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Escape patterns, magnetic footprints, and homoclinic tangles
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The action of a set of ergodic magnetic limiters in tokamaks is investigated from the Hamiltonian
chaotic scattering point of view. Special attention is paid to the influence of invariant sets, such as
stable and unstable manifolds, as well as the strange saddle, on the formation of the chaotic layer at
the plasma edge. The nonuniform escape process associated to chaotic field lines is also analyzed.
It is shown that the ergodic layer produced by the limiters has not only a fractal structure, but it
possesses the even more restrictive Wada property.20@2 American Institute of Physics.
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I. INTRODUCTION always available, the use of field line mappings has proved to
be very efficient and reliabl¥.

One of the most important problems in a plasma—wall ~ Thanks to magnetic flux conservation, a field line map
interaction in tokamaks is the control of plasma contaminamust be area-preserving, such that the field line equations
tion due to localized heat and particle loadings on the innetan be cast in a Hamiltonian forti Hamiltonian maps have
tokamak wall* It is believed that the impurity concentration been used to describe nonsymmetric perturbations in toka-
in the plasma core could be reduced by a factor that is inmaks due to ergodic divertot3:'° The mapping approach
versely proportional to the electron diffusion coefficient in has been first used in EML models in Ref. 5, where a map
the plasma edge.Ergodic magnetic limiterSEML) have  was derived by using a rectangular geometry appropriate to
been proposed to uniformize these fluxes through the credescribe the immediate vicinity of the tokamak wall. Al-
ation of chaotic magnetic field lines near the tokamak wall,though this map has been improved in ensuing pajjerst
which can be achieved by means of externally applied resaurns out that the use of simplified models may mask some
nant fields® important aspects of the physical setting, such as the role of

Although it is possible to use resonant helical windingstoroidal effects and the Shafranov shift of magnetic surfaces.
to obtain an EML? a more practical design for it consists of A field line map has been recently proposed which em-
using only slices of helical windings in the form of current bodies three important featuré®: a fully toroidal coordinate
rings® Experiments with EML%” have shown a decrease of system;(ii) an equilibrium magnetic field obtained from an
the plasma temperature in the tokamak edge region and approximate analytical solution of the Grad—Stbiw-
reduction of the plasma—wall interactions, opening the posShafranov equatiorjii ) the design of the EML tries to fol-
sibility of controlling some magnetohydrodynamig¢dMHD) low the actual helical paths of field lines, taking into account
oscillation modes. Other experiments, however, in which gitch variations due to the toroidal geometfy?* This is a
poloidal modulation of thermal fluxes has been obsefved, rigorously area-preserving map, and may be regarded as a
have put in doubt the claim that the chaotic boundary layecanonical transformation between action-angle variables re-
could uniformize heat and particle loadings on the tokamaKated to the geometrical field line coordinaté#\n explicit
wall. Hamiltonian function is obtained for the problem, assuming

Moreover, there is another and more fundamental probthat the EML perturbation is a sequence of delta-function
lem yet to be completely solved, related to the particlepulses®
anomalous diffusion in presence of chaotic magnetic field We have used this map to study field line diffusion in the
lines. Approaches based in classical and neoclassical transege region of a tokamak with ergodic limitéfsOur results
port theories have not been successful in explaining experindicate that the process is initially superdiffusive due to the
mental data®!! The investigation of anomalous transport in positiveness of the Lyapunov exponent, and subsequently
the presence of chaotic magnetic field lines often needs theeaches a plateau, after which there is a decay due to field
analysis of large bunches of magnetic field lines by a hugéine collisions with the tokamak wall. This field line loss has
number of turns along the tokamak tordswhile the nu-  been described as an exponential-type decay following a
merical integration of field line equations is, in principle, Poisson distribution. Due to the existence of this wall this
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Hamiltonian system is open, and we may consider field lines
both coming from or either going back to the tokamak wall.
A single chaotic field line originates from some point on the
tokamak wall, and after a typically large number of erratic
turns around the torus it collides back to the wall.

Due to the existence of the tokamak wall we can think of
the EML problem as an open Hamiltonian system with one

Ergodic Magnetic
Limiter

and a half degrees of freedom. In this sense the EML actior \ )

on the equilibrium field lines may be regarded as a kind of \W¥ R
chaotic scattering process, as pointed out in a recent worl

treating an ergodic divertor, which itself operates in a very Geometric axis
similar way to an EML® A chaotic scattering involves an FIG. 1. Schematic diagram of an ergodic magnetic limiter.

ingoing orbit which experiences erratic bounces in the scat-

tering region, for example, due to fixed circular disks, and

eventually leaves this region as an outgoing otbithe cha- ~ dimension, in order to characterize the fractality of the sets.
otic bounces result from nonattracting invariant sets calledn Sec. V we investigate the escape patterns associated with
chaotic or strange saddles, which govern the dynamics in th&is system and the magnetic footprints on the tokamak wall.
scattering regiofi® This phenomenon has been extensivelyln Sec. VI the Wada property of the exit basins is discussed
investigated in many physical situations, like vortex shed-and in the last section we present our conclusions.

