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Information transfer in chaos-based communication
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This paper presents fundamentals of a theory to characterize chaos-based communication. We describe the
amount of information a dynamical system is able to transmit, the dynamical channel capacity, which takes into
account the information that a dynamical system generates.
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Among the works on chaos-based communication, a feviransmit pieces of the signal that after tfikering process
[1-5], have suggested the use of chaos to enhance commanables the receiver to fully recover the trajectory through
nication efficiency: security, transmission rate, and problenprediction what leads to recovering of the message.
solving. The idea of using the capability of chaotic systems We assume that our chaotic signal is a one-dimensional
to code some source of information was experimentally demBernoulli shift mapping, the Baker's map defined as,
onstrated in Ref[1]. In that work, the authors made arbi- X,,1=2X,+&; if X,<0.5 orX,;1=2X,—1+ &, if x,>0.5,
trarily small time-dependent perturbations manipulating thewhere &, is a Gaussian noise perturbation with variange
chaotic system, in order to generate a desired encoding sig=[ 10 '2,0.001], and zero mean. The reason for the noisy
nal which codes some information to be transmitted. term is to maintain the orbit of the mapping onto a set very

We show that the dynamical channel capacity, which meaelose to the chaotic set. Also, this perturbation is responsible
sures the amount of information transfered in chaos-basei® affect the long-term evolution of the map. With this, we
communication, assumes for very small Gaussian noise varbimulate a real control applicatiofas done in[1]) which
ance values multiples of the s [6]. drives the trajectory such that it encodes arbitrary messages.

Recent workg2,4], showed, among other things, that ca- We encode binary information using this mapping. For
pability dynamical systems have to filter noise. That is, giverfhat we partition the phase-space domaia[0,1], into a
a chaotic orbit corrupted by additive Gaussian noise, ther§€nerating partitionw composed of two partitions,
are ways to transform this noisy orbit into an orbit much =[0,0-5] and w;=]0.5,1]. Trajectory points falling in par-
closer to the non-noisy trajectory. We show that the dynamiition @o encodes for the symbé,="0,"” and points fall-
cal filter is able to act only on the noisy, preserving the reafnd in @1 encodes for the symb&, ="1," The probability
transmitted trajectory. In addition, for very small noise vari- With which the orbit stay in the partitiom, is o(w,)=0.5.

ances, the dynamical filter succeeds in completely reducingN® Message to be transmittetk=X; , X, . . ., thechannel
the noise. input, is composed by a symmetric discrete binary alphabet

Chaos-based communication can be summarized in & With componentRo,R;, appearing in the message with
three-step processSamplingthe input signalfiltering the ~ frequencieo=0.5 andp;=0.5. The choice of the Baker’s
output signal, and finallypredictingwith the filtered signal. Map is due to the fact that it represents a Bernoulli shift, and
By samplingwe mean that one has to find an appropriatetheremre: its trajectory encode_s any sequence of symbolls.
partition of the phase space with which encoding of the mes- 10 measure the amount of information transferred using
sage is possible. For example, one could use a coarse-grainga@otic signals, we introduce the Shannon entréfy,[ 7],
partition as suggested @] in order to have the symbolic the Kolmogorov-Sina{KS) entropy[6], Hys, and the topo-
encoded stream and the message with a similar transitiolegical entropy,H+[8]. To quantify the amount of informa-
statistic. We do not treat this problem here, but we assume #on of the message, we use the Shannon’s entidpy,with
partition is known by both the transmitter and the receiverthe natural logarithm. This is so, because we want to com-
So, from now on, a chaotic wave signal is, in fact, a set ofPare the information carried by the message, with the infor-
points obtained through a discreting procéssnapping of ~ Mation produced by the dynamical trajectory, which is cal-
the higher-dimensional continuous trajectory, a trajectoryculated using the natural logarithm. SoH(S)
which is the wave-signal used to transmit information over a= ==oPx IN(1/py). One important property of the entropy
channel. Byfiltering we mean that one has to recover theHs(S) is that OsH(S)<In2, where the upper limit is
wave signal after it is transmitted and corrupted by noise an#éeached if and only ip,=1/K for all k. Note that a typical
distorted by the strictly band-limited frequency, physical messagéwith large enough symbolsencoded by the Bak-
limitations imposed by the channel. In this paper, we onlyer's map will have a Shannon entropy equal to the Shannon
deal with noise filtering because we consider that the probentropy of the message. If the source has an entropy of In(2),
lem of eliminating the noise from the output signal is similar the typical encoded message should have an entropy close to
to recovering the input signal from a distorted output. Fi-In(2). If » is a generation partition theid s can be repre-
nally, to transmit a large amount of information, we only sented byHKS=Ztiéa(wk)ln(lla(wk)). The Hgg is also
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connected to metric characteristics of the dynamical system. 0.7 s
It was shown by Ruell¢9] thatHys<ZX) ~oh;, Where\;’s

