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Relation between structure and size in social networks
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In the context of complex network systems, we model social networks with the property that there is certain
degradation of the information flowing through the network. We analyze different kinds of networks, from
regular lattices to random graphs. We define anaverage coordination degreefor the network, which can be
associated with a certain notion of efficiency. Assuming that there is a limit to the information a person may
handle, we show that there exists a close relationship between the structure of the network and its maximum
size.
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I. INTRODUCTION

The study and characterization of complex systems
very fruitful research area nowadays with many interest
open problems. Special attention has been paid recent
complex networks, where graph and network analysis pl
an important role and is gaining great popularity due to
intrinsic power to reduce a particular system to its sim
components and relationships. It is perhaps this reduction
that allows network characterizations to be present in dif
ent scientific and technological disciplines such as neur
ology @1–4#, the Internet@5#, the World Wide Web@6,7#,
finance @8#, etc. Moreover, many physicists have focus
their research interests on complex networks, as can be
ticed by the number of papers that have appeared in phy
literature @9–14# in the past few years. Most of the rece
efforts in the understanding of these complex networks
reviewed in Ref.@15#.

Among complex networks, social networks appear in
quite natural way, and as any other complex system, they
be analyzed in the framework of graph theory@12,16#. A
graphG consists of a nonempty set of elements, called v
tices, and a list of unordered pairs of these elements, ca
edges. Ifi and j are vertices ofG, then an edge of the form
( i , j ) is said to connecti and j. Many interesting complex
systems are built out of simple components that main
relationships among them. The representation of those
tems through a graph is rather straightforward conside
each simple component to be a vertex and representing
relationships as edges among them.

Any social structure is composed of different types
elements such as human beings, groups of people, nat
etc., which are linked together following some rules that
fine the existence and degree of the relationships am
them. A very well known example of a social network is t
Kevin Bacon game developed by Brett Tjaden and stud
thoroughly by Watts@17# in the context of the small world
phenomenon. In this model each actor or actress is con
ered to be a vertex on the graph, two vertices are conne
through an edge only if they have ever been in a film
gether. Another interesting example was developed by N
man @12# when studying the scientific collaboration ne
works. In this case, each vertex of the resulting gra
1063-651X/2002/65~3!/036107~7!/$20.00 65 0361
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represents a particular scientific author, two authors are c
nected when they have coauthored one or more papers
gether. Other examples are related to the web of hum
sexual contacts@19# and to the small world phenomeno
@20,21#.

Using just two ingredients: the elements, represented
the vertices, and the relationships, represented by the ed
it is possible to define any kind of social structure. In th
paper we are particularly interested in studying thecollabo-
ration that emerges in social networks that describe hum
communities or organizations. We represent any social
work by a simple graph where each person is a vertex
the relationships are the edges. For simplicity, we assu
some of the restrictions imposed by Watts in his study ab
the small world phenomenon@17# to describe the relation
ships. This means that the kinds of edges used in our m
are undirectional edges, implying symmetric relationshi
unweighted edges, implying that any edge is not assig
any a priori strength; simplicity, implying that multiple
edges between the same pair of vertices or edges conne
a vertex to itself are forbidden.

The structure of the paper is as follows. First we deve
a new model for the spread of information in social comm
nities, taking into account the degradation of the informat
that exists in a real social scenario. Then we show that,
suming that the amount of information a person may han
is limited, there exists a close relationship between the top
ogy of the network and its maximum size.

II. MODELING SOCIAL ACTIVITY

Traditionally the research in graph theory has been c
centrated in modeling the spread of information from o
vertex to the rest of a graph considering that the informat
can travel through edges without degradation in the trave
process. This approach has been very useful for mode
some particular types of phenomena like disease spread
social community@22–24# or virus infection and error propa
gation in computer networks@25#. Nevertheless this is no
appropriate when trying to model the kinds of processes
take place in collaborative social networks.

Social networks can be of very different natures~an orga-
nization, a company, an association, a religious congrega
©2002 The American Physical Society07-1
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etc.!. Our interest is concentrated on communities where
relationships are established through the interchange of
tain information. Information here should be understood in
broader sense. For example, in some social commun
based on friendship, people may help each other, so the
formation can take the form of effort, time, money, etc.
companies the relationship might be considered to hav
very important professional component so that the inform
tion can take place in other different ways.