ding in fluid dynamic$® Coulomb three-body scatteriig,

chemical reactiond! Henon—Heiles open system$and ad-  Il. ERGODIC MAGNETIC LIMITER MODEL

vection of active particles in open chaotic flois. The basic tokamak geometry we deal with is depicted in

. In this work we aim_ to study the I_EML acti(_)n on field Fig. 1. We consider a plasma equilibrium magnetic fiBjd
lines from the point of view of a chaotic scattering process._(o B2,B3), in toroidal polar coordinates {, ;, ¢;), given
- s 120/ » Uty ’

T_he point on the tokamak wall Wh‘?f.e agiven (,:haOt'? fleldby its contravariant components as followls:
line will eventually hit depends sensitively on which point on

the wall it comes from. Hence it is useful to consider the 5 ol p rt2 rrl

so-called exit basins, or sets of points in the chaotic region Bo(r)=_—51-{1- : 1)
which originate field lines hitting the wall in some specified 2t a

region. The mathematical structure underlying the chaotic ol e r -1

region is an extremely involved tangle comprised of ho-  B3(r.,6,)= 5| 1—2—cog 00] , 2
moclinic intersections between invariant manifolds of un- 2mRy Ro

stable orbits embedded in the chaotic region. Due to thigvherel , is the total plasma currentt, is the total current of
structure we expect that the exit basins have a nontriviajhe toroidal magnetic system, is the plasma radiugy) is
geometric structure. As a matter of fact, it turns out that thesgne position of the magnetic axis, andis a parameter that
sets, which we name as exit basins in analogy with the jargogontrols the plasma current profi@The toroidal polar co-
of chaotic scattering, have a fractal structure. For three Oprdinate system has been introduced in previous works to
more of this set the even stronger property of Wada mayyidence toroidal effects in the equilibrium field geoméfry.
appear? In the large aspect ratio limit, these coordinates reduce to the
A practical consequence of the fractality of exit basins isjocal polar coordinatesr (6, ¢). For an arbitrary aspect ratio

that field line collisions with the tokamak wall do not y|e|d they may be defined in terms of the usual toroidal coordi-
uniform patterns, but rather a fractal distribution of spots omates ¢, w, ¢)% as follows:

the wall namedmagnetic footprint$® The knowledge of ,
these magnetic footprints can give the experimentalist a clue _ Ro

on the actual distribution of energetic particle loadings on the Y coshé—cosw’
wall. Since the determination of magnetic footprints de-
mands us to follow a large number of field lines for a long

time, Wetus:aNa ﬁflg Ilpetrr?ap for the economy Oftt'mf " Shafranov equation in toroidal polar componéitt.should
represents. AWe study n this paper many invariant sels qh, mentioned that even the lowest order solution for the
mathematical importance related to the chaotic scattering MGhagnetic fieldalready containstoroidal effects, which are

gion, like stable and unstable manifolds, the chaotic saddl§qqy,qeq in the definition of the field line coordinates them-
as well as the fractal and Wada properties of the exit bas"gelves

gg?i??ggfpi.in@ese structures underlie the formation of mag- Magnetic flux surfaces are characterized iy const.

This paper is organized as follows. In Sec. Il the EMLThe corresponding poloidally averaged safety factor reads as
symplectic map to be considered is described. In Sec. Il we 1 (2= Bg(rtvet)
deal with the stable and unstable manifold structure govern- q(ry= o —
ing the dynamics in the chaotic layer. The exit basins for the o Bolr, 6
EML map are obtained in Sec. IV as well as the uncertaintyFor the equilibrium field here considered we obtain

bi=mT—w, @=0. (3

The equilibrium magnetic field components are derived from
an approximate analytical solution of the Grad—Stdriu

dé,. (4)
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g2\ "2 We model the action o, EML rings, equally spaced along
q=qc(rt)( 1—4—f2> , (5)  the toroidal direction, on the equilibrium magnetic field lines
Ro as a sequence of pulses described by the following nonauto-

where nomous Hamiltonian:

2

r
Qe(r) == —=[1

+17-1 * 2
_(1_E>7 ] (6) H(Z,9,t)=Hy(Z)+ eH(Z,T,1) E 6<t—k—ﬂ->.
Ip Ry? ? . k=== Ny

a

(12

Since the perturbing Hamiltoniand,(Z, 9,t) is periodic in®
and int= ¢, it can be written as

In the following, we will chooseg~1 at the magnetic axis
andg~5 at the plasma edge&a), as a consequence of
adoptingy=3. We also normalize lengths to the minor ra-
dius (b;=1) and choose parameters so th&R,=0.261%3’ 2mg

