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Unpredictable behavior in the Duffing oscillator: Wada basins

Jacobo Aguirre, Miguel A.F. Sanjuán∗
Nonlinear Dynamics and Chaos Group, Departamento de Ciencias Experimentales e Ingenierı́a,

Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

Received 22 January 2002; received in revised form 29 May 2002; accepted 7 June 2002
Communicated by E. Kostelich

Abstract

This paper describes some numerical experiments giving evidence of Wada basin boundaries for the Duffing oscillator. We
suggest some mechanisms by which this fractal property of the boundaries appears and discuss the difficulties that the Wada
property presents for predicting the behavior of dynamical systems.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

When studying nonlinear dynamical systems, dif-
ferent global structures typically arise when one
parameter is varied. One of the goals of nonlinear
dynamics is the determination of how these global
structures, such as strange attractors or other strange
sets (basin boundaries, nonattracting chaotic sets,
etc.), arise with the simple variation of a parameter of
the system. A typical phenomenon in dynamical sys-
tems is the coexistence of attractors for a chosen set
of parameters, which is responsible for the approach
of different asymptotic states depending on the initial
condition. In particular, when we have two attractors
in the phase plane, the set of initial conditions that go
to one of the attractors defines the attractor’s basin
of attraction. If there are two attractors, then there
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are two basins, and consequently there is a curve
that separates both basins, which is called the basin
boundary. A pointx belongs to the boundary, and is a
boundary point, when there is an open set surround-
ing x which intersects both basins. Thus, the basin
boundary is defined by the set of boundary points.
The basin boundary is an invariant set, i.e., ifx and
its image belong to the basin boundary, then every
subsequent image belongs to the boundary.

The basin boundary can be a smooth curve, but it
also can be a fractal structure. We say that a basin
boundary is fractal if it contains a transversal homo-
clinic point. A transversalhomoclinic pointq is a
point of intersection where the stable and unstable
manifolds associated to a hyperbolic fixed pointp

cross and are not tangent. This result was first en-
countered by Moon and Li[1]; it is related to the
Melnikov theory [2], which is one of the few an-
alytical methods used to ascertain the homoclinic
bifurcations of a dynamical system. The Moon and Li
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result proves that over a certain threshold value, ho-
moclinic bifurcations occur, after which a transversal
homoclinic point exists; this situation leads to chaos
of the Smale-horseshoe type, and as a consequence
the boundaries become fractal. In other words, the
Moon and Li result implies that a transition occurs
on the basin boundary from being smooth to fractal,
when a parameter surpasses a critical value for which
a transversal homoclinic point exist. Basin boundaries
with this property are called fractal basin boundaries
(for an excellent description of them, see Ref.[3]).

When three attractors coexist in phase space, a new
phenomenon is possible, namely theWada property
[4–7]. The goal of the present work is to show that
basin boundaries of the Duffing oscillator can have the
Wada property. The Duffing oscillator is a well-known
model of a nonlinear oscillator, with applications in
many fields of applied sciences and engineering. In
fact, it is viewed as a paradigm in nonlinear dynamics,
and for this reason it has been studied by many authors
(see for instance Ref.[8], and references therein).
The Wada property was first introduced in the physics
literature by Kennedy and Yorke[4]. This reference
illustrates the nature of Wada basins and pays partic-
ular attention to the topological properties underlying
them.

A basin boundary satisfies the Wada property if
every open neighborhood of any point on the bound-
ary has a nonempty intersection with at least three
different basins. To possess the Wada property is
stronger than to have fractal basin boundaries. In fact,
if a dynamical system has the Wada property, then it
must have fractal basin boundaries, but the converse
is false. For the Wada property to hold, the system
must have three or more coexisting attractors, but for
a fractal basin boundary to exist, only two are needed.

Basin boundaries with the Wada property, like
fractal basin boundaries in general, lead tofinal state
sensitivity[3,9,10], i.e., serious problems in the pre-
diction of the behavior of the dynamical system. The
existence of Wada basin boundaries has been reported
for both hamiltonian and dissipative systems. Some
examples can be found in[11] in relation to a prob-
lem of a billiard system, in[12–14] in the context of
chaotic advection of fluid flow, in[15] for a forced

predator–prey model in ecology and in[16] for the
Hénon–Heiles hamiltonian system. Moreover, Wada
basins have been found in an interesting and simple
experiment in chaotic scattering by Sweet et al.[17].

