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Relation between structure and size in social networks
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In the context of complex network systems, we model social networks with the property that there is certain
degradation of the information flowing through the network. We analyze different kinds of networks, from
regular lattices to random graphs. We defineaasrage coordination degrefer the network, which can be
associated with a certain notion of efficiency. Assuming that there is a limit to the information a person may
handle, we show that there exists a close relationship between the structure of the network and its maximum
size.
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[. INTRODUCTION represents a particular scientific author, two authors are con-
nected when they have coauthored one or more papers to-

The study and characterization of complex systems is gether. Other examples are related to the web of human
very fruitful research area nowadays with many interestingsexual contact§19] and to the small world phenomenon
open problems. Special attention has been paid recently 120,21
complex networks, where graph and network analysis plays Using just two ingredients: the elements, represented by
an important role and is gaining great popularity due to itsthe vertices, and the relationships, represented by the edges,
intrinsic power to reduce a particular system to its simpleit is possible to define any kind of social structure. In this
components and relationships. It is perhaps this reductionisi@@per we are particularly interested in studying ¢todabo-
that allows network characterizations to be present in differration that emerges in social networks that describe human
ent scientific and technological disciplines such as neurobicommunities or organizations. We represent any social net-
ology [1—4], the Internet[5], the World Wide Web[6,7], ~ Work by a simple graph where each person is a vertex and
finance[8], etc. Moreover, many physicists have focusedthe relationships are the edges. For simplicity, we assume
their research interests on complex networks, as can be ngome of the restrictions imposed by Watts in his study about
ticed by the number of papers that have appeared in physi¢dge small world phenomenofi7] to describe the relation-
literature [9—14] in the past few years. Most of the recent Ships. This means that the kinds of edges used in our model
efforts in the understanding of these complex networks ar@re undirectional edges, implying symmetric relationships;
reviewed in Ref[15]. unweighted edges, implying that any edge is not assigned

Among complex networks, social networks appear in a@ny a priori strength; simplicity, implying that multiple
quite natural way, and as any other complex system, they ca@dges between the same pair of vertices or edges connecting
be analyzed in the framework of graph thedd2,16. A @ vertex to itself are forbidden.
graphG consists of a nonempty set of elements, called ver- The structure of the paper is as follows. First we develop
tices, and a list of unordered pairs of these elements, called new model for the spread of information in social commu-
edges. Ifi andj are vertices of5, then an edge of the form hities, taking into account the degradation of the information
(i,j) is said to connect andj. Many interesting complex that exists in a real social scenario. Then we show that, as-
systems are built out of simple components that maintairfuming that the amount of information a person may handle
re|ati0nships among them. The representation of those sy§ I|m|ted, there exists a close relationShip between the tOpOI-
tems through a graph is rather straightforward considerin@9y of the network and its maximum size.
each simple component to be a vertex and representing the
relationships as edges among them.

Any social structure is composed of different types of
elements such as human beings, groups of people, nations, Traditionally the research in graph theory has been con-
etc., which are linked together following some rules that decentrated in modeling the spread of information from one
fine the existence and degree of the relationships amongertex to the rest of a graph considering that the information
them. A very well known example of a social network is the can travel through edges without degradation in the traveling
Kevin Bacon game developed by Brett Tjaden and studieghrocess. This approach has been very useful for modeling
thoroughly by Wattd17] in the context of the small world some particular types of phenomena like disease spread in a
phenomenon. In this model each actor or actress is consigocial communitf22-24 or virus infection and error propa-
ered to be a vertex on the graph, two vertices are connecteghtion in computer networkg25]. Nevertheless this is not
through an edge only if they have ever been in a film to-appropriate when trying to model the kinds of processes that
gether. Another interesting example was developed by Newtake place in collaborative social networks.
man [12] when studying the scientific collaboration net-  Social networks can be of very different natutas orga-
works. In this case, each vertex of the resulting grapmization, a company, an association, a religious congregation,