The magnetic structure of the plasma is studied by inte-  H(Z,9,t)= >, HZ*(Z)e!(m~nob), (13
grating the field line equations. Since the equilibrium mag- m=0
netic field is axisymmetric, we may set the ignorable coordinyhere the Fourier componerit: (Z) are?
natep;=t as a time-like variabléto be used as a field line om
parametrizatio) and put the field line equations in a Hamil- )

tonian form}438 Hi(D= 2 Hup (D) S (D), (14
' m’'=0
dZ  dHo d¥ dHg
dt g9’ dt JT’ ,
r m
where (Z,9) are angle-action variables of the equilibrium Hm’(rt):_‘]m’—mo(mo)\)(b_t) , (15
HamiltonianHy(Z) given by t

dz :i 2m i[m’ 6,(Z,9)—mo]
HoD =2 | s, ®  Sww@=5] e do. (16

7 in which

These angle-action variables are related to the toroidal Due to the time dependence of the EML Hamiltonian in
polar coordinates in the following w&f: the form of a sequence of delta functions, it is possible to
L define discretized variableg, and 9, as the corresponding
Lr)=3z[1-Q,(r9Q_(ry], ©) values of the action-angle variables just after thth cross-
Q. (ry) 0, ing of a field line 2vs/ith the plane_zpk=tk=2_7rk/Na,with k
I9(r,60,)=2 arcta+Q T ar(;”, (10 =0,1,2 ... ,N,— 15 In the field line equations, the action-
ot angle variables are continuous through the delta functions at
with times t,=k(27/N,), k=0,+21,+2,..., buttheir deriva-
tives are not; such that we evaluate the corresponding jumps
due to the delta functions. Proceeding in this fashion we can

Q(r)= V 1i2R_' (11) obtain the following area-preserving mappiig:

’
0

The EML design which will be considered consists of — Zn+1=Zn+ €f(Zy41,90,tn), 17)
one or more slices of a resonant helical winding with ad-
equate mode numbers, located in suitable positions along the 1= Ot
torus. The design of the corresponding helical winding needs N:Q(Zn+1)
to take into account the effects of the toroidal geometry, such o
that the helical pitch is not uniform due to the behavior of the ¢, =t ,+ —, (19
toroidal field component, which is stronger in the inner part N,
of the torus. We used a winding law to emulate the actualyhere
paths followed by magnetic field lines, introducing a tunable
parameterk, such that the variablei,=mgy(6;+ \ sin6,) dH, dH, Il
—Nogr, Where fg,n,) are mode numbers, is constantalong =~ 55+ 9= 57 ande=2—. (20
a given helical winding. The magnetic field generated by the e
corresponding helical winding has been obtained analyticallyt should be remarked, however, that there are other possible
by means of an approximate solution of the Laplace equaways to derive a symplectic map from a Hamiltonian system,
tion, supposing a vacuum fielghalid for low-beta plasmas like the method described in Ref. 39.
only). Proper boundary conditions are imposed, with the help  In Fig. 2, we show a Poincarsection of many orbits
of a singular current distribution, at the tokamak wajl  obtained from the above mapping. In order to assure a good
=b;. accuracy for the numerical chaotic orbits we have iterated
The equilibrium HamiltonianHy(Z) is integrable, but the map equations using extended precision. WeNjse4
the addition of a nonsymmetric perturbation caused by theings, a perturbation strength et=1.17x 10" 4, EML helical
EML rings (see Fig. 1 breaks the integrability of the system. excitation modesrfy,ny)=(5,1) and a current modulation

+Eg(In+lr19nrtn)v (18)
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(a)
10 r
Region 1

05

0.0 j , Region 2

Zb

Region 3

-10 -

-1.0 -0.5 0.0 0.5 1.0 ;
(R-R,)/b FIG. 2. Poincareross-section for the EML maya) in

terms of the usual polar coordinatedy) a close-up
view of the plasma edge in terms of angle-action vari-
(b) ables.

Region 1 Region 2

0.045

Region 3

0.055

0.040 | ~ s o R A

0.035 &

parameten =0.53, compatible with the chosen EML mode well-known, since one has a divided phase space comprising
numbers. We choose these numerical values having in mindf (i) resonances, characterized by periodic islands with a
a limiter design and parameters taken from the tokamalpendular shape, which appear due to the breaking of equilib-
TCABR,* and for the equilibrium conditions described in rium flux surfaces with rational safety factors. They corre-
Sec. ll[a/Ry=0.26 andq(a)~5.0], and a limiter current of spond to PoincareBirkhoff periodic orbits of the EML map;
the order of 5% of the plasma current.&70 kA). The (i) KAM tori, corresponding to surviving, yet deformed flux
latter value is typical for ergodic limiters but slightly higher surfaces for which the safety factor is irration@ii;) chaotic
than those used in ergodic divertors, inasmuch as the pertuarea-filling orbits, which appear due to the homoclinic and/or
bation caused by an ergodic limitédEML ) is more localized heteroclinic crossings of the invariant manifolds of unstable
in space than for an ergodic diverfor.!® Poincare-Birkhoff periodic orbits** Locally chaotic orbits at
Figures 2a) and 4b) depict the Poincareections in po- the resonance borders may fuse, as the perturbation strength
lar and action-angle variables, respectively; the latter beingpuilds up, and a globally chaotic region merges as a conse-
more convenient to highlight the physics at the tokamalkguence.
edge. The general features displayed by Fig. 2 are fairly The EML action requires this globally chaotic region to
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0.055