Some computational algorithms to verify the Wada
property for certain dynamical systems were intro-
duced by Nusse and Yorke[5]. They are especially ap-
plicable to dissipative systems. Moreover, they intro-
duce some new concepts, such as basin cells, which we
will describe later in this paper, and give numerically
verifiable conditions under which a dynamical system
possesses the Wada property. We will use these com-
putational tools to prove that the Duffing oscillator for
a certain set of parameters has Wada basin boundaries.

In the next section, we explain the Wada property
and argue that the Duffing oscillator possesses it. In
spite of the literature on this problem, we believe that
the consequences of Wada basins on predictability
have not been sufficiently studied. For this reason, we
have attempted to assess the unpredictable behavior
arising from Wada basins. InSection 3, we show that
Wada basins are an intermediate case between the par-
tial predictability of fractal basins and the total unpre-
dictability of riddled basins.Section 4contains some
concluding remarks.

2. The Wada property and the Duffing oscillator

The main focus of this section is to show strong ev-
idence that the Duffing oscillator has the Wada prop-
erty. To fix the ideas clearly, we say that a pointx on
a basin boundary is a Wada point if every open neigh-
borhood ofx has a nonempty intersection with at least
three different basins. A basin boundary is aWada
basin boundaryif all of its points are Wada points.
In [5], it is shown that a basin is Wada if the unsta-
ble manifold of each of its accessible periodic orbits
intersects at least three basins. (This result yields a
practical computational tool for dissipative systems.)
A point p on the boundary of a basinB is accessible
from B if a curve can be drawn, starting in the inte-
rior of B, in such a way thatp is the first point of
intersection of the curve with the boundary ofB (see
Fig. 1 for a schematic explanation of this concept).
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Fig. 1. The black point is accessible from the gray basin, because
it is the first boundary point that a curve hits starting from the
interior of the basin.

The Duffing oscillator may be understood as a
model of the one-dimensional motion of a particle of
unit mass in a double-well potential with dissipation
and external periodic forcing. It can be written as

ẍ + δẋ − αx + βx3 = γ cosωt. (1)

Fig. 2. This figure shows the position of the three coexisting attractors in the Poincaré 2π map associated to the Duffing oscillator. There
is a period-1 attractor on the right (P1R), a period-1 attractor on the left (P1L) and a period-3 attractor (P3L, P3C and P3R).

The variablex(t) is the position of the particle at time
t andδ is the damping coefficient. The parametersγ

andω are the amplitude and frequency of the exter-
nal perturbation. The following parameters have been
fixed throughout the paper:δ = 0.15 andα = β =
ω = 1. We vary the parameterγ , i.e., the amplitude
of the external perturbation. We have concentrated our
study on the interval 0.24 ≤ γ ≤ 0.26, where several
attractors coexist.

The Poincaré time-2π map associated withEq. (1)
has two fixed-point attractors and a period-3 attractor
for the parameter valueγ = 0.2445. A plot of the
periodic fixed points for the Poincaré time-2π map
is shown inFig. 2. To compute the fixed points we
have used a simple Newton method with random initial
conditions.

We call P1R and P1L the period-1 orbits located
on the right and on left, respectively. We call P3L,
P3C and P3R the left, center and right points of the
period-3 attractor, respectively. The period-1 attrac-
tors are located at P1R ≈ (0.815, 0.242) and P1L ≈
(−0.933, 0.299). The period-3 attractor is located at
P3L ≈ (−1.412, −0.137), P3C = (−0.354, −0.614),
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Fig. 3. A bifurcation diagram for many initial conditions taken
randomly for the range of parametersγ ranging from 2.44 to 2.6.
Note that there is an interval ofγ values ranging from 0.2445 to
0.2512 for which three attractors coexist.

and P3R = (0.645, −0.464). Additional evidence of
the coexistence of these three attractors comes from
Fig. 3, which shows the bifurcation diagram for many
initial conditions taken randomly. It is interesting to
note in Fig. 3 that the period-3 orbit arises from a
saddle-node bifurcation atγ = 0.2445 and follows a
typical period-doubling route to chaos asγ increases
further. Atγ = 0.2512, a new saddle-node bifurcation
occurs, giving rise to a period-1 orbit.