II. MODELING SOCIAL ACTIVITY
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etc). Our interest is concentrated on communities where thevhereN is the order of the grapftthe total number of verti-
relationships are established through the interchange of ceces in that particular graphlt is interesting to remark that
taininformation Information here should be understood in athis definition includes the coordination degree of a node
broader sense. For example, in some social communitiesith itself. Following Eq.(1) the coordination degree of a
based on friendship, people may help each other, so the imode with itself must have a value of 1, because the distance
formation can take the form of effort, time, money, etc. In between the node with itself; is zero, and consequently
companies the relationship might be considered to have g;=e ¢%i=e%=1. The total coordination degree of a vertex
very important professional component so that the informais a measure of the amount of information the vertex is able
tion can take place in other different ways. to receive belonging to that particular network.

Experience tells us that the information obtained from a In the same way we define the total coordination degree
person is extremely dependent on the degree of relationshigf the graph as the sum of the total coordination degrees of
maintained with that particular individual. As we want to all the vertices belonging to the graph,
represent social relationships through unweighted undirected
edges, we define the degree of the relationship between two N
persons as the distance, in number of hops, from the vertex B

: : r=>Tr,.
representing one person to the other one. Thus, if we are = !
related in first order with a particular person we may easily
obtain a lot of information. If we think about a second-order
relationship, for example, a friend of one of our friends, theThe total coordination degree of a graph is a measure of the
quantity of information we can get is lower than for one of amount of information that is handled in an organization.
our closest friends, and so on. More interesting than the total coordination degree of a

In order to create a model for this particular situation wegraph is theaverage coordination degresf the graph, which
define a quantity that we call theoordination degreeThe  We define as the total coordination degree of the graph di-
coordination degree measures the ability of the vertices in #ided by its order
graph to interchange information. There are several ways in

()

which we can model this magnitude. One of the easiest is to N

consider the coordination degree to be exponentially related z T

with the distance between the vertices. In this way, we define — =

the coordination degreg;; between two verticesandj as I'= N - (4)
yij=e i, 1)

This allows us to give an interesting interpretation of the
whered;; is the distance between the two vertices drida  average coordination degree of a graph as a measure of the
real positive constant, measuring the strength of the relatiorefficiency of a particular community or organization, because
ship, which we call theoordination strength it suggests how much the individual contributes to the com-

Quantities similar to the coordination degree have alreadynunity.
been discussed in the literature. The most remarkable work As a basic ingredient of our model, it is important to
in this field is the one by Katg26], where the author con- remark on the common perception that the number of close
siders the sum o& ™ ¢%ii over all paths to a particular vertex. relationships a person may have within a community is nec-
This kind of approach is indeed more realistic than oursessarily limited to a quite small number, independent of the
because it considers that the information may travel follow-type of organization. For example, if we think about our
ing all possible paths, and not only the shortest paths. Unforeircle of friends we can see that the number of people we feel
tunately, this type of measure can only be expressed in termeally connected with is normally not higher than five or six.
of the adjacency matrix of the graph, making the analysisA similar conclusion might be obtained regarding our work-
and computations much more complex. For clarity, in thisplaces; the number of people we can consider to be really
paper we consider, as a reasonable approximation, that th@ordinated with is not usually higher than half a dozen. This
main part of the information travels along the shortest pathsmight be the consequence of the fact that establishing close

It is important to remark that a different coordination relationships with people is normally very time consuming,
strength could be considered for each edge of the graph, bahd time is a limited resource for every individual.
this would point to weighted graphs, which we do not con-
sider here. So as a first approximati@nis considered to be
a constant for each particular graph. Ill. COORDINATION IN DIFFERENT GRAPH

Accepting these assumptions, we can definetoiha co- STRUCTURES
ordination degreeof a vertexi in a graph as the sum of all
the coordination degrees between that particular vertex an\%il
the rest,