FIG. 3. Unstable manifold of the unstable period-5 or-
bit (shown as a bullet

extend from the outer plasma portion to the tokamak inner  Let T(x) represent the two-dimensional EML mé&by),

wall. This chaotic region is far from being uniform, however, where x=(Z,9). We obtain the stable and unstable mani-
for it presents densely intertwined regions: one from wherdolds for an unstable periodic orbit embedded in the chaotic
the field lines hit the tokamak wall with relatively short con- region by using the following proceduféFirst, we choose a
nection lengthiwhite areas in Fig. 2 and another one where periodk unstable saddle orhi*, i.e., a solution of the equa-
the area-filling field lines take a large number of turns beforetion T¥(x*)=x*. We linearize the map at the poirt and
eventually hit the tokamak wall. Both regions have periodicevaluate the corresponding eigenvalues and eigenvectors.
islands of stability embedded in them, in such a way that &incex* is a hyperbolic saddle, the eigenvalues are real and
set of initial conditions with a positive Lebesgue measurehave moduli greater than and less than unity, and are related
generates nonchaotic field lines. These orbits do not play @ invariant unstable and stable subspaces, respectively.

significant role in the forthcoming discussions. These subspaces, on the other hand, are tangent to the un-
stable and stable manifolds t.
IIl. INVARIANT SETS FOR THE EML MAP Then we find a poink, along the unstable subspace such

o ) . ] _thatx,=TX(x,) is less than a small factdsay, 10 ®) apart
Dissipative dynamical systems typically present Invari-from x* . The pointsx, and x, define a line segmeny,,

ant sets named attractors, to which asymptote orbits origisom which we generate a set of partition poiritg, }' ; .
Ji=

nated from a set of initial conditions called its basin of at- . . .

. . L . The unstable manifold is the closure of the set of successive
traction. Nonattracting chaotic invariant sets, on the othe{ ages of] }M under thek-times iterated mar]’k(x)
hand, have equally important dynamical consequences, ang'a9 Yugi=1 '

are responsible for phenomena like fractal basintikewise, the stable manifold is the union of the set of suc-
boundarie? transient chao&® crises and chaotic Cessive preimages ¢fy}iL; under the mapping ~¥(x). In
scattering’’ This is particularly important in Hamiltonian, or Figs. 3 and 4, for which the parameters were chosen to match
area-preserving systems, where there are no attractors.  those of Fig. 2, we show the unstable and stable manifolds,
Consider an unstable periodic orbit embedded in the chatespectively, of a periok=5 hyperbolic fixed point indi-
otic region depicted in Fig. 2. Due to the area-preservingcated as a filled circle.
nature of the EML map it will be a saddle orbit, with one The chaotic saddle is the intersection of Figs. 3 and 4,
stable and one unstable direction. The stdbfestabl¢ mani-  and is a Lebesgue measure zero set of points. Points exactly
fold at this point is the set of points which asymptote to theon the chaotic saddle are bound to remain there for all for-
periodic orbit under the forwartbackward iterations of the  ward and backward iterations of the map. If a field line starts
map, as time goes to infinity. The sets are invariant in thedff but near the chaotic saddle, it will wander along the tap-
sense that the map iterations of points belonging to thesestry of unstable orbits in an erratic way, approaching arbi-
manifolds remain in them for all times. A strange saddle is drarily close any unstable orbit embedded in the chaotic
nonattracting chaotic invariant set formed by the intersectiorsaddle. This makes for a chaotic orbit in the layer produced
of the stable and unstable manifolds of unstable saddley the EML, and Figs. 3 and 4 show the extremely convo-
points, and also contains a dense orbit. The stable and uhited structure of the invariant manifolds, with the character-
stable manifolds intersect transversally at homoclinic or hetistic stretching—folding behavior.
eroclinic points, and these points map one another, such that Another numerical technique to obtain approximations
there is an infinite number of unstable points embedded if the invariant manifolds and the associated chaotic saddle
the chaotic saddle, with Lebesgue measure Zero. is thesprinkler method®>*®We partition the phase portrait in
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0.055