are the positive Lyapunov exponents of the dynamical sys-
tem. Our chaotic system is one dimensional, therefore, it has —— H(S)-H_(n)
only one positive Lyapunov exponext=In(2). For this map, ¢ °
Hks=1In(2) [9].

In communication with chaos another important entropy
is the topological entropii+, which is based on the fact that 05 |
the numbeE(P) of periodic orbits grows exponentially with
the periodP, as E(P)~exg'™. This entropy measures the
information the dynamical system can encode with very 0.4 \ \ \ \
small manipulations on the trajectory. Such manipulations 0 0002 0.004 0006 0008 0.01
are required in order to have the messageoded by the n

system’s trajectory. What is important here is thdg FIG. 1. The solid line represents the mutual information without
=Hys(w). In order to better understand the relation be-ysing any information of the dynamical system, and the dashed line
tweenHys, Hr, andHs, with the amount of noise and the represents the mutual information using the dynamics, filtering the
amount of information received, we study a particular casepgise trajectory by applying one backward iteratiom€1). 7 is
where the messag@nput symbol streamis optimized for  the noise level.

the maximum information transfer, i.e., the messagés
actually the natural symbol sequence of the nonperturbett is known that two neighboring trajectories,distant from
Baker’s map. This choice is also made in order to simulateach other, when iterated forward in time,jterations, di-
the use of vanishingly small controlling perturbatidwery  verge exponentially proportionally teexp'". On the other
small ») what would thus lead to the following equality: hand, applying backward iterations, two neighboring trajec-
Hr=Hks=Hs=In(2), in casewy is a generating partition. tories, s distant from each other, converge exponentially pro-
This equality also means that the Baker’s map trajectory caportionally toe exp . So, we iterate backward points of the
encode as much information as a random independent distoisy trajectoryy obtaining a filtered trajectorg with points
crete source of information. closer to points of the noiseless trajectotyThis backward

We now consider a noisy channel. For that, an importanprocess is not so easy because the Baker’s map is invertible,
variable is the signal-to-noise ratit= P/, whereP repre-  and each backward iteration has two solutions. Therefore, for
sents the power of the signal, ang the variance of the b backward iterations, 2backward trajectories are possible.
Gaussian noise with zero meanhich is also the power of The task is identifying from all these trajectories, the one that
the signa). In a noisy channel, the channel capadlty, i.e., is closer to the.. We proceed as follows. Suppose we want to
the average maximal amount of information an independentbtain z, applyingb backward iterations. One backward it-
discrete source is able to transrpér transmissions given  eration ofy,.,, generates two solutionsv),,_,, with j
by Shannon’s channel theordm], which states that =1,....,2: Wi+b—1:yn+b/2 and W§+b—1:yn+b/2+ 1.

We calculate the distance between both poim}s,_, and
wﬁ+b_1, with the noisy pointy,,,—;. Two backward itera-
tion of y,.,, generates four solutionsw!,, ,, with j

=3
=2
N3
D

N

,,,,,,, H,(8)-H,(n,b=1)
06 |

Mutual Information

C=05In(1+¢). (1)

