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Escape patterns, magnetic footprints, and homoclinic tangles
due to ergodic magnetic limiters
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The action of a set of ergodic magnetic limiters in tokamaks is investigated from the Hamiltonian
chaotic scattering point of view. Special attention is paid to the influence of invariant sets, such as
stable and unstable manifolds, as well as the strange saddle, on the formation of the chaotic layer at
the plasma edge. The nonuniform escape process associated to chaotic field lines is also analyzed.
It is shown that the ergodic layer produced by the limiters has not only a fractal structure, but it
possesses the even more restrictive Wada property. ©2002 American Institute of Physics.
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I. INTRODUCTION

One of the most important problems in a plasma–w
interaction in tokamaks is the control of plasma contami
tion due to localized heat and particle loadings on the in
tokamak wall.1 It is believed that the impurity concentratio
in the plasma core could be reduced by a factor that is
versely proportional to the electron diffusion coefficient
the plasma edge.2 Ergodic magnetic limiters~EML! have
been proposed to uniformize these fluxes through the
ation of chaotic magnetic field lines near the tokamak w
which can be achieved by means of externally applied re
nant fields.3

Although it is possible to use resonant helical windin
to obtain an EML,4 a more practical design for it consists
using only slices of helical windings in the form of curre
rings.5 Experiments with EMLs6,7 have shown a decrease
the plasma temperature in the tokamak edge region an
reduction of the plasma–wall interactions, opening the p
sibility of controlling some magnetohydrodynamical~MHD!
oscillation modes. Other experiments, however, in whic
poloidal modulation of thermal fluxes has been observed8,9

have put in doubt the claim that the chaotic boundary la
could uniformize heat and particle loadings on the tokam
wall.

Moreover, there is another and more fundamental pr
lem yet to be completely solved, related to the parti
anomalous diffusion in presence of chaotic magnetic fi
lines. Approaches based in classical and neoclassical tr
port theories have not been successful in explaining exp
mental data.10,11 The investigation of anomalous transport
the presence of chaotic magnetic field lines often needs
analysis of large bunches of magnetic field lines by a h
number of turns along the tokamak torus.12 While the nu-
merical integration of field line equations is, in principl
4911070-664X/2002/9(12)/4917/12/$19.00
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always available, the use of field line mappings has prove
be very efficient and reliable.13

Thanks to magnetic flux conservation, a field line m
must be area-preserving, such that the field line equat
can be cast in a Hamiltonian form.14 Hamiltonian maps have
been used to describe nonsymmetric perturbations in to
maks due to ergodic divertors.15–19 The mapping approach
has been first used in EML models in Ref. 5, where a m
was derived by using a rectangular geometry appropriat
describe the immediate vicinity of the tokamak wall. A
though this map has been improved in ensuing papers,20,21 it
turns out that the use of simplified models may mask so
important aspects of the physical setting, such as the rol
toroidal effects and the Shafranov shift of magnetic surfac

A field line map has been recently proposed which e
bodies three important features:~i! a fully toroidal coordinate
system;~ii ! an equilibrium magnetic field obtained from a
approximate analytical solution of the Grad–Schlu¨ter–
Shafranov equation;~iii ! the design of the EML tries to fol-
low the actual helical paths of field lines, taking into accou
pitch variations due to the toroidal geometry.22–24 This is a
rigorously area-preserving map, and may be regarded
canonical transformation between action-angle variables
lated to the geometrical field line coordinates.21 An explicit
Hamiltonian function is obtained for the problem, assumi
that the EML perturbation is a sequence of delta-funct
pulses.25

We have used this map to study field line diffusion in t
edge region of a tokamak with ergodic limiters.23 Our results
indicate that the process is initially superdiffusive due to
positiveness of the Lyapunov exponent, and subseque
reaches a plateau, after which there is a decay due to
line collisions with the tokamak wall. This field line loss ha
been described as an exponential-type decay followin
Poisson distribution. Due to the existence of this wall th
7 © 2002 American Institute of Physics
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Hamiltonian system is open, and we may consider field li
both coming from or either going back to the tokamak wa
A single chaotic field line originates from some point on t
tokamak wall, and after a typically large number of erra
turns around the torus it collides back to the wall.