0.050 | |

0.045
FIG. 4. Stable manifold of the unstable period-5 orbit
0.040 (shown as a bullet
0.035
0.030
0

the chaotic region of intereghear the tokamak wallinto a  generate field lines that eventually hit the wall s> —

fine grid of points, and iterate each grid pomtimes. Once when we iterate the map backwards. Accordingly, we con-
the resulting field line trajectory reaches the wall for finite sider them asngoing trajectories.

it is considered lost and the further iterates are not plotted.  Although this scenario is actually very similar to the one
We pass to the next grid point and so on. For sufficientlypresent in chaotic scattering process in open Hamiltonian
largen and a grid fine enough, trajectories that do not hit thesystems, there are some important differences. First, the en-
wall in niterates can be used to generate an approximation tgre picture is static, since time here is just a convenient
the unstable manifold. The chaotic saddle itself can be apparametrization of field lines. Second, in a conventional cha-
proximated by half(or some other fractionof the iterates  otic scattering process, the ingoing and outgoing regions are
n’=xn, with 0<y<1. Now repeat the process for the back- ysually different, but in the EML case they are the actually
ward iterates, i.e., iterate each grid point a large number of5me physical region, namely the tokamak wall. Apart from

negative times, retaining only the grid points generating trayhese differences, this analogy can be pushed forward in all
jectories that do not hit the wall after backward iterates. | athematical aspects.

These points approximate the stable manifold of the chaotic \ypile for dissipative systems we speak of basins of at-
saddle. We have used this method to obtain the unstable agd,.tion to refer to the set of initial conditions which con-
stable manifolds for the EML map, and the results are en
tirely similar to the previous method. For a yet more sophis
ticated approach, there is the PIM-triple metibdyut it

would not give results appreciably better than those P amiltonian systerd”*8 This set is called arexit basin

sented in Figs. 3 and 4. o .
. . - . .__When there are twdor more exits in the system one is
We close this section by mentioning that the invariant. . . . . )
. . interested in the exit basin boundary, which can be either
manifold structure here described shall be used throughout . . T
. . . smooth or fractal, as for basins of attraction of dissipative
this paper to explain the fractal nature of the deposition pat-

terns on the tokamak wall, namely the exit basins and th ystems. Fractal boundaries are important dynamical objects

magnetic footprints, to be discussed in the next two section ecause orbits tha}t start in th.e|r vicinity exhibit very compli-
cated and unpredictable motion.

Examples of exit basins have been given in the literature
IV. EXIT BASINS FOR THE EML MAP for the Sinai billiard with two holed’ scattering by three

Suppose we choose at random a magnetic field line witigircular disks and by a H®n—Heiles potentiaf® The above-
initial condition located outside the last closed magnetic surmentioned analogy with chaotic scattering makes it natural
face, i.e., in the chaotic region near the tokamak wall. Welo extend the exit basin concept to the chaotic region existent
can think of it as a trajectory that eventually goes to thefor the EML map(17). In this case, we divide the tokamak
tokamak wall by iterating the mapping forward to—«.  wall into three poloidal sections of equal length=®
This occurs because the wallrat= b, is actually an arbitrary <27/3, 2mw/3<9<4m/3, and 4r/3< 6<2, indicated, re-
partition in the phase portraits, and the chaotic region interspectively as regions 1, 2, and 3 in Fig. 2, corresponding to
sects the ling;=b, at a segment of a finite Lebesgue mea-different exits for a chaotic field line.
sure. In terms of the analogy with chaotic scattering process, In order to obtain the exit basins we used a fine grid of
we may consider these field lines astgoingtrajectories. 600X 700 points chosen inside the small rectangle shown in
Since the EML map is invertible, the same initial conditionsFig. 2(b), and which comprises a representative part of the

verge to a given attractor, it is possible to extend this concept
for including the set of initial conditions which generates
trajectories that escape through a given exit, in an open
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0.050 — 0.04560 —

1 0.04555

10.045

0.04550 =

0.040

FIG. 7. Blow-up of the rectangle marked in Fig. 6.
FIG. 5. Exit basin for the EML map. The regions in dark gray, light gray,
and black correspond to field lines colliding with the tokamak wall at the
regions marked 1, 2, and 3, respectively, in Fig. 2. We also sfswhd
white line) a segment of the unstable manifold of a fixed point embedded in ~ We calculate the uncertainty dimension for the exit basin

the chaotic region. boundary of Fig. 4, by using the algorithm extensively used
for basins of attractiofi? Instead of covering the region con-