Experience tells us that the information obtained from
person is extremely dependent on the degree of relation
maintained with that particular individual. As we want
represent social relationships through unweighted undire
edges, we define the degree of the relationship between
persons as the distance, in number of hops, from the ve
representing one person to the other one. Thus, if we
related in first order with a particular person we may eas
obtain a lot of information. If we think about a second-ord
relationship, for example, a friend of one of our friends, t
quantity of information we can get is lower than for one
our closest friends, and so on.

In order to create a model for this particular situation
define a quantity that we call thecoordination degree. The
coordination degree measures the ability of the vertices
graph to interchange information. There are several way
which we can model this magnitude. One of the easiest i
consider the coordination degree to be exponentially rela
with the distance between the vertices. In this way, we de
the coordination degreeg i j between two verticesi and j as

g i j 5e2jdi j , ~1!

wheredi j is the distance between the two vertices andj is a
real positive constant, measuring the strength of the relat
ship, which we call thecoordination strength.

Quantities similar to the coordination degree have alre
been discussed in the literature. The most remarkable w
in this field is the one by Katz@26#, where the author con
siders the sum ofe2jdi j over all paths to a particular vertex
This kind of approach is indeed more realistic than ou
because it considers that the information may travel follo
ing all possible paths, and not only the shortest paths. Un
tunately, this type of measure can only be expressed in te
of the adjacency matrix of the graph, making the analy
and computations much more complex. For clarity, in t
paper we consider, as a reasonable approximation, tha
main part of the information travels along the shortest pa

It is important to remark that a different coordinatio
strength could be considered for each edge of the graph
this would point to weighted graphs, which we do not co
sider here. So as a first approximation,j is considered to be
a constant for each particular graph.

Accepting these assumptions, we can define thetotal co-
ordination degreeof a vertexi in a graph as the sum of a
the coordination degrees between that particular vertex
the rest,

G i5(
j 51

N

g i j , ~2!
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whereN is the order of the graph~the total number of verti-
ces in that particular graph!. It is interesting to remark tha
this definition includes the coordination degree of a no
with itself. Following Eq.~1! the coordination degree of
node with itself must have a value of 1, because the dista
between the node with itselfdii is zero, and consequentl
g i i 5e2jdii 5e051. The total coordination degree of a verte
is a measure of the amount of information the vertex is a
to receive belonging to that particular network.

In the same way we define the total coordination deg
of the graph as the sum of the total coordination degree
all the vertices belonging to the graph,

G5(
i 51

N

G i . ~3!

The total coordination degree of a graph is a measure of
amount of information that is handled in an organizatio
More interesting than the total coordination degree o
graph is theaverage coordination degreeof the graph, which
we define as the total coordination degree of the graph
vided by its order

Ḡ5

(
i 51

N

G i

N
. ~4!

This allows us to give an interesting interpretation of t
average coordination degree of a graph as a measure o
efficiency of a particular community or organization, becau
it suggests how much the individual contributes to the co
munity.

As a basic ingredient of our model, it is important
remark on the common perception that the number of cl
relationships a person may have within a community is n
essarily limited to a quite small number, independent of
type of organization. For example, if we think about o
circle of friends we can see that the number of people we
really connected with is normally not higher than five or s
A similar conclusion might be obtained regarding our wor
places; the number of people we can consider to be re
coordinated with is not usually higher than half a dozen. T
might be the consequence of the fact that establishing c
relationships with people is normally very time consumin
and time is a limited resource for every individual.