To show the limits in transfering information in noisy A N 5 .
channels, using chaos, we add to the trajectomyoise with =~ =1r - -2 Wyip 2=Wpop_1/2 ANdWZ, o ,=Wp. /2
variance, creating a noisy trajectory. Placement off in 1, Whsp_o=Wh.p_1/2 and Wy, ,=Wp,,_4/2+1. We
the partitionsw, decodesy into the channel outpuY. The calculate the distances between these four solutions with the
quantification of how much information is lost when noise isNoisy pointy,., . In this way, b backward iteration of
introduced is measured b= —p1oIN(P1) — Po1IN(Por)  Yn+b. generates 2solutions,wh, with j={1,...,2}. We
(this is so, forp;;=pgg). The error probability;; represents have to define from all these® 2backward trajectoriesy,
the probability with which one sends the symbal’‘and  which one is closer to the noisy trajectoyylLet us say that
decodes the symbol " Once, o(w;)=0(w,), and the the chosen backward trajectory\j\g“,wﬁﬂ. Thus,znzwﬁ
noise is Gaussiam,¢=po;. In a noisy channel, the amount and z,,;=w?,,. We expect that the points, and z,_ ,
of information that reaches the receivper transmissionis  decodes for the same symbol of the noiseless poinisnd

given by the mutual informatioh(#) =H(S) —H.. Xn+1. This filtering process is an improvement of the method
The trajectoryx has length =19 000 iterations. From this used in[2,4].
trajectory, we construct the noisy trajectoryFor different Doing this filtering process, the mutual information is cal-

values of, varying from 0 up to 1/3note that the power of culated considering the filtered trajectovwy, and not the

x is 1/3), we show in Fig. 1 the mutual information betweennoisy trajectoryy. So, it is appropriate to name the uncer-

channel input and the channel output. We see that for a vertainty of the dynamical channel, by applyirgbackward

small %, the mutual information i$( ) =1In(2). iterations, byHq(#»,b,x,z). Therefore, the mutual informa-
Now, we use the sensibility to initial conditions to filter tions is given byl ;( 77,b,x,z) =H(S) —He(7,b,x,2). In Fig.

the noisy trajectory. Consequently, this filtered trajectory isl, we show by dashed line the mutual information of the

used to guesgoredich orbit points that were not transmitted. dynamical channel fob=1. We see that up to a certain
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FIG. 2. By the dotted line we show the average distance, 1 ‘ ) )
7e(X,y), between the noiseless trajectorpand the noisy trajectory 0 0.0005 0.001 0.0015 0.002
y. By the solid lines we show.(x,z), with the filtered trajectory 1

obtained for different backward iteratiots
FIG. 3. The mutual information for many configurations of the

noise level, the mutual information is kept constant. As weparameteg that represents the length of the gap in the transmitted
increase the value db, we get an increase in the mutual trajectory.Cq represents the dynamical channel capacity.
information. However, the average distance between the tra-
jectory x and the filtered trajectoryz(b), defined as iteration generateiys of information, the mutual informa-
7e(x,2) =[1/(1—1)]2" _,(x,—2,)? decreases. This distance 0N for g=0, namedi4(7,b,g) is calculated byl4(7,b,9)
is in fact the effective noise of the dynamical channel. In Fig.zle(”'b)(g+1)' . - .
2, we show by dashed line the average amount of noise that When we start using the pred|ct|on property of dynamical

systems, the mutual information between the channel output,

arrives in the receiver, and by solid lines the amount of nOiseobtained from the filtered and predicted trajectory increases
ne(X,z), after the filtering process for different backward P ] Y

. ] for an interval of the noise variance values. In Fig. 3, we
iterationsb.

After the filteri d with th dicti show the mutual informatiom, for different values of the
ter the filtering process, we proceed with the pre 'Ct'onparameterg. For an interval ofn values, we see that there

process, to recover nontransmitted trajectory points. Differye ng errors in the decoding of the transmitted signal, as we
ent from random variables, whose elements are independentcrease the noise variance within a small length interval.
dynamical variables are dependent. Therefore, one element |5 order to explain this step function in the mutual infor-
contains information of the one that generated it. This propmation, which means that for intervals gf the mutual in-
erty can be explored such that not all the trajectory is transformation is constant, we have to understand the effect of
mitted, what results in an increase of the mutual informatiomoise in the reconstruction of the transmitted trajectory. Up
per transmission. Another use of the dynamical variables ino some maximum noise leve,(g), there might be no
communication is that they offer a natural way to overcomeerrors in transmission, i.eH,=0. The reason for the rare
dropouts in the transmission once the missing informatioroccurrence of errors is that we bound the received trajectory
would be recovered by looking at the received information.to be within the domain of the Baker’s map, i.,1], what
What we do is withdrawingy points out ofg+ 1 points. So, has the effect of making the noise to be bound when applied
we introduce another parameter in the calculation of the muto a point close to the boundaries of the map domain. To be
tual information, that is the length of the ggpof the trans-  more specific, if the point 1.01 is received, we consider that
mitted signal. For example, =1, we transmitx,,, X,.,,  the point 1.00 was received before the filtering process is
andx,. 4, and so on. So, for a gap of lengghwe transmit Performed. Even though there is a small amount of noise
Xns Xni(gi1)s Xnr2@il)s - Xnrq@en.  With q(g (even for the filtered trajectoyythat amount is very unlikely