) . _ .. taining the exit boundary with a fine and regular mesh of
chaotic region near the wall. We mark the initial condition points we randomly choose initial condition®( o) in this
pixel in dark gray, light gray, or black, depending on whetheryqqinn ang iterate forward the EML map until the corre-
the field line goes to the wall section called region 1, 2, or 3:sponding field lines hit the wall. Then, we iterate forward the
respectively, under the forward dynamic. Figure 5 shows thafig|q jines with slightly displaced initial conditionsZg
the three exit basins are intertwined in a very complex way,, €,90) and (Zy— €, 9,), for a smalle, also until they col-
with many similarities with basins of attraction of Systems e with the wall. If both displaced initial conditions go to
I|ke.forced pend'ulé.. In p.artlcular, we argue that the exit the same region of the wall that the field line with initial
basin boundary in Fig. 5 is fractal. . condition (Z,,9,) has gone to, then this initial condition is

Before checking the latter statement, it is useful to COM-artain Otherwise, it will be dubbed uncertain.
pare Fig. 5 with the same region of Fig. 4, what illustrates s nrocedure is repeated for a large number of initial
the known fact that the basin boundary coincides with theconditions N, of which N, are uncertain, what gives an
stable manifold of the chaotic saddle. In fact, the boundary i%stimate of the fraction of uncertain initial conditiohge)
the closure of the stable manifold of a saddle periodic dfbit. _y Considering different values af, we expect that
The convoluted shape of the boundary suggests that it hastﬁisuungertain fraction scales with as a ,power lawf (€)
smooth componer(a_long the §table manifojcand a fr_agtal ~ €%, wherea is the uncertainty exponent of the exit basin
ongz, transversal to !t’ .and ?k'n to a Cantor set. This is besBoundary. Smooth basin boundaries scale linearly with
evidenced by magnifying Fig. 4, and the sequence of blow; o ", 1 for the uncertain fraction would be simply a strip
ups shown in Figs. 6 and 7 strongly suggests a self-similarityt \yigth 2¢ stranding the basin boundary. Fractal basin
in the4g)asin striations, a characteristic of fractal curves in th%oundaries, on the contrary, have a worse scaling, in that we
plane: expect 0<a<1, i.e., a given improvement in the accuracy
used in the initial condition determination does not imply a
substantial reduction of the uncertain fraction. This has been
calledfinal-state sensitivityand it turns to be an obstacle to
predictability in dynamical systems even when they are not
chaotic?®®

Figure 8 depicts the uncertain fractibfe) vs e for more
than three decades of variation. The solid line is a least
squares fit that confirms the power-law scaling characteristic
of fractal boundaries, with uncertainty exponett 0.0763
+0.0006 for the forward iterations, andv=0.0761
+0.0007 for the backward iterations. The extreme convo-
luted nature of the exit basins apparent in Fig. 5 is reflected
in the very small value obtained far.

Let Dy be the box-countingor capacity dimension of

0.0460

1 0.0455

0.0450 -

L |
2.66 2.73 2.80 the exit basin boundary. It can be proved that D — Dy,
v whereD =2 is the phase space dimensfrSince the basin
FIG. 6. Blow-up of the rectangle marked in Fig. 5. boundary is the closure of the stable manifold of the chaotic
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FIG. 8. Uncertain fraction for initial conditions randomly chosen in the
chaotic region depicted in Fig. 2. We show least squares fits obtained foFIG. 9. Schematic picture of the accumulation of exit basin filaments at the
forward (bullets and backwarddiamond$ iterations of the EML map. unstable manifold of a saddle point.