III. COORDINATION IN DIFFERENT GRAPH
STRUCTURES

Once we have defined the average coordination degre
would be interesting to investigate how the relational str
ture and size of the organizations can have an influence o
As the number of graph families is extremely large, we m
choose some restrictions to be able to perform an exhaus
analysis over the most characteristic ones. The first c
7-2
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FIG. 1. Average coordination

degreeḠ for a regular 2D lattice
with k54 andj52. The compu-
tations have been performed fo
graph orders varying fromN51
to N5300. The dashed line repre
sents the upper limitG` for this
choice of parametersk andj. It is
important to remark that we hav
used nonperiodic 2D lattices fo
the simulations. Notice that for
graphs of order less thanN54 the
degree of the graphk is equal to
N.
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straint that might be imposed is related with the mean va
of the number of relationships a person can have, in o
words the mean number of edges starting from a vertex
particular graph. This is usually called the average degre
the graph. Following the notation by Watts, we represent
magnitude by the letterk. As discussed before, the number
relationships a person may have is limited to a quite sm
number, hence we may consider only graphs having a s
average. For simplicity, in this work, the average degree
considered to be 4, which allows to deal easily with regu
two-dimensional~2D! lattices. Analysis withk55 and k
56 would give similar conclusions.

Another important point of the model is the coordinati
strengthj, which we defined previously in Eq.~1!. This pa-
rameter measures how the strength of the relationship
creases with the distance between the vertices. It is logica
think that this might depend strongly on the nature of
relationships and on the type of organization and its me
bers. Nevertheless it is out of our objective to discuss
psychological and sociological aspects of this problem.
simplicity, in all the simulations presented in this paper t
coordination strength has been fixed to the value ofj52.
Although another different value could have been chos
this particular one gives reasonable conclusions, becaus
coordination degree supplied by any first-order relations
is G15e22.0.135, which means an increase of appro
mately 13% in the information associated with each parti
lar isolated vertex.

The next step is to determine the different graph structu
to be analyzed. A first natural choice is regular lattices, th
we consider a 2D lattice of degreek54. If we call h i the
number of neighbors of degreei, for large lattices~assuming
the order of the graph to beN5`) the distribution ofh is
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described in the following way:h051, h i54i . Then, using
Eq. ~3!, the total coordination degree for a particular vertei
is given by

G i5114(
j 51

`

je2 j j, ~5!

which can be easily evaluated as the derivative of a geom
ric progression to the value

G i511
4e2j

~12e2j!2
. ~6!

As we are considering an infinite regular lattice, it can

proven that for all vertices in the graphG i5Ḡ ~remark that
G i does not depend oni ). We call this valueG` . It can be
easily shown thatG` is an upper limit for the average coo
dination degree for any 2D lattice withk54. We have car-
ried out extensive numerical simulations over nonperio
regular lattices that are shown in Fig. 1. This figure sho
that as the order of the graph increases, the average co
nation degree asymptotically increases towardsG` . A re-
markable observation is that after a certain value of the or
of the graph the increase of the average coordination de
becomes very small. In terms of the social network we try
describe, this admits an interesting interpretation. The e
ciency that might be seen as the average coordination de
does not show a considerable increase once the organiz
reaches a certain size.

After having analyzed regular lattices, we attempt
study how the average coordination degree changes whe
randomness on the graph is increased. Adopting a sim
7-3
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FIG. 2. Average coordination

degreeḠ for a pseudoregular 2D
lattice with k54 and j52. The
randomness parametera takes the
values, from the lower curve to
the upper curve, 0, 0.25, 0.5
0.75, and 0.99, respectively. Th
computations have been pe
formed for graph orders varying
from N51 to N5300. The
dashed line represents the upp
limit G` for regular 2D lattices.
Nonperiodic 2D lattices have bee
also used here.
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approach to that followed by Watts and Strogatz@16,17#, we
define a family of graphs based on the regular 2D latt
following this simple algorithm.

~i! Choose the order of a particular graphN and build a
regular nonperiodic 2D lattice withN vertices calledG.

~ii ! Choose a parametera measuring the randomness
the new graph.

~iii ! For each edge inG, eliminate that edge with prob
ability a and rewire the vertices involved in a random wa
We now obtain a new graphGa that has the same number
vertices and edges asG, but connected in an irregular wa
that depends on the value ofa.