Due to the existence of the tokamak wall we can think
the EML problem as an open Hamiltonian system with o
and a half degrees of freedom. In this sense the EML ac
on the equilibrium field lines may be regarded as a kind
chaotic scattering process, as pointed out in a recent w
treating an ergodic divertor, which itself operates in a ve
similar way to an EML.26 A chaotic scattering involves a
ingoing orbit which experiences erratic bounces in the s
tering region, for example, due to fixed circular disks, a
eventually leaves this region as an outgoing orbit.27 The cha-
otic bounces result from nonattracting invariant sets ca
chaotic or strange saddles, which govern the dynamics in
scattering region.28 This phenomenon has been extensiv
investigated in many physical situations, like vortex she
ding in fluid dynamics,29 Coulomb three-body scattering,30

chemical reactions,31 Hénon–Heiles open systems,32 and ad-
vection of active particles in open chaotic flows.33

In this work we aim to study the EML action on fiel
lines from the point of view of a chaotic scattering proce
The point on the tokamak wall where a given chaotic fie
line will eventually hit depends sensitively on which point o
the wall it comes from. Hence it is useful to consider t
so-called exit basins, or sets of points in the chaotic reg
which originate field lines hitting the wall in some specifie
region. The mathematical structure underlying the cha
region is an extremely involved tangle comprised of h
moclinic intersections between invariant manifolds of u
stable orbits embedded in the chaotic region. Due to
structure we expect that the exit basins have a nontri
geometric structure. As a matter of fact, it turns out that th
sets, which we name as exit basins in analogy with the jar
of chaotic scattering, have a fractal structure. For three
more of this set the even stronger property of Wada m
appear.32

A practical consequence of the fractality of exit basins
that field line collisions with the tokamak wall do not yie
uniform patterns, but rather a fractal distribution of spots
the wall namedmagnetic footprints.26 The knowledge of
these magnetic footprints can give the experimentalist a
on the actual distribution of energetic particle loadings on
wall. Since the determination of magnetic footprints d
mands us to follow a large number of field lines for a lo
time, we use a field line map for the economy of time
represents. We study in this paper many invariant sets
mathematical importance related to the chaotic scattering
gion, like stable and unstable manifolds, the chaotic sad
as well as the fractal and Wada properties of the exit ba
boundaries. These structures underlie the formation of m
netic footprints.

This paper is organized as follows. In Sec. II the EM
symplectic map to be considered is described. In Sec. III
deal with the stable and unstable manifold structure gove
ing the dynamics in the chaotic layer. The exit basins for
EML map are obtained in Sec. IV as well as the uncertai
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dimension, in order to characterize the fractality of the se
In Sec. V we investigate the escape patterns associated
this system and the magnetic footprints on the tokamak w
In Sec. VI the Wada property of the exit basins is discus
and in the last section we present our conclusions.

II. ERGODIC MAGNETIC LIMITER MODEL

The basic tokamak geometry we deal with is depicted
Fig. 1. We consider a plasma equilibrium magnetic fieldB0

5(0,B0
2 ,B0

3), in toroidal polar coordinates (r t ,u t ,w t), given
by its contravariant components as follows:34

B0
2~r t!5

m0I p

2pr t
2 F12S 12

r t
2

a2D g11G , ~1!

B0
3~r t ,u t!5

m0I e

2pR08
2 F122

r t

R08
cos~u t!G21

, ~2!

whereI p is the total plasma current,I e is the total current of
the toroidal magnetic system,a is the plasma radius,R08 is
the position of the magnetic axis, andg is a parameter tha
controls the plasma current profile.35 The toroidal polar co-
ordinate system has been introduced in previous works
evidence toroidal effects in the equilibrium field geometry34

In the large aspect ratio limit, these coordinates reduce to
local polar coordinates (r ,u,w). For an arbitrary aspect ratio
they may be defined in terms of the usual toroidal coor
nates (j,v,w)36 as follows:

r t5
R08

coshj2cosv
, u t5p2v, w t5w. ~3!

The equilibrium magnetic field components are derived fr
an approximate analytical solution of the Grad–Schlu¨ter–
Shafranov equation in toroidal polar components.22 It should
be mentioned that even the lowest order solution for
magnetic fieldalready containstoroidal effects, which are
included in the definition of the field line coordinates them
selves.

Magnetic flux surfaces are characterized byr t5const.
The corresponding poloidally averaged safety factor read

q~r t!5
1

2pE0

2p B0
3~r t ,u t!

B0
2~r t ,u t!

du t . ~4!

For the equilibrium field here considered we obtain22

FIG. 1. Schematic diagram of an ergodic magnetic limiter.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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q5qc~r t!S 124
r t

2

R08
2D 21/2

, ~5!

where

qc~r t!5
I e

I p

r t
2

R08
2 F12S 12

r t
2

a2D g11G21

. ~6!