+1)+n=I. The backward trajectories are calculated consid® make the receiver decode a wrong message. In general, it
- . . should be expected that for very small noise, there are no

ering the received pointg,, Yni(g+1)» Yn+2(g+1)s - - - » @nd o ; ) ’ i

Yn+q(g+1)- From these points, we calculate the filtered tra-c1ors and ¢=(g-+1)Hgs. For this noise level, the signal-

. to-noise rate i€ ,(9) =P/ 7,(9).

jectory,z,, Zny(g+1)s Znt2(g+1)s - - - » @NAZnyqgr1)- ThUs,

) : : ; . We define thedynamical channel capacity {as the
every point of the gap-filtered trajectory, is used to predict . . .
. . ; maximum amount of mutual information between the chan-
the nontransmitted points. So, assuming thatl andb

— 2, we reconstruct the trajectory by doiag, = F(z,) and nel input X and the filtered channel outpidt over all the
— y 4 1— n . . . _ _
20 a=F(zy.,). Note that, ifg#0, b cannot assume any parameterd andg, and for a given interval of the signal-to

value, otherwise the reconstruction of the trajectory mightnoIse rated f=[2m(9) . ¢m(g+ 1)1,

create a distorted signal. Therefore, fp#0, b should as- Cy(9,A0)=(g+1)Hys. 2
sume the valuek(g+1)], for k=1,2,3 . ... Inthis paper,

we limit our analysis tdh=g+1. Using the fact that every Doing C4=1,, we obtain that,(g) =exg9"3"s~1. Using
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{m(9) in Eq. (2) we see that the dynamical channel capacitydynamical channel capacity is constant, although smaller
for an specific dynamical system, characterizedpy, isa  thanCgy(g,AZ).

step function which assumes the values given by(Byg.for Increasing of the noisep, and the usage of highey

the interval of[{(g),¢m(g+1)]. In fact, the finding of Vvalues, does not change the results described byZrcOur
Z-(g) is the most important information to define the dy- results are also not affected by the slight change in the power

namical channel capacity of a dynamical system. With than the channel output, due to use of noigg with higher

| h h robust to noise th ific dynamical®1ace:
one fearns how much robust to noise the Specilic dynamical ;s the concept of dynamical channel capacity may be a

system is. Note that{y(g+1)=[{n(g)+1]expghs-1, key component for the description of communication pro-
which is approximately given by(g+1)=2{(g)+1. We  cesses that, like the biological ones, present this particular
may also express the dynamical information capacity petype of behavior.

seconds, using the proposed sampling fdfis giving in In conclusion, with the introduction of chaos in commu-
hertz, Cy4(snr)=2f.(g+ 1)Hks per seconds. One could say nication, the channel should be defined by not only the
that we can have as great as we want and then, have apower of the signal, the frequency bandwidth, and the noise
communication system with infinite capacity for information level, but also by the Kolmogorov-Sinai entropy of the dy-

transfer. Bugg should be bounded according to the size of thegamical sys;cem. hHo;vr:aver, the dyngmicz;l_ (r:]hannel q?paclity
controlling perturbatiorF. Note that while Eq(1) shows that oes not violate the Shannon capacity, which means Its vajue

the channel capacity decreases with the increasing of the always smaller than the upper bound imposed by (.

noise amplitude, in the chaos-based communication pro- This work is partially supported by FAPESP. The first
posed, noise up to a maximum variance vaipyg, does not author thanks A. Rodrigues for useful discussions. The au-
affect the dynamical channel capacity introduced in @}.  thors thank the Max-Planck-Institute FRhysik Komplexer

In Fig. 3, we also show that as the noise variance increaseSysteme at Dresden for their hospitality and financial sup-
for >, there is still an interval of values for which the port.
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