All the numerical computations were made using a
fourth-order Runge–Kutta integrator with a fixed time
step of 2π/500. Of central importance for this work is
the computation of the basin diagram for this system.
To numerically generate the basins of attraction, we
selected a grid of 960× 960 points, which were taken
as initial conditions. Each initial condition was inte-
grated until the corresponding trajectory approaches
one of the attractors. The initial condition was then
plotted in a color that corresponds to the attractor.
Fig. 4 shows the numerically computed basin bound-
ary. The calculations took several days on a Pentium
PC. This simple fact may explain the complexity of
the basin structure, since often the computation of a
simpler basin is less time-consuming. We estimate that
its uncertainty dimension[3] is d = 1.98± 0.01 (for
nonfractal basins,d = 1), which indicates a highly
fractal structure. As we have three attractors, there are

Fig. 4. The picture shows the basin of attraction diagram. A fine
grid of 960×960 of initial points is considered and different colors
are chosen according to which attractor an initial condition goes
to. There are some regions where the likelihood of going to the
attractor is bigger, but it is clearly observable that for most parts
of the phase space the situation is very complicated.

three different basins of attraction for this choice of
parameters, which we have colored black, gray and
white. One key question arises: is the black basin a
Wada basin? If so, every boundary point of the black
basin is also a boundary point of both the gray and the
white basins. Before answering this basic question, we
need to go first to some important concepts.

Given a dynamical system, atrapping regionis a
region in phase space from which points cannot es-
cape. Once a trajectory enters a trapping region, it
never leaves; thus a trapping region must contain an
attractor (ω-limit set). This is known as thelockout
property[18]. The notion of abasin cell[5–7,14]also
plays a fundamental role. A basin cell is a trapping re-
gion whose boundary consists of pieces of stable and
unstable manifolds of an accessible boundary periodic
orbit (seeFig. 5 for a clarifying diagram).

All our discussion is based upon a theorem by Nusse
and Yorke[5] that basically says: assume a basin with
a basin cell. If there is a periodic orbit that generates
a basin cell, and one of the branches of the orbit’s
unstable manifold passes through at least two other



J. Aguirre, M.A.F. Sanjúan / Physica D 171 (2002) 41–51 45

Fig. 5. A basin cell is a trapping region formed byn-pieces of the
stable and unstable manifolds of an accessible boundaryn-periodic
orbit (in the present diagram, a period-2 orbit).

basins of attraction, then the basin has the Wada prop-
erty. Another important result appears in[19], which
has to do with a saddle-node bifurcation that occurs
on fractal basin boundaries.

What is observed here is a clear example of the
Wada bifurcation criterion stated in[19]. We have
observed that atγ = 0.2445, a saddle-node bifurca-
tion gives rise to a period-3 orbit. For values ofγ

that are slightly smaller than 0.2445, there are two
fixed-point attractors, and the basin boundary is frac-
tal. This phenomenon is an interesting example of a
transition between a fractal and Wada basin boundary
when a system parameter is varied. More precisely,
a saddle-node bifurcation creates a new coexisting
attractor, so the system passes from two to three
attractors, which is a necessary condition for Wada
basins to exist. (A much more interesting question
would be to study this transition from fractal to Wada
basin boundaries in a situation in which three or more
basins coexist before and after the transition.)

The previous observation of the birth of an orbit via
a saddle-node bifurcation can be also proved by the
Moon and Li criterion[1], which applies the Melnikov
theory for the appearance of a homoclinic point. At
γ = 0.2512, a new saddle-node bifurcation occurs,
giving rise to a period-1 orbit, whose basin boundary

is exactly the stable manifold of the saddle, which is
a smooth curve of dimension 1. Atγ = 0.258, an in-
terior crisis occurs, and a period-1 orbit coexists with
this enlarged chaotic attractor, which is the develop-
ment of a period-doubling route to chaos from the
period-3 orbit born atγ = 0.2445. So, for most pa-
rameter values in the region 0.2445 ≤ γ ≤ 0.2512,
a period-3 orbit coexists with two period-1 orbits, so
there are three basins of attraction. The value we have
chosen for the computation of the basin of attraction
diagram isγ = 0.2445, which belongs to this inter-
val, and we believe that for this range ofγ values,
the system has the Wada property. (Moreover, as men-
tioned in[19], indeterminate bifurcations in the sense
of Thompson may occur asγ decreases past 0.2445.
When one basin disappears, we cannot determine to
which of the two remaining basins the orbit goes.)