Once we have defined the average coordination degree, it
ould be interesting to investigate how the relational struc-
ture and size of the organizations can have an influence on it.
N As the number of graph families is extremely large, we must
r= 2 . 2 choose some restrictions to be able to perform an exhaustive
i . Yij » 2 - " .
j=1 analysis over the most characteristic ones. The first con-
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FIG. 1. Average coordination

degreel’ for a regular 2D lattice
with k=4 andé=2. The compu-
tations have been performed for
______________________________________ graph orders varying fronN=1
to N=300. The dashed line repre-
sents the upper limif",, for this
choice of parametetlsandé. It is
i important to remark that we have
< used nonperiodic 2D lattices for
: the simulations. Notice that for
- graphs of order less thaw=4 the
: degree of the grapk is equal to
N.
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straint that might be imposed is related with the mean valuelescribed in the following wayy,=1, 5;=4i. Then, using
of the number of relationships a person can have, in otheEqg. (3), the total coordination degree for a particular veiitex
words the mean number of edges starting from a vertex in & given by
particular graph. This is usually called the average degree of

the graph. Following the notation by Watts, we represent this o
magnitude by the lettéc. As discussed before, the number of I'i= 1+4Z’1 je )s, ®)
relationships a person may have is limited to a quite small =

number, hence we may consider only graphs having a smafiich can be easily evaluated as the derivative of a geomet-
average. For simplicity, in this work, the average degree ig;. progression to the value

considered to be 4, which allows to deal easily with regular

o)

two-dimensional(2D) lattices. Analysis withk=5 and k Ao ¢
=6 would give similar conclusions. =1+ — - (6)
Another important point of the model is the coordination (1-e79)

strength¢, which we defined previously in E@l). This pa- o o .
rameter measures how the strength of the relationship de- AS We are considering an infinite regular lattice, it can be
creases with the distance between the vertices. It is logical tproven that for all vertices in the gragh=I" (remark that
think that this might depend strongly on the nature of thel’; does not depend oi). We call this valuel".,. It can be
relationships and on the type of organization and its memeasily shown thatl’., is an upper limit for the average coor-
bers. Nevertheless it is out of our objective to discuss thelination degree for any 2D lattice with=4. We have car-
psychological and sociological aspects of this problem. Foried out extensive numerical simulations over nonperiodic
simplicity, in all the simulations presented in this paper theregular lattices that are shown in Fig. 1. This figure shows
coordination strength has been fixed to the valugsf2.  that as the order of the graph increases, the average coordi-
Although another different value could have been chosemation degree asymptotically increases towafds A re-
this particular one gives reasonable conclusions, because thearkable observation is that after a certain value of the order
coordination degree supplied by any first-order relationshif the graph the increase of the average coordination degree
is I';,=e 2=0.135, which means an increase of approxi-becomes very small. In terms of the social network we try to
mately 13% in the information associated with each particudescribe, this admits an interesting interpretation. The effi-
lar isolated vertex. ciency that might be seen as the average coordination degree
The next step is to determine the different graph structuredoes not show a considerable increase once the organization
to be analyzed. A first natural choice is regular lattices, themeaches a certain size.
we consider a 2D lattice of degrée=4. If we call »; the After having analyzed regular lattices, we attempt to
number of neighbors of degrégfor large latticegassuming  study how the average coordination degree changes when the
the order of the graph to bid=c<) the distribution of is  randomness on the graph is increased. Adopting a similar
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FIG. 2. Average coordination
degreel’ for a pseudoregular 2D

o/
W’d lattice with k=4 and £¢=2. The
————————— \vl‘;‘v“' AN e % e randomness parametertakes the

values, from the lower curve to
b the upper curve, 0, 0.25, 0.5,
0.75, and 0.99, respectively. The
computations have been per-
formed for graph orders varying
f from N=1 to N=300. The
/| dashed line represents the upper
: limit T',, for regular 2D lattices.
Nonperiodic 2D lattices have been
f also used here.
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approach to that followed by Watts and Strogdt,17,, we  [18]. Starting withN nodes, every pair of nodes is connected
define a family of graphs based on the regular 2D latticenith probability p and not connected with probability-1p.

following this simple algorithm. We must also consider the constraint imposed before, that is,
(i) Choose the order of a particular graphand build a the average degree of the graph must be equal to 4. In this
regular nonperiodic 2D lattice witN vertices calleds. situation, it can be easily proven that
(i) Choose a parameter measuring the randomness of
the new graph. . 4 o