In the following, we will chooseq'1 at the magnetic axis
and q'5 at the plasma edge (r t5a), as a consequence o
adoptingg53. We also normalize lengths to the minor r
dius (bt51) and choose parameters so thata/R0850.26.10,37

The magnetic structure of the plasma is studied by in
grating the field line equations. Since the equilibrium ma
netic field is axisymmetric, we may set the ignorable coor
natew t5t as a time-like variable~to be used as a field line
parametrization!, and put the field line equations in a Ham
tonian form,14,38

dI
dt

52
]H0

]q
,

dq

dt
5

]H0

]I , ~7!

where (I,q) are angle-action variables of the equilibriu
HamiltonianH0(I) given by

H0~I!52pE dI
q„r t~I!…

. ~8!

These angle-action variables are related to the toro
polar coordinates in the following way:22

I~r t!5 1
4 @12V1~r t!V2~r t!#, ~9!

q~r t ,u t!52 arctanFV1~r t!

V2~r t!
tanS u t

2 D G , ~10!

with

V6~r t!5A162
r t

R08
. ~11!

The EML design which will be considered consists
one or more slices of a resonant helical winding with a
equate mode numbers, located in suitable positions along
torus. The design of the corresponding helical winding ne
to take into account the effects of the toroidal geometry, s
that the helical pitch is not uniform due to the behavior of t
toroidal field component, which is stronger in the inner p
of the torus. We used a winding law to emulate the act
paths followed by magnetic field lines, introducing a tuna
parameterl, such that the variableut5m0(u t1l sinut)
2n0wt , where (m0 ,n0) are mode numbers, is constant alo
a given helical winding. The magnetic field generated by
corresponding helical winding has been obtained analytic
by means of an approximate solution of the Laplace eq
tion, supposing a vacuum field~valid for low-beta plasmas
only!. Proper boundary conditions are imposed, with the h
of a singular current distribution, at the tokamak wallr t

5bt .
The equilibrium HamiltonianH0(I) is integrable, but

the addition of a nonsymmetric perturbation caused by
EML rings ~see Fig. 1! breaks the integrability of the system
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We model the action ofNr EML rings, equally spaced along
the toroidal direction, on the equilibrium magnetic field lin
as a sequence of pulses described by the following nona
nomous Hamiltonian:

H~I,q,t !5H0~I!1eH1~I,q,t ! (
k52`

`

dS t2k
2p

Nr
D .

~12!

Since the perturbing HamiltonianH1(I,q,t) is periodic inq
and in t5w, it can be written as

H1~I,q,t !5 (
m50

2m0

Hm* ~I!ei (mq2n0t), ~13!

where the Fourier componentsHm* (I) are22

Hm* ~I!5 (
m850

2m0

Hm8„r t~I!…•Sm,m8~I!, ~14!

in which

Hm8~r t!52Jm82m0
~m0l!S r t

bt
D m8

, ~15!

Sm,m8~I!5
1

2pE0

2p

ei [m8u t(I,q)2mq]dq. ~16!

Due to the time dependence of the EML Hamiltonian
the form of a sequence of delta functions, it is possible
define discretized variablesIn andqn as the corresponding
values of the action-angle variables just after then-th cross-
ing of a field line with the planewk5tk52pk/Na ,with k
50,1,2, . . . ,Na21.20 In the field line equations, the action
angle variables are continuous through the delta function
times tk5k(2p/Na), k50,61,62, . . . , but their deriva-
tives are not; such that we evaluate the corresponding ju
due to the delta functions. Proceeding in this fashion we
obtain the following area-preserving mapping:22

In115In1e f ~In11 ,qn ,tn!, ~17!

qn115qn1
2p

Nrq~In11!
1eg~In11 ,qn ,tn!, ~18!

tn115tn1
2p

Nr
, ~19!

where

f 52
]H1

]q
, g5

]H1

]I , and e52
I hl

I eR08
. ~20!

It should be remarked, however, that there are other poss
ways to derive a symplectic map from a Hamiltonian syste
like the method described in Ref. 39.

In Fig. 2, we show a Poincare´ section of many orbits
obtained from the above mapping. In order to assure a g
accuracy for the numerical chaotic orbits we have itera
the map equations using extended precision. We useNr54
rings, a perturbation strength ofe51.1731024, EML helical
excitation modes (m0 ,n0)5(5,1) and a current modulation
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 2. Poincare´ cross-section for the EML map:~a! in
terms of the usual polar coordinates;~b! a close-up
view of the plasma edge in terms of angle-action va
ables.
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parameterl50.53, compatible with the chosen EML mod
numbers. We choose these numerical values having in m
a limiter design and parameters taken from the tokam
TCABR,40 and for the equilibrium conditions described
Sec. II@a/R0850.26 andq(a)'5.0], and a limiter current of
the order of 5% of the plasma current (I P570 kA). The
latter value is typical for ergodic limiters but slightly highe
than those used in ergodic divertors, inasmuch as the pe
bation caused by an ergodic limiter~EML! is more localized
in space than for an ergodic divertor.15–19