TheWada intervalWγ associated with the parame-
ter γ is an open set of parameter valuesγ for which
the system has the Wada property. In other words, we
say thatγ0 ∈ Wγ if, for the parameterγ0, the system
possesses the Wada property. In our case, the Wada
interval Wγ is approximately (0.2445, 0.2512). For
every value ofγ inside this interval, every boundary
point is a Wada point and consequently belongs to the
basin boundary of the three attractors.

We have carried out computations of the Lyapunov
exponents for this Wada interval and they are strictly
negative, showing that there are no chaotic orbits.
Since this region is very close to an interior crisis,
there is a nonattracting chaotic set, which can be com-
puted using the PIM-triple method[20]. The chaotic
saddle for this parameter set is shown inFig. 6. It is an
invariant set composed of the intersection of the sta-
ble and unstable manifolds of a saddle orbit in phase
space, and it is responsible for the chaotic transients
that are present in the dynamics of the oscillator.

There are several ways to check whether a basin
B has the Wada property[16]. In our case, we have
decided to show that the Duffing oscillator satisfies
the conditions of Theorem 2 in[5], which is a useful
numerical criterion for dissipative systems, described
next. First, we must find an unstable periodic orbitP ,
accessible from basinB, that generates a basin cell.
Secondly, the unstable manifold ofP must intersect
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Fig. 6. A chaotic saddle corresponding to the situation for which
the strong fractalization of phase space appears in the figure. The
chaotic saddle is responsible for the chaotic transients that are
present in the system.

all basins, and finally, it is necessary to repeat this
strategy for each basin to confirm that all basins indeed
have the Wada property.

Every basin in our system has an associated basin
cell. A picture with each corresponding basin cell is
shown inFig. 7for the gray basin,Fig. 8for the black

Fig. 7. This figure shows the basin cell B3R, which encloses the
P1R attractor and is generated by the saddle S1L ≈ (0.689, 0.276).
It is important to compare it with theFig. 4 of the basin diagram
and observe that the branch of the unstable manifold intersects
the three basins of attraction, what gives evidence that this basin
is Wada.

Fig. 8. This figure shows the basin cell B1L, which encloses the
P1L attractor and is generated by the saddle S1L ≈ (−0.895,
0.407). It is important to compare it with theFig. 4 of the basin
diagram and observe that the branch of the unstable manifold
intersects the three basins of attraction, what gives evidence that
this basin is Wada.

basin, andFig. 9 for the white basin. The structure
of the basin cells is as follows. Each basin cell is
generated by an accessible periodic boundary point.
We have three basin cells. The basin cell B3R, which
encloses the period-1 attractor P1R, is generated by
the saddle point S1R ≈ (0.689, 0.276) and is shown
in Fig. 7. The basin cell B1L, which encloses the
period-1 attractor P1L, is generated by the saddle
point S1L ≈ (−0.895, 0.407) and is shown inFig. 8.
The basin cell associated with the period-3 attractor
is formed by three disconnected basin cells, which we
call B3L (shown inFig. 9(a)), B3C (shown inFig. 9(b))
and B3R (shown inFig. 9(c)). Each one is generated
by the saddles S3L ≈ (−1.411, −0.032), S3C ≈
(−0.339, −0.613), and S3R ≈ (0.685, −0.459). All
the accessible boundary points have been calculated
using the ABST algorithm with Dynamics[21]. (The
ABST method is explained thoroughly in[22].) In
fact, the accessible unstable saddle points determine
the structure of the boundary. We have plotted in
Figs. 7–9the unstable manifold of each accessible un-
stable periodic orbit. By comparing these pictures with
Fig. 4, it is evident that the unstable manifolds cross
all three basins. These computations provide clear
evidence that, for the range of parameters analyzed
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in this paper, the attractor basins for the Duffing
oscillator have the Wada property.

3. Unpredictability

One of the main consequences of Wada basins is
related to the difficulty of predicting to which attrac-
tor a given initial condition might go. This is very
important, since we are used to the naive idea of clas-
sical determinism, where once the initial condition is
fixed, automatically we know the evolution of the or-
bit. While every initial condition has a unique orbit in
the Duffing oscillator, the phase space is so intertwined
that serious difficulties in prediction arise if there are
small uncertainties in fixing the initial condition.