(iii) For each edge i3, eliminate that edge with prob-
ability « and rewire the vertices involved in a random way.
We now obtain a new grawa that has the same number or Using this result we can build a random graph for an arbi-
vertices and edges &, but connected in an irregu|ar way trary value ofN, assuming an average distribution degree of
that depends on the value af 4. As we did previously with 2D lattices, we can try to find

The question that arises immediately is how gwerage ~ an upper limit for the average coordination degree of a ran-
coordination degreelepends omv. Whena=0, G=G,and dom graph withk=4. It is easy to prove that the maximum
the graph is a regular nonperiodic 2D lattice. This situationvalue for the average coordination degree will be reached
was described in Fig. 1. If we raise the value of the randomWhen a perfectly expanding graph is considered. A perfectly
ness parameter the graph becomes more and more randoméexpanding graph is one that verifies that starting at any given
Numerical simulations for different randomness parameter¥ertex i, all mrorder neighbors are always new unknown
a have been performed, and we show the results in Fig. 20odes(are not neighbors af in any order smaller tham).
where it is shown that the average coordination degree inFor an infinite perfectly expanding graph the average coor-
creases when the value efincreases. It is also interesting to dination degree can be calculated as
remark that for certain values of, the average coordination w0
degree surpasses the limit of the regular lattice. In order T E (ke §) ®)
to offer a better understanding of the role played by the ran- = '
domness parameter, we have used a graph with 300 nodes,
and made different simulations for various valuesxofThe ~ Which can be proven to be equal to
result is shown in Fig. 3, from which it can be derived that

the variation of[’ with « follows a monotonic nonlinear = =TR, 9)
function. 1-ke ¢

As a natural sequence of the previous analysis, we con-
sider now the behavior of the average coordination degrewhenke <1, ande otherwise. In our cas&=4 and &
for a completely random graph. For building such a randon¥ 2, thusT'} is a finite upper limit for the value of the coor-
graph we may consider the traditional Esd@eyi model dination for any graph with the same average distribution

036107-4



RELATION BETWEEN STRUCTURE AND SIZE IN . .. PHYSICAL REVIEW B5 036107

19t A

185} AN
(] ’ .
o] -
2 ..
= . FIG. 3. Average coordination
-% 1.8 t e degreel’ as a function of the ran-
b= domness parameter in pseudo-
3 . regular 2D lattices wittk=4 and
% . £=2. The computations have
1750 . been performed for a fixed graph
2 " of orderN=300.

171

165 1 | | 1 1 1 1 1 | |

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Randomness parameter o

degree. In Fig. 4 a simulation performed over 500 differentpoint lies in the hypothesis used in our model, concerning the
random graphs witlk=4 is shown. It can be seen that the degradation of the information. One interesting feature that
value of the average coordination degree is always under thean be seen in Fig. 4 is the rather slow convergence of the
limit TR} . This result and the results obtained in the analysisoordination degree to the asymptote. In fact, it can be
of the other types of graphs, give evidence that the samproven that it follows a power law with logarithmic correc-
conclusion might be obtained independently of the structuréions. The power law behavior can be immediately recovered
of the graph. Consequently we can conclude that the kepy truncating the sum at a fixag
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— (ke Hn-1 whose members do not show any symptom of information
r,=———ke ¢ (100  overload. Nevertheless, the proposed existence of a limit to

ke ¢ the amount of information a person may deal with in a par-

ticular community seems reasonable. The explanation for

wheren is the diameter of the graph amd=log,N. this paradox may be obtained by analyzing the relationship

One of the most interesting challenges that this modePetween the amount of information, the number of members,

suggests is the solution of the following problem: given a sefnd the structure of social networks.