Figures 2~a! and 2~b! depict the Poincare´ sections in po-
lar and action-angle variables, respectively; the latter be
more convenient to highlight the physics at the tokam
edge. The general features displayed by Fig. 2 are fa
Downloaded 14 Apr 2003 to 133.11.199.17. Redistribution subject to AI
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well-known, since one has a divided phase space compri
of ~i! resonances, characterized by periodic islands wit
pendular shape, which appear due to the breaking of equ
rium flux surfaces with rational safety factors. They corr
spond to Poincare´–Birkhoff periodic orbits of the EML map;
~ii ! KAM tori, corresponding to surviving, yet deformed flu
surfaces for which the safety factor is irrational;~iii ! chaotic
area-filling orbits, which appear due to the homoclinic and
heteroclinic crossings of the invariant manifolds of unsta
Poincare´–Birkhoff periodic orbits.41 Locally chaotic orbits at
the resonance borders may fuse, as the perturbation stre
builds up, and a globally chaotic region merges as a con
quence.

The EML action requires this globally chaotic region
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 3. Unstable manifold of the unstable period-5 o
bit ~shown as a bullet!.
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extend from the outer plasma portion to the tokamak in
wall. This chaotic region is far from being uniform, howeve
for it presents densely intertwined regions: one from wh
the field lines hit the tokamak wall with relatively short co
nection length~white areas in Fig. 2!; and another one wher
the area-filling field lines take a large number of turns bef
eventually hit the tokamak wall. Both regions have perio
islands of stability embedded in them, in such a way tha
set of initial conditions with a positive Lebesgue meas
generates nonchaotic field lines. These orbits do not pla
significant role in the forthcoming discussions.

III. INVARIANT SETS FOR THE EML MAP

Dissipative dynamical systems typically present inva
ant sets named attractors, to which asymptote orbits o
nated from a set of initial conditions called its basin of
traction. Nonattracting chaotic invariant sets, on the ot
hand, have equally important dynamical consequences,
are responsible for phenomena like fractal ba
boundaries,42 transient chaos,43 crises and chaotic
scattering.27 This is particularly important in Hamiltonian, o
area-preserving systems, where there are no attractors.

Consider an unstable periodic orbit embedded in the c
otic region depicted in Fig. 2. Due to the area-preserv
nature of the EML map it will be a saddle orbit, with on
stable and one unstable direction. The stable~unstable! mani-
fold at this point is the set of points which asymptote to t
periodic orbit under the forward~backward! iterations of the
map, as time goes to infinity. The sets are invariant in
sense that the map iterations of points belonging to th
manifolds remain in them for all times. A strange saddle i
nonattracting chaotic invariant set formed by the intersec
of the stable and unstable manifolds of unstable sad
points, and also contains a dense orbit. The stable and
stable manifolds intersect transversally at homoclinic or h
eroclinic points, and these points map one another, such
there is an infinite number of unstable points embedded
the chaotic saddle, with Lebesgue measure zero.28
Downloaded 14 Apr 2003 to 133.11.199.17. Redistribution subject to AI
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Let T(x) represent the two-dimensional EML map~17!,
where x[(I,q). We obtain the stable and unstable ma
folds for an unstable periodic orbit embedded in the chao
region by using the following procedure.44 First, we choose a
period-k unstable saddle orbitx* , i.e., a solution of the equa
tion Tk(x* )5x* . We linearize the map at the pointx* and
evaluate the corresponding eigenvalues and eigenvec
Sincex* is a hyperbolic saddle, the eigenvalues are real
have moduli greater than and less than unity, and are rel
to invariant unstable and stable subspaces, respecti
These subspaces, on the other hand, are tangent to th
stable and stable manifolds atx* .

Then we find a pointxa along the unstable subspace su
that xb5Tk(xa) is less than a small factor~say, 1026) apart
from x* . The pointsxa and xb define a line segmentgu ,
from which we generate a set of partition points$gui

% i 51
M .

The unstable manifold is the closure of the set of succes
images of$gui

% i 51
M under thek-times iterated mapTk(x).

Likewise, the stable manifold is the union of the set of su
cessive preimages of$gsi

% i 51
M under the mappingT2k(x). In

Figs. 3 and 4, for which the parameters were chosen to m
those of Fig. 2, we show the unstable and stable manifo
respectively, of a periodk55 hyperbolic fixed point indi-
cated as a filled circle.