saddle, the basin boundary dimension is equal to the stabl@e lobes tend to follow the unstable maniféfdThe union
manifold dimensiorDy=Ds. Furthermore, since the map is of all images of the boundary forms a curve that oscillates
area-preserving, the dimension of the unstable and stabigildly as it approaches the unstable fixed point. The net ef-
manifolds are the samé,=Ds. We have computed the fect is that segments of the partitioning line will accumulate
box-counting dimensions of the invariant manifoldse Fig.  on the filaments of the unstable manifold.
8), and found thatDs=1.9237-0.0006 andD,=1.9239 The same is true for the backward images of the parti-
+0.0007. Since the chaotic saddle is the intersection of thﬂoning line. Segmentg of it |y|ng between the filaments of
stable and unstable manifolds, its dimension is given by  the unstable manifold will be transported due to the back-
De=D¢+D,—D=2(Dy—1)=2(D—a—1). (22) ward dynamics t(_) the scattering region, and they will accu_-
o mulate asymptotically on the filaments of the stable mani-
Considering the above values for; and D, we haveDes  fold. Thus, the boundary of the exit basins contains the stable
=1.8476£0.0009, which is close to the dimension of the and unstable manifolds of the chaotic saddle, or at least a
phase space itself. _ _ part of them. It should be remarked that it is necessary that
The convoluted nature of the exit basins can be undefthe exit boundary intersects the manifold so as to have a
stood as a consequence of the chaotic saddle underlying thgctal component. The lobes approaching the fixed point
dynamics in the chaotic layer near the wall. Let us consider @mgothly extend along some manifold, so representing the
given partitioning line in the tokamak wall dividing two ad- smooth(nonfractal component of the exit boundary. On the
jacent regiond1, 2, or 3. Because of the uniqueness prop- gther hand, we claim that the fractal component of the exit
erty of the differential field line equations we have that thepasin houndary is responsible for the nonuniformity of the
chaotic scattering region is also divided in twor moré  neat and particle loadings on the tokamak wall.
parts, which are the exit basins. If the partitioning line
crosses the stable or unstable manifold of the chaotic saddle,
the exit basin boundary is fractal. The key point is that aV' ESCAPE PATTERNS AND MAGNETIC FOOTPRINTS
finite segment of the partitioning line is smoothly deformed  One of the main consequences of nonattracting chaotic
before reaching the chaotic saddle. Points lying on its stablgets in a chaotic scattering problem is that an orbit may
and unstable manifolds remain attached to the chaotic saddépend a long time in the vicinity of the chaotic saddle before
for any time. On the other hand, the segments of the partiescaping. Usually, for nonattracting chaotic systems, the
tioning line in between the manifolds become increasinglynumber of orbits that remain in the scattering region after a
elongated and converge to the manifsid. time n decreases exponentially. In fact, the system typically
In order to illustrate this process, in Fig. 9 we show spends a transient time, before any orbit escapes. So the
schematically one unstable fixed point belonging to the chanumber of orbits that remain after a times
otic saddle and its corresponding manifolds. The image of hen)r
the partitioning line under tlile forv?/ard iterations of the IgML Min)=Noe™ 7107, (22
map is supposed to cross the stable manifold. The forwardshere\ is the total number of initial orbits and (d)/ is the
images of this boundary approach the fixed point such thagéxponential decay rate.
(i) the intersection points between the stable manifold and We have already reported this property for the EML map
the boundary converge exponentially fast according to thén a previous work dealing with the number of field lines lost
corresponding eigenvalue of the map linearized at the fixedue to collisions with the wafl® The escape plot of Fig. 10
point (with modulus less than unity (i) the length of the depicts in grayscale the number of toroidal turescape
lobes increase exponentially in order to preserve areas, aritnes it takes for a field line to reach the tokamak wall. The
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a 1.0

09 |  D-D,=0.0774(5)

0.05
0.8

fe) 571

0.6

0.5 L L L
107 107 107 107"

0.04

3 FIG. 12. Uncertain fraction for initial conditions randomly chosen in Fig.
11. The solid line corresponds to a least squares fit.

FIG. 10. Escape timémeasured in number of toroidal tuynfor initial
conditions randomly chosen in Fig. 2. The darker is the pixel the larger is
the corresponding time it takes to the field line to reach the wall.
ture. This results from the intersection of the stable manifold,

which we have shown to have a fractal transverse compo-

resulting figure is very similar to the exit basin structurenent, and the smooth line of initial poloidal angles. In order
shown in Fig. 5. In particular, those regions from where theto verify that, we compute the box-counting dimension of the
field lines rapidly escape coincide with regions where thePpeaked curve in Fig. 11, through the uncertainty dimension
boundaries are smooth. This similarity indicates that the esmethod described in the previous section.
cape plot and the exit basin plot might have the same fractal \We choose at random a field line with initial poloidal
properties, even though, in this situation, we have mang@ngled; on the wall, and two other field lines with angles
more basins involved. In fact, we have in Fig. 10 an infinited; — € and 9;+ €. We determine the number of turns each
number of basins, each one linked to a spe@ficape time field line takes to return back to the wall. If these numbers of

In order to explore this similarity in more depth, let us turns are equal we label the anglgase-certain, and uncer-
consider a field line connecting two points on the wall. Thistain otherwise. The uncertain fraction of initial poloidal
field line enters into the chaotic region and, after some errati@ngles is expected to scale within a power-law fashion,
turns around the torus it returns back to the wall. Figure 1with uncertainty exponent=D, —Dg, whereD, =1 is the
shows the dependence of the escape time on the initial palimension of the line of initial poloidal angles aixt is the
loidal angle (3;) for a fixed value off corresponding to the box-counting dimension of the Cantor-like set shown in the
wall position. The number of toroidal turns it takes for a field peaked curve in Fig. 11. In Fig. 12, we shdye) as a
line to return back to the wall as a function of the initial function of €, from which the uncertainty exponent g
poloidal angle shows sharp peaks with a Cantor-like struc=0.0774+0.0005, and the corresponding box-counting di-

10* : : .
10° © 3
10° ¢
t 3.4 FIG. 11. Escape time versus initial po-
loidal angle,d;, for the situation de-
" T picted in Fig. 10. Two magnifications
10 + of the fractal peak structure are shown.
10° 1
10° ¢
10° | |
1 | | 10‘ |
0.00 1.57 3.14 4.71 6.28 3.140 3.165 3.190
0
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mension for the fractal curve Br=0.9226+0.0005. Since boundary®® When two or more exit basins exist in a given
this fractal curve is the intersection between the stable mansystem, it may well happen that these basins present the
fold and the one-dimensional line of initial poloidal angles, Wada property?>3

its box-counting dimension is given blp=D¢+D, —D, A strong condition that indicates if a basin boundary has
hence Ds=D+D—D =1.9226-0.0005, is in a good the Wada property is that the unstable manifold of an un-
agreement with the result obtained in Sec. IV. stable periodic poinp must intersect every basin. This con-