The question that arises immediately is how theaverage
coordination degreedepends ona. Whena50, G5Ga and
the graph is a regular nonperiodic 2D lattice. This situat
was described in Fig. 1. If we raise the value of the rando
ness parametera the graph becomes more and more rando
Numerical simulations for different randomness parame
a have been performed, and we show the results in Fig
where it is shown that the average coordination degree
creases when the value ofa increases. It is also interesting t
remark that for certain values ofa, the average coordinatio
degree surpasses theG` limit of the regular lattice. In order
to offer a better understanding of the role played by the r
domness parametera, we have used a graph with 300 node
and made different simulations for various values ofa. The
result is shown in Fig. 3, from which it can be derived th

the variation ofḠ with a follows a monotonic nonlinea
function.

As a natural sequence of the previous analysis, we c
sider now the behavior of the average coordination deg
for a completely random graph. For building such a rand
graph we may consider the traditional Erdo¨s-Rényi model
03610
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@18#. Starting withN nodes, every pair of nodes is connect
with probability p and not connected with probability 12p.
We must also consider the constraint imposed before, tha
the average degree of the graph must be equal to 4. In
situation, it can be easily proven that

p5
4

N21
. ~7!

Using this result we can build a random graph for an ar
trary value ofN, assuming an average distribution degree
4. As we did previously with 2D lattices, we can try to fin
an upper limit for the average coordination degree of a r
dom graph withk54. It is easy to prove that the maximum
value for the average coordination degree will be reac
when a perfectly expanding graph is considered. A perfe
expanding graph is one that verifies that starting at any gi
vertex i, all m-order neighbors are always new unknow
nodes~are not neighbors ofi in any order smaller thanm).
For an infinite perfectly expanding graph the average co
dination degree can be calculated as

Ḡ5(
i 51

`

~ke2j! i , ~8!

which can be proven to be equal to

Ḡ5
1

12ke2j
5G`

R , ~9!

when ke2j,1, and` otherwise. In our case,k54 and j
52, thusG`

R is a finite upper limit for the value of the coor
dination for any graph with the same average distribut
7-4
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FIG. 3. Average coordination

degreeḠ as a function of the ran-
domness parametera in pseudo-
regular 2D lattices withk54 and
j52. The computations have
been performed for a fixed grap
of orderN5300.
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degree. In Fig. 4 a simulation performed over 500 differ
random graphs withk54 is shown. It can be seen that th
value of the average coordination degree is always unde
limit G`

R . This result and the results obtained in the analy
of the other types of graphs, give evidence that the sa
conclusion might be obtained independently of the struct
of the graph. Consequently we can conclude that the
03610
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point lies in the hypothesis used in our model, concerning
degradation of the information. One interesting feature t
can be seen in Fig. 4 is the rather slow convergence of
coordination degree to the asymptote. In fact, it can
proven that it follows a power law with logarithmic correc
tions. The power law behavior can be immediately recove
by truncating the sum at a fixedn,
r-

er
FIG. 4. Average coordination

degreeḠ for random graphs with
average degreek54 and j52.
The computations have been pe
formed for graph orders varying
from N51 to N5300. The
dashed line represents the upp
limit G`

R for infinite perfectly ex-
panding trees withk54 and j
52.
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Ḡn5
~ke2j!n21

ke2j
ke2j, ~10!

wheren is the diameter of the graph andn5 logkN.
One of the most interesting challenges that this mo

suggests is the solution of the following problem: given a
of N nodes, an average degreek, and a value for the coordi
nation strengthj, try to find a topological structure for a
graph connecting them so that the average coordination
gree for the graph is the maximum of all possible graphs
the sameN, k, andj. A fast and wrong answer could be t
assume the graph to be ak-regular tree. As we know, an
infinite tree is a perfect expanding graph, so that the aver
coordination for such a tree must be equal to the limitG`

R .
Unfortunately when the graph is considered to be finite,
tree is not a perfect expanding graph anymore. There is a
of finite perfectly expanding graphs called Moore grap
@28#, which are the most efficientk-regular graphs in the
sense that every vertex reachesk21 new vertices at a time
but it has been proven@27# that these kinds of graphs ar
unrealizable except for some very particular cases. So
question of finding the graph that maximizes the aver
coordination degree for a given number of nodes still
mains open.