The chaotic saddle is the intersection of Figs. 3 and
and is a Lebesgue measure zero set of points. Points ex
on the chaotic saddle are bound to remain there for all
ward and backward iterations of the map. If a field line sta
off but near the chaotic saddle, it will wander along the ta
estry of unstable orbits in an erratic way, approaching a
trarily close any unstable orbit embedded in the chao
saddle. This makes for a chaotic orbit in the layer produc
by the EML, and Figs. 3 and 4 show the extremely conv
luted structure of the invariant manifolds, with the charact
istic stretching–folding behavior.

Another numerical technique to obtain approximatio
of the invariant manifolds and the associated chaotic sad
is thesprinkler method.45,46We partition the phase portrait in
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 4. Stable manifold of the unstable period-5 orb
~shown as a bullet!.
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the chaotic region of interest~near the tokamak wall! into a
fine grid of points, and iterate each grid pointn times. Once
the resulting field line trajectory reaches the wall for finiten
it is considered lost and the further iterates are not plot
We pass to the next grid point and so on. For sufficien
largen and a grid fine enough, trajectories that do not hit
wall in n iterates can be used to generate an approximatio
the unstable manifold. The chaotic saddle itself can be
proximated by half~or some other fraction! of the iterates
n85xn, with 0,x,1. Now repeat the process for the bac
ward iterates, i.e., iterate each grid point a large numbe
negative times, retaining only the grid points generating
jectories that do not hit the wall aftern backward iterates
These points approximate the stable manifold of the cha
saddle. We have used this method to obtain the unstable
stable manifolds for the EML map, and the results are
tirely similar to the previous method. For a yet more soph
ticated approach, there is the PIM-triple method,47 but it
would not give results appreciably better than those p
sented in Figs. 3 and 4.

We close this section by mentioning that the invaria
manifold structure here described shall be used through
this paper to explain the fractal nature of the deposition p
terns on the tokamak wall, namely the exit basins and
magnetic footprints, to be discussed in the next two sectio

IV. EXIT BASINS FOR THE EML MAP

Suppose we choose at random a magnetic field line w
initial condition located outside the last closed magnetic s
face, i.e., in the chaotic region near the tokamak wall.
can think of it as a trajectory that eventually goes to
tokamak wall by iterating the mapping forward ton→`.
This occurs because the wall atr t5bt is actually an arbitrary
partition in the phase portraits, and the chaotic region in
sects the liner t5bt at a segment of a finite Lebesgue me
sure. In terms of the analogy with chaotic scattering proc
we may consider these field lines asoutgoing trajectories.
Since the EML map is invertible, the same initial conditio
Downloaded 14 Apr 2003 to 133.11.199.17. Redistribution subject to AI
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generate field lines that eventually hit the wall asn→2`
when we iterate the map backwards. Accordingly, we c
sider them asingoing trajectories.

Although this scenario is actually very similar to the o
present in chaotic scattering process in open Hamilton
systems, there are some important differences. First, the
tire picture is static, since time here is just a conveni
parametrization of field lines. Second, in a conventional c
otic scattering process, the ingoing and outgoing regions
usually different, but in the EML case they are the actua
same physical region, namely the tokamak wall. Apart fro
these differences, this analogy can be pushed forward in
mathematical aspects.

While for dissipative systems we speak of basins of
traction to refer to the set of initial conditions which co
verge to a given attractor, it is possible to extend this conc
for including the set of initial conditions which generat
trajectories that escape through a given exit, in an o
Hamiltonian system.27,48 This set is called anexit basin.
When there are two~or more! exits in the system one is
interested in the exit basin boundary, which can be eit
smooth or fractal, as for basins of attraction of dissipat
systems. Fractal boundaries are important dynamical obj
because orbits that start in their vicinity exhibit very comp
cated and unpredictable motion.

Examples of exit basins have been given in the literat
for the Sinai billiard with two holes,27 scattering by three
circular disks and by a He´non–Heiles potential.32 The above-
mentioned analogy with chaotic scattering makes it natu
to extend the exit basin concept to the chaotic region exis
for the EML map~17!. In this case, we divide the tokama
wall into three poloidal sections of equal length, 0<q
,2p/3, 2p/3<q,4p/3, and 4p/3<u,2p, indicated, re-
spectively as regions 1, 2, and 3 in Fig. 2, corresponding
different exits for a chaotic field line.

In order to obtain the exit basins we used a fine grid
6003700 points chosen inside the small rectangle shown
Fig. 2~b!, and which comprises a representative part of
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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chaotic region near the wall. We mark the initial conditio
pixel in dark gray, light gray, or black, depending on wheth
the field line goes to the wall section called region 1, 2, or
respectively, under the forward dynamic. Figure 5 shows
the three exit basins are intertwined in a very complex w
with many similarities with basins of attraction of system
like forced pendula.49 In particular, we argue that the ex
basin boundary in Fig. 5 is fractal.