Field lines which take a long time to escape play andition is necessary, but not sufficienit least oneof the
important role for heat and particle deposition on the tokacomplementary conditions listed below has to be satisfied:
mak wall. Such field lines come from the core of the chaotic(i) The stable manifold of the saddle popinust be dense in
region and can thus bring energetic plasma particles to thghe boundary of the three regiongi) the periodic orbitp
wall. These field lines enter into the chaotic region comingmust be the only accessible orbit from the basinOther-
from a Cantor-like set of initial poloidal angles on the wall \ise, every unstable manifold of other periodic orbits that
and they return back to the wall in a Cantor-like set of finalare accessible fron must intersect all bas|n$[||) the pe-
poloidal angles as well. Therefore, we expect that the heaigdic orbit p must generate a basin cell.
and particle deposition patterns also present a Cantor-like The direct numerical verification of these complemen-
structure if the cross-field diﬁusioq_of particles does NOttary conditions is rather difficult, so that we used another
fuzzy them so much. Those deposition patterns are usuall\)(,ay of showing the Wada property for the exit basins of the
known_ asmagnetic footprintscharacterized by very iregu- ML map?8 and which consists on checking that every open
lar stripped patterns. On the other hand, field lines correpeighhorhood of a boundary point intersects at least three
sponding to windows of constant escape time in Fig. 11 progitferent basins. Let us take a poipton the exit boundary
duce regular deposition patterns when they reach the walo, the EML map, which actually coincides with the stable
This is shown by Fig. 13, where we depict the final poloidal ,anifold of some periodic point which contains the pgint
angle 9 (when a field line has collided with the whls & Argund this point we take a small droptBtof radiuse, and
function of the initial poloidal angley;, for initial condi-  ,piain itsi-th forward imageD, = T(D) under the mag40).
tions chosen inside a magnified box taken from Fig. 11.  \yheni— o this image is a convoluted and very thin ribbon
extending along the unstable manifold. The droplet is a con-
nected set, thus its images undefx) are similarly con-
nected. Consider now that there is a finite nhumivesuch

Consider an exit basiB3, like those represented in Fig. thatD,, intersects all the exit basins. Becad3g maps toD
5. A pointp is a boundary point of the basi®if every open under them backward iterations, all the basin structures
neighborhood op intersects the basifi and at least another present irD,,, are mapped int®. Since we did not make any
basin. The basin boundary is the set of all boundary points gparticular assumption about the radius of the droplet, and the
that basin. Furthermore, the boundary pgins$ also awada  point p can be anywhere on the stable manifold, this state-
pointif every open neighborhood gfintersects at least three ment is valid for anye, such that the entire stable manifold is
different basins. A basin boundary is said to possess tha Wada basin boundary.

Wada propertyif every boundary point o83 is a Wada point, The forward dynamics of a droplet is illustrated in Fig.
such that the boundary of such a basin idMada basin 14. Observe how the image of the droplet looks like the

VI. WADA PROPERTY OF THE EXIT BASINS
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0.055 regions, forms a stripped-like structure on the tokamak wall

called a magnetic footprint, with the same Cantor-like struc-

] ture as the set of initial poloidal angles for long chaotic field
v] lines. We have observed even the more restrictive Wada
P\ property for exit basins, which puts into evidence the phe-
nomenon of final-state sensitivity, extensively investigated
for dissipative systems.

In our study we aimed to clarify the mechanism leading
to the experimentally observed nonuniformity of the
plasma—wall interactions due to the formation of the chaotic
layer by an EML. The homoclinic tangle formed by stable
and unstable manifolds of unstable periodic orbits embedded
in the chaotic layer creates channels through which the field

0.050

0.040 |

0.035

N

0.030 ! ; . . . .
0 /2 T 3m/2 2 line escape is considerably faster. The resulting fractal struc-
v ture of the magnetic footprints suggest that, according to the
FIG. 14. The forward image of a small droplédentified as a bullstafter ~ €xperimental findings, the heat and particle loadings on the
20 iterations of the EML map, for the same parameters as in Fig. 2. tokamak wall are not uniform. Another physical consequence

is the non-Gaussian nature of the diffusive process, leading

unstable manifold of an unstable periodic orbit embedded irJE0 superdiffusive transport influenced by the escape channels.

the chaotic region, as schematically illustrated by Figsée
also Fig. 3. Since the unstable manifold crosses all exit baACKNOWLEDGMENTS
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