If the initial condition belongs to a basin cell,
then it is situated in the interior of a trapping region.
Consequently, even if there is a slight uncertainty in
the precise location of the initial condition, we have
high certainty in predicting the attractor to which the
initial condition goes: it is the attractor that exists
inside the basin cell. Nevertheless, as is clearly seen
from our basin diagram inFig. 4, this is not the sit-
uation for most initial conditions in phase space. In
particular, suppose we choose the initial condition
(x(t0), ẋ(t0)) = (0, 0). For this choice, the trajectory
tends to a period-3 orbit in phase space, which is one
of the three coexisting attractors. When we modify
slightly this initial condition to, say(0.004, 0) the
trajectory tends to the period-1 orbit on the right
well. However, the trajectory starting from the initial
condition (−0.02, 0) tends to the period-1 attractor
in the left well, as does the trajectory from the initial
condition (0.012, 0). This simple numerical experi-
ment illustrates the lack of practical predictability in
this simple situation where three periodic attractors

�

Fig. 9. The figure shows the three disconnected basin cells corre-
sponding to the period-3 attractor: (a) basin cell B3L generated by
the saddle S3L ≈ (−1.411, −0.032); (b) basin cell B3C generated
by the saddle S3C ≈ (−0.339, −0.613); (c) basin cell B3R gen-
erated by the saddle S3R ≈ (0.685, −0.459). As in the previous
cases, note that the branches of the unstable manifolds intersects
the three basins, implying thatB3 or the white basin is Wada.
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coexist in phase space. From an experimental point of
view, fixing an initial condition with such precision
may not be possible; consequently, there is a serious
problem in prediction. Few authors have focused on
this issue, and a thorough discussion on it is one of
the goals of the paper. We have carried out several
numerical experiments to gain a better understanding
of the unpredictability of the Duffing oscillator for
this special choice of parameters.

The first experiment was conducted as follows.
Consider a thin horizontal strip for whichx ∈
(−2.2, 2.2). The height is chosen in such a way that a
great portion of the basin cells of the period-1 orbits
are inside the strip, for instance,v ∈ (0.1, 0.2). We
cut the strip vertically into 200 narrow slices, each of
whose dimensions is then 0.022×0.1. A grid of 2000
initial conditions is taken inside each slice, and for
each initial condition, the system is integrated until

Fig. 10. The figure shows the probability versus the coordinatex for a small rectangle around zero. The upper panel shows the probability
for the attractor in the black basin. The central panel for the attractor in the gray basin and the lower panel for the attractor in the white basin.

an attractor is reached. We evaluate the probability
of reaching each periodic attractor for all the slices
by calculating the percentage of orbits that leads to
each one. We have plotted this probability depending
on the positions of thex coordinate of the center of
each slice. The results of the experiment are shown in
Fig. 10. The original horizontal strip intersects both
fractal and nonfractal (smooth) regions. When one of
the smaller slices is contained entirely in a nonfractal
region, the probability that the initial conditions con-
tained in it go to one of the attractors is 100%, and the
probability of going to one of the other two attractors
is zero. Hence, there is no problem in trying to predict
the future behavior of the system from inside the slice.
However, if a portion of one of the slices includes
a fractal region, then the probabilities are different,
and the system is less predictable than in the last
case. Finally, if a slice is in a fractal region, then the



J. Aguirre, M.A.F. Sanjúan / Physica D 171 (2002) 41–51 49

probabilities tend to limiting values of 25% for the
black and gray attractors and 50% for the white
attractor.

In this situation, only a probabilistic study is possi-
ble. Fig. 10 shows the three regimes clearly. We can
suppose that the size of the slice is the precision of our
experiment, and in fact these three different regimes
of predictability arise independently of the size of the
slice. Obviously, the smaller is the slice, the more
regions of total determinism (probability 100% for ap-
proaching one of the attractors) will appear, but there
will always be regions with the other two behaviors.
The reason is that this mixture of fractal and non-
fractal regions in the phase space of initial conditions
exists at all scales. We repeated the experiment by
considering a small rectangle of size−0.1 ≤ x ≤ 0.1
and−0.1 ≤ y ≤ 0.1, with similar results. The main
point here is that, for a given precision in the mea-

Fig. 11. The figures show the result of plotting to which attractor an initial condition goes versus different ranges of they coordinate:
(a) 100 points out of the whole interval ranging from−2 to 2 is chosen; (b) 100 points out of the whole interval ranging from−0.02
to 0.02 is chosen; (c) 100 points out of the whole interval ranging from−0.0002 to 0.0002 is chosen; (d) 100 points out of the whole
interval ranging from−2 × 10−6 to 2× 10−6 is chosen.

surement of the initial conditions, the final state of the
system can be described only in probabilistic terms,
even though the underlying dynamical process is
deterministic.