Before checking the latter statement, it is useful to co
pare Fig. 5 with the same region of Fig. 4, what illustra
the known fact that the basin boundary coincides with
stable manifold of the chaotic saddle. In fact, the boundar
the closure of the stable manifold of a saddle periodic orb42

The convoluted shape of the boundary suggests that it h
smooth component~along the stable manifold! and a fractal
one, transversal to it, and akin to a Cantor set. This is b
evidenced by magnifying Fig. 4, and the sequence of blo
ups shown in Figs. 6 and 7 strongly suggests a self-simila
in the basin striations, a characteristic of fractal curves in
plane.49

FIG. 5. Exit basin for the EML map. The regions in dark gray, light gra
and black correspond to field lines colliding with the tokamak wall at
regions marked 1, 2, and 3, respectively, in Fig. 2. We also show~solid
white line! a segment of the unstable manifold of a fixed point embedde
the chaotic region.

FIG. 6. Blow-up of the rectangle marked in Fig. 5.
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We calculate the uncertainty dimension for the exit ba
boundary of Fig. 4, by using the algorithm extensively us
for basins of attraction.42 Instead of covering the region con
taining the exit boundary with a fine and regular mesh
points we randomly choose initial conditions (I0 ,q0) in this
region and iterate forward the EML map until the corr
sponding field lines hit the wall. Then, we iterate forward t
field lines with slightly displaced initial conditions (I0

1e,q0) and (I02e,q0), for a smalle, also until they col-
lide with the wall. If both displaced initial conditions go t
the same region of the wall that the field line with initi
condition (I0 ,q0) has gone to, then this initial condition i
certain. Otherwise, it will be dubbed uncertain.

This procedure is repeated for a large number of ini
conditionsNT , of which Nu are uncertain, what gives a
estimate of the fraction of uncertain initial conditionsf (e)
'Nu /NT . Considering different values ofe, we expect that
this uncertain fraction scales withe as a power lawf (e)
;ea, wherea is the uncertainty exponent of the exit bas
boundary. Smooth basin boundaries scale linearly withe,
i.e., a51, for the uncertain fraction would be simply a str
of width 2e stranding the basin boundary. Fractal bas
boundaries, on the contrary, have a worse scaling, in tha
expect 0,a,1, i.e., a given improvement in the accura
used in the initial condition determination does not imply
substantial reduction of the uncertain fraction. This has b
calledfinal-state sensitivity, and it turns to be an obstacle t
predictability in dynamical systems even when they are
chaotic.43

Figure 8 depicts the uncertain fractionf (e) vse for more
than three decades of variation. The solid line is a le
squares fit that confirms the power-law scaling characteri
of fractal boundaries, with uncertainty exponenta50.0763
60.0006 for the forward iterations, anda50.0761
60.0007 for the backward iterations. The extreme con
luted nature of the exit basins apparent in Fig. 5 is reflec
in the very small value obtained fora.

Let D0 be the box-counting~or capacity! dimension of
the exit basin boundary. It can be proved thata5D2D0 ,
whereD52 is the phase space dimension.42 Since the basin
boundary is the closure of the stable manifold of the chao

n

FIG. 7. Blow-up of the rectangle marked in Fig. 6.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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saddle, the basin boundary dimension is equal to the st
manifold dimensionD05Ds . Furthermore, since the map
area-preserving, the dimension of the unstable and st
manifolds are the same:Du5Ds . We have computed the
box-counting dimensions of the invariant manifolds~see Fig.
8!, and found thatDs51.923760.0006 andDu51.9239
60.0007. Since the chaotic saddle is the intersection of
stable and unstable manifolds, its dimension is given by

Dcs5Ds1Du2D52~D021!52~D2a21!. ~21!

Considering the above values forDs and Du we haveDcs

51.847660.0009, which is close to the dimension of th
phase space itself.

The convoluted nature of the exit basins can be und
stood as a consequence of the chaotic saddle underlying
dynamics in the chaotic layer near the wall. Let us consid
given partitioning line in the tokamak wall dividing two ad
jacent regions~1, 2, or 3!. Because of the uniqueness pro
erty of the differential field line equations we have that t
chaotic scattering region is also divided in two~or more!
parts, which are the exit basins. If the partitioning li
crosses the stable or unstable manifold of the chaotic sad
the exit basin boundary is fractal. The key point is tha
finite segment of the partitioning line is smoothly deform
before reaching the chaotic saddle. Points lying on its sta
and unstable manifolds remain attached to the chaotic sa
for any time. On the other hand, the segments of the pa
tioning line in between the manifolds become increasin
elongated and converge to the manifold.50