IV. THE 150 LIMIT

In relation to the preceding discussion, it is interesting
notice that some scientists propose the existence of a na
limit for the maximum number of members of a social grou
Probably the most important work in this direction is the o
carried out by the British anthropologist Dunbar@29#, who
related the size of the neocortex~a part of the brain related to
social and language capabilities! and the maximum group
size for primates. When applying this relation for theHomo
sapiens, the group estimate maximum size is 147.8,
roughly 150.

In the anthropological literature the number 150 pops
again and again referencing the maximum size of organ
tions and groups. According to@30#, looking at 21 different
hunter-gatherer societies from the Walbiri of Australia, t
Tauade of New Guinea, and the Ammassalik of Greenla
to the Ona of Tierra de Fuego; it has been found that
average number of people in their villages was 148.4. T
same patterns hold true apparently for religious groups
the Hutterites who have a strict policy that every time
colony approaches 150, they split it in two and start a n
one. Another interesting example given in@30# is the Ameri-
can company Gore Associates, a multimillion-dollar hig
tech firm based in Newark, Delaware, which is split in
independent groups that have never had a size over 150
ployees.

Although these arguments seem plausible, they do
give any explanation for the existence of communities
other different sizes. It is evident that not all compani
institutions, or religious congregations are composed
groups of 150 people. It would be easy to find hundreds
examples of organizations with sizes of thousands of peo
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whose members do not show any symptom of informat
overload. Nevertheless, the proposed existence of a lim
the amount of information a person may deal with in a p
ticular community seems reasonable. The explanation
this paradox may be obtained by analyzing the relations
between the amount of information, the number of memb
and the structure of social networks.

One of the most important conclusions that can be
tracted from the model proposed in this paper is that
quantity of information an individual is able to receive fro
the entire network does not vary linearly with the number
members of the community but instead, follows a stron
nonlinear shape that converges to a finite constant value
N sufficiently large. This has a straightforward social inte
pretation, from an individual perspective, once the value
the average coordination degree is close to the limit, a
nificant increase in the number of members in the organ
tion does not produce an increase in the average coordina
degree. This means that the information received by any
dividual belonging to that particular network may stay und
the Dunbar limit independently of the number of membe
Thus, the network may grow indefinitely without any kind
information overload.

On the other hand, we have also seen that the rela
between the average coordination degree and the numb
members depends strongly on the structure of the organ
tion. It might be possible that for some particular relation
structure, the amount of information received by the vertic
gets to the Dunbar limit for a particular finite number
members that could be the well-known figure of 150.

In any case, the analysis performed in this paper sho
that the size of an organization cannot be only understoo
terms of the instrinsic phychological properties of its me
bers as proposed by Dunbar. The relational structure and
properties for the information transfers on the network m
also play a definitive role.

V. CONCLUSIONS

Although there are some refinements that must be mad
the model, it is important to remark that such a simple mo
of human relationships is able to explain an important feat
of social networks. The same general conclusion can be
tained with any other model just by assuming the numbe
relationships to be limited and the spread of information a
degrading process.

Even though the model explains a remarkable property
social networks, there are several inconsistencies that n
further development and research. Possibly the most ser
one is the convergence problem for the upper limitG`

R .
Whenke2j.1, the value of this limit goes tò . This may
lead to several problems in the interpretation of the mod
So it would be interesting to perform some refinemen
mainly in modeling the degradation of the information. A
other incomplete feature is the characterization of the co
dination strengthj. It has been defined as a constant depe
ing on the nature of the relationship, but a deep
interpretation and analysis would be desirable.

The social models used here have been chosen for
simplicity. They must not be considered as describing r
interactions between people in communities and organ
7-6
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tions. More realistic models should take account of ma
different effects such as different orders and strengths of
lationships, realistic distribution degrees~scale-free @15#,
etc.!, directed and weighted links, etc.

For the skeptical, this paper can just be read as a diffe
approach to the problem of information spread in netwo
when there exists a degradation of the information. Mo
over, it is original in the sense that its objective is not to fi
what the structure of a particular social community is, b
om

r

pa

v.

03610
y
e-
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t

instead to study how the different structures can influence
collective properties of the group and the particular perc
tion that each individual has of the entire network.
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