of N nodes, an average degrieeand a value for the coordi- . ©One Of the most important conclusions that can be ex-
nation strengthé, try to find a topological structure for a tracted from the model proposed in this paper is that the

graph connecting them so that the average coordination df;uantity of information an individual is able to receive from
h

gree for the graph is the maximum of all possible graphs o e entire network does not vary linearly with the number of

embers of the community but instead, follows a strongly
the sameN, k, and¢. A fast and wrong answer could be 0 1, hiinear shape that converges to a finite constant value for
assume the graph to belaregular tree. As we know, an

N i ; N sufficiently large. This has a straightforward social inter-
infinite tree is a perfect expanding graph, so that the averaggretation, from an individual perspective, once the value of

coordination for such a tree must be equal to the Iiffit.  the average coordination degree is close to the limit, a sig-
Unfortunately when the graph is considered to be finite, thenificant increase in the number of members in the organiza-
tree is not a perfect expanding graph anymore. There is a séibn does not produce an increase in the average coordination
of finite perfectly expanding graphs called Moore graphsdegree. This means that the information received by any in-
[28], which are the most efficierit-regular graphs in the dividual belonging to that particular network may stay under
sense that every vertex reaches1 new vertices at a time, the Dunbar limit independently of the number of members.
but it has been provef27] that these kinds of graphs are Thus, the network may grow indefinitely without any kind of
unrealizable except for some very particular cases. So thi@formation overload.

question of finding the graph that maximizes the average On the other hand, we have also seen that the relation
coordination degree for a given number of nodes still re-Petween the average coordination degree and the number of

mains open. members depends strongly on the structure of the organiza-
tion. It might be possible that for some particular relational
structure, the amount of information received by the vertices
IV. THE 150 LIMIT gets to the Dunbar limit for a particular finite number of
members that could be the well-known figure of 150.

In any case, the analysis performed in this paper shows
at the size of an organization cannot be only understood in
rms of the instrinsic phychological properties of its mem-
bers as proposed by Dunbar. The relational structure and the
properties for the information transfers on the network may
also play a definitive role.

In relation to the preceding discussion, it is interesting to
notice that some scientists propose the existence of a naturﬁ]l
limit for the maximum number of members of a social group.,
Probably the most important work in this direction is the one
carried out by the British anthropologist Dund&9], who
related the size of the neocortéxpart of the brain related to
social and language capabilitieand the maximum group

sizg for primates. When applying this relat!on fpr tHemo V. CONCLUSIONS
sapiens the group estimate maximum size is 147.8, or
roughly 150. Although there are some refinements that must be made to

In the anthropological literature the number 150 pops ughe model, it is important to remark that such a simple model
again and again referencing the maximum size of organizasf human relationships is able to explain an important feature
tions and groups. According {&0], looking at 21 different of social networks. The same general conclusion can be ob-
hunter-gatherer societies from the Walbiri of Australia, thetained with any other model just by assuming the number of
Tauade of New Guinea, and the Ammassalik of Greenlandelationships to be limited and the spread of information as a
to the Ona of Tierra de Fuego; it has been found that thelegrading process.
average number of people in their villages was 148.4. The Even though the model explains a remarkable property of
same patterns hold true apparently for religious groups likesocial networks, there are several inconsistencies that need
the Hutterites who have a strict policy that every time afurther development and research. Possibly the most serious
colony approaches 150, they split it in two and start a newone is the convergence problem for the upper liffiff.
one. Another interesting example given[B0] is the Ameri-  Whenke ¢>1, the value of this limit goes te. This may
can company Gore Associates, a multimillion-dollar high-lead to several problems in the interpretation of the model.
tech firm based in Newark, Delaware, which is split into So it would be interesting to perform some refinements,
independent groups that have never had a size over 150 emmainly in modeling the degradation of the information. An-
ployees. other incomplete feature is the characterization of the coor-

Although these arguments seem plausible, they do ndination strengtlE. It has been defined as a constant depend-
give any explanation for the existence of communities ofing on the nature of the relationship, but a deeper
other different sizes. It is evident that not all companies,interpretation and analysis would be desirable.
institutions, or religious congregations are composed of The social models used here have been chosen for their
groups of 150 people. It would be easy to find hundreds osimplicity. They must not be considered as describing real
examples of organizations with sizes of thousands of peopliteractions between people in communities and organiza-
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tions. More realistic models should take account of manyinstead to study how the different structures can influence the
different effects such as different orders and strengths of recollective properties of the group and the particular percep-
lationships, realistic distribution degredscale-free[15], tion that each individual has of the entire network.
etc), directed and weighted links, etc.