In order to illustrate this process, in Fig. 9 we sho
schematically one unstable fixed point belonging to the c
otic saddle and its corresponding manifolds. The image
the partitioning line under the forward iterations of the EM
map is supposed to cross the stable manifold. The forw
images of this boundary approach the fixed point such
~i! the intersection points between the stable manifold
the boundary converge exponentially fast according to
corresponding eigenvalue of the map linearized at the fi
point ~with modulus less than unity!; ~ii ! the length of the
lobes increase exponentially in order to preserve areas,

FIG. 8. Uncertain fraction for initial conditions randomly chosen in t
chaotic region depicted in Fig. 2. We show least squares fits obtained
forward ~bullets! and backward~diamonds! iterations of the EML map.
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the lobes tend to follow the unstable manifold.50 The union
of all images of the boundary forms a curve that oscilla
wildly as it approaches the unstable fixed point. The net
fect is that segments of the partitioning line will accumula
on the filaments of the unstable manifold.

The same is true for the backward images of the pa
tioning line. Segments of it lying between the filaments
the unstable manifold will be transported due to the ba
ward dynamics to the scattering region, and they will ac
mulate asymptotically on the filaments of the stable ma
fold. Thus, the boundary of the exit basins contains the sta
and unstable manifolds of the chaotic saddle, or at lea
part of them. It should be remarked that it is necessary
the exit boundary intersects the manifold so as to hav
fractal component. The lobes approaching the fixed po
smoothly extend along some manifold, so representing
smooth~nonfractal! component of the exit boundary. On th
other hand, we claim that the fractal component of the e
basin boundary is responsible for the nonuniformity of t
heat and particle loadings on the tokamak wall.

V. ESCAPE PATTERNS AND MAGNETIC FOOTPRINTS

One of the main consequences of nonattracting cha
sets in a chaotic scattering problem is that an orbit m
spend a long time in the vicinity of the chaotic saddle befo
escaping. Usually, for nonattracting chaotic systems,
number of orbits that remain in the scattering region afte
time n decreases exponentially. In fact, the system typica
spends a transient timen0 before any orbit escapes. So th
number of orbits that remain after a timen is

N~n!5N 0e2 (n2n0)/t, ~22!

whereN0 is the total number of initial orbits and (1/t) is the
exponential decay rate.

We have already reported this property for the EML m
in a previous work dealing with the number of field lines lo
due to collisions with the wall.23 The escape plot of Fig. 10
depicts in grayscale the number of toroidal turns~escape
times! it takes for a field line to reach the tokamak wall. Th

orFIG. 9. Schematic picture of the accumulation of exit basin filaments at
unstable manifold of a saddle point.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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resulting figure is very similar to the exit basin structu
shown in Fig. 5. In particular, those regions from where
field lines rapidly escape coincide with regions where
boundaries are smooth. This similarity indicates that the
cape plot and the exit basin plot might have the same fra
properties, even though, in this situation, we have ma
more basins involved. In fact, we have in Fig. 10 an infin
number of basins, each one linked to a specificescape time.

In order to explore this similarity in more depth, let u
consider a field line connecting two points on the wall. Th
field line enters into the chaotic region and, after some err
turns around the torus it returns back to the wall. Figure
shows the dependence of the escape time on the initial
loidal angle (q i) for a fixed value ofI corresponding to the
wall position. The number of toroidal turns it takes for a fie
line to return back to the wall as a function of the initi
poloidal angle shows sharp peaks with a Cantor-like str

FIG. 10. Escape time~measured in number of toroidal turns! for initial
conditions randomly chosen in Fig. 2. The darker is the pixel the large
the corresponding time it takes to the field line to reach the wall.
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ture. This results from the intersection of the stable manifo
which we have shown to have a fractal transverse com
nent, and the smooth line of initial poloidal angles. In ord
to verify that, we compute the box-counting dimension of t
peaked curve in Fig. 11, through the uncertainty dimens
method described in the previous section.

We choose at random a field line with initial poloid
angleq i on the wall, and two other field lines with angle
q i2e and q i1e. We determine the number of turns ea
field line takes to return back to the wall. If these numbers
turns are equal we label the angleq i ase-certain, and uncer-
tain otherwise. The uncertain fraction of initial poloid
angles is expected to scale withe in a power-law fashion,
with uncertainty exponentã5DL2DF , whereDL51 is the
dimension of the line of initial poloidal angles andDF is the
box-counting dimension of the Cantor-like set shown in t
peaked curve in Fig. 11. In Fig. 12, we showf (e) as a
function of e, from which the uncertainty exponent isa
50.077460.0005, and the corresponding box-counting

is

FIG. 12. Uncertain fraction for initial conditions randomly chosen in F
11. The solid line corresponds to a least squares fit.
-

n.
FIG. 11. Escape time versus initial po
loidal angle,q i , for the situation de-
picted in Fig. 10. Two magnifications
of the fractal peak structure are show
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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FIG. 13. Field line final poloidal angle
~at the tokamak wall! versusinitial po-
loidal angle for the situation depicted
in Fig. 10. A magnification of the frac-
tal structure in shown.
an
s

an
ka
ti
th

in
ll
a
e

-lik
o
a
-
rre
ro
a
a

.