In another numerical experiment, we chose 100
initial conditions along the vertical line segment from
(0, −2) to (0, 2). Each initial condition was integrated
until the trajectory reached a periodic attractor. The
result of this experiment is shown inFig. 11(a), where
B indicates a point whose trajectory approached the
black attractor, G the gray attractor, and W the white
attractor. An erratic pattern results, which gives an
idea of the unpredictability of the system. Next, we
considered 100 initial conditions in the vertical seg-
ment from(0, −0.02) to (0, 0.02); the result is shown
in Fig. 11(b). We repeated the process for the segment
(0, −0.0002) to (0, 0.0002) (seeFig. 11(c)). Finally,
Fig. 11(d) shows the results for a segment that is 100
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times smaller still. All figures show that the structures
repeat themselves at each scale and suggest that the
unpredictability occurs at fine scales.

We can use symbolic dynamics to show this pecu-
liar, unpredictable behavior based on the three sym-
bols B, G and W. For the case shown inFig. 11(a) we
have

GGGGBWWWWGGGGBWGGBWWGWWGWWWGWBBWGWW

WBGBWWBWWBWWWWGGGBWGWWWBWBBBWBWBW

WWWGWGWGWBGGWWWGWBBWBBWBWBBGWBBGW.

A similar situation occurs forFig. 11(b):

BGBWBBWWGGGGBGGWWBWBGWWWWWWWBWWBWBW

BWWWBWWBWWBGWGWWWGWGWWBGWGBGBGGWG

BWWWGWWWWBWWGBBBBWWGWGWWWWBWWGBWW.

For the situation described inFig. 11(c), we have

GWGGWWGWGBBGGWWGGWBWGBWWWWWWBWWBGWW

BGBWBBWWWGWBGGBWGGGGGGWWGWWWGBWWWW

GWBWBWWGBWWWWWGWGGBWBWBGWBWBWWWB

and forFig. 11(d) we have

WGGWBWBGWGWGWWWGGGBWBGGGGWWWWWBGWWW

WWWWWGWWWWGWBWBWWBWWGGBBWGWWBGBBB

BWWBBWWBGWWWBWGGGBWGBWBWWWWWBWGWB.

As we can observe from these series of symbols,
there are always open intervals where the same sym-
bol is repeated. In other words, as can be inferred
from observation of the basin diagram inFig. 4, we
can always find open sets of initial conditions that
are attracted to one particular attractor. The extent of
final state sensitivity for the Wada basins here is not
as extreme as for riddled basins[23]. (An interesting
discussion related to predictability in the presence of
riddled basins is found in[24].)

Another interesting topic would be to analyze the
role of small noise in the dynamics on the basin struc-
tures that appear in this problem. In principle, there
are arguments showing that, for small noise, this basin
structures persists[18], although it is clear that for

large enough noise levels, all is destroyed. Neverthe-
less, for the complicated structures of the basins ob-
served inFig. 4, it seems clear that introducing even
small amounts of noise in the dynamics would com-
plicate even more the question of prediction.

4. Conclusions

We have given numerical evidence that the Duffing
oscillator possesses the Wada property, and hence
that it has Wada basin boundaries. We have found
here that Wada basins occur in a parameter region
after a saddle-node bifurcation leads to three coex-
isting attractors, one of which is a period-3 orbit.
We have shown that there is a transition from fractal
basin boundaries to Wada basin boundaries when the
saddle-node bifurcation gives rise to a new attractor,
but the question of whether that transition is possible
when three attractors coexist remains open. One of the
more interesting consequences of the Wada property
for the Duffing oscillator, namely the difficulties in
predicting to which attractor an initial condition goes,
is discussed. The fractal structure of the phase space,
due to the complicated nature of the boundary basins,
has important implications for determining the final
output of the system for a certain initial condition; a
probabilistic approach is needed to predict the final
state. Finally, we have shown that having Wada basin
boundaries represents an intermediate situation be-
tween the case of having fractal basin boundaries and
the more complex situation of riddled basins, where
all deterministic prediction is lost.
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