. (A.4)

Remember that the Euler Gamma function has
the following property: Γ(n + 1) = nΓ(n), where
Γ(n + 1) = n!, 0! = 1, if n = 0, 1, 2, . . . , and
Γ(1/2) =

√
π, Γ(n + 1/2) = (1 · 3 · 5 · . . . ·

(2n− 1)/2n)
√
π.