For the skeptical, this paper can just be read as a different
approach to the problem of information spread in networks ACKNOWLEDGMENT
when there exists a degradation of the information. More-
over, it is original in the sense that its objective is not to find  This work was supported by the Spanish Ministry of Sci-
what the structure of a particular social community is, butence and Technology under Project No. BFM2000-0967.

[1] O©. Sporns, G. Tononi, and G.M. Edelman, Cereb. Coft@x [16] D.J. Watts and S.H. Strogatz, Natufeondon 393 440

127 (2000. (1998.
[2] C. Cherniak, J. Neurosci4, 2418(1994. [17] D. J. Watts,Small Worlds(Princeton University Press, Princ-
[3] D. Golomb and D. Hansel, Neural Comp@®, 1095(2000. eton, NJ, 1998

[18] P. Erds and A. Rayi, On the Evolution of Random Graphs

[4] T. B. Achacoso and W. S. Yamamotbleuroanatomy of C. . ) X )
(Mathematical Institute of the Hungarian Academy of Sciences,

El f iofCRC P B R FL, 1992
egants for ComputatiofCRC Press, Boca Raton, FL, 199 Budapest, 1960

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Con\[-lg] F. Lilieros, C.R. Edling, LAN. Amaral, H.E. Stanley, and Y.

mun. Rev.29, 251 (1999. Aberg, Nature(London 411, 907 (2002).
[6] L. Adamic, The Small World Weblecture Notes Computer [2g] S Milgram, Psychology Todag, 60 (1967.

Science Vol. 1696Springer, New York, 1999 pp. 443-452.  [21] C. Korte and S. Milgram, J. Pers Soc. Psychd,. 101(1970.
[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajalopa{22] F. Ball, J. Mollison, and G. Scalia-Tomba, Ann. Appl. Probab.

gan, R. Stata, A. Tomkins, and J. Wiener, Comput. N&Sy. 7, 46 (1997).

309 (2000. [23] M.J. Keeling, Proc. R. Soc. London, Ser.2B6, 859 (1999.
[8] A. Kirman, C. Oddou, and S. Weber, Econometriog 129  [24] M. Boots and A. Sasaki, Proc. R. Soc. London, Sera,

(1986. 1933(1999.

[25] R. Albert, H. Jeong, and A.-L. Barabasi, Natt®ndon 406,
378 (2000.
[26] L. Katz, Psychometrikd 8, 39 (1953.

[9] R. Albert and A.-L. Barabsi, Phys. Rev. Le84, 5660(2000.
[10] A.-L. Barabsi, R. Albert, and H. Jeong, Physica281, 2115

(2000. I£27] F. R. K. ChungMathematics of Information Processing, Pro-
[11] M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Rev. ceedings of Symposia in Applied Mathematigsmerican

64, 026118(2003. Mathematical Society, Providence, RI, 1986/0l. 34, pp.
[12] M.E.J. Newman, Phys. Rev. &, 016131(200); 64, 016132 1-18.

(2001; Proc. Natl. Acad. Sci. U.S.A08, 404 (2001. [28] Moore graphs are also called minimal graphs and are distance
[13] M.E.J. Newman, Phys. Rev. &, 025102R) (2001. regular.
[14] L.ANN. Amaral, A. Scala, M. Bartlemy, and H.E. Stanley, [29] R.I.M. Dunbar, Behav. Brain Scil6, 681 (1993.

Proc. Natl. Acad. Sci. U.S.A97, 11 149(2000. [30] M. Gladwell, The Tipping Point. How Little Things Can Make
[15] R. Albert and A.-L. Barabsi, e-print cond-mat/0106096. a Big Difference(Little Brown, Boston, 2000

036107-7