r
s

e
th

n
the

as
un-
-

d:

at

n-
er
he
en
ree

le

n
on-

es

the
te-
is

g.
he
mension for the fractal curve isDF50.922660.0005. Since
this fractal curve is the intersection between the stable m
fold and the one-dimensional line of initial poloidal angle
its box-counting dimension is given byDF5Ds1DL2D,
hence Ds5DF1D2DL51.922660.0005, is in a good
agreement with the result obtained in Sec. IV.

Field lines which take a long time to escape play
important role for heat and particle deposition on the to
mak wall. Such field lines come from the core of the chao
region and can thus bring energetic plasma particles to
wall. These field lines enter into the chaotic region com
from a Cantor-like set of initial poloidal angles on the wa
and they return back to the wall in a Cantor-like set of fin
poloidal angles as well. Therefore, we expect that the h
and particle deposition patterns also present a Cantor
structure if the cross-field diffusion of particles does n
fuzzy them so much. Those deposition patterns are usu
known asmagnetic footprints, characterized by very irregu
lar stripped patterns. On the other hand, field lines co
sponding to windows of constant escape time in Fig. 11 p
duce regular deposition patterns when they reach the w
This is shown by Fig. 13, where we depict the final poloid
angleq f ~when a field line has collided with the wall! as a
function of the initial poloidal angle,q i , for initial condi-
tions chosen inside a magnified box taken from Fig. 11.

VI. WADA PROPERTY OF THE EXIT BASINS

Consider an exit basinB, like those represented in Fig
5. A point p is a boundary point of the basinB if every open
neighborhood ofp intersects the basinB and at least anothe
basin. The basin boundary is the set of all boundary point
that basin. Furthermore, the boundary pointp is also aWada
point if every open neighborhood ofp intersects at least thre
different basins. A basin boundary is said to possess
Wada propertyif every boundary point ofB is a Wada point,
such that the boundary of such a basin is aWada basin
Downloaded 14 Apr 2003 to 133.11.199.17. Redistribution subject to AI
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boundary.45 When two or more exit basins exist in a give
system, it may well happen that these basins present
Wada property.52,53

A strong condition that indicates if a basin boundary h
the Wada property is that the unstable manifold of an
stable periodic pointp must intersect every basin. This con
dition is necessary, but not sufficient.At least oneof the
complementary conditions listed below has to be satisfie51

~i! The stable manifold of the saddle pointp must be dense in
the boundary of the three regions;~ii ! the periodic orbitp
must be the only accessible orbit from the basinB. Other-
wise, every unstable manifold of other periodic orbits th
are accessible fromB must intersect all basins;~iii ! the pe-
riodic orbit p must generate a basin cell.

The direct numerical verification of these compleme
tary conditions is rather difficult, so that we used anoth
way of showing the Wada property for the exit basins of t
EML map,48 and which consists on checking that every op
neighborhood of a boundary point intersects at least th
different basins. Let us take a pointp on the exit boundary
for the EML map, which actually coincides with the stab
manifold of some periodic point which contains the pointp.
Around this point we take a small dropletD of radiuse, and
obtain itsi -th forward imageDi5T i(D) under the map~40!.
When i→` this image is a convoluted and very thin ribbo
extending along the unstable manifold. The droplet is a c
nected set, thus its images underT(x) are similarly con-
nected. Consider now that there is a finite numberm such
thatDm intersects all the exit basins. BecauseDm maps toD
under them backward iterations, all the basin structur
present inDm are mapped intoD. Since we did not make any
particular assumption about the radius of the droplet, and
point p can be anywhere on the stable manifold, this sta
ment is valid for anye, such that the entire stable manifold
a Wada basin boundary.

The forward dynamics of a droplet is illustrated in Fi
14. Observe how the image of the droplet looks like t
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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unstable manifold of an unstable periodic orbit embedded
the chaotic region, as schematically illustrated by Fig. 7~see
also Fig. 3!. Since the unstable manifold crosses all exit b
sins, as indicated in Fig. 5 by a white line, a droplet of a
size will have intersections with all exit basins. On the ba
of the above reasoning, we say that the exit basins sh
have the Wada property, and possess a yet more complic
structure than ordinary fractal objects, which partially e
plains the very small values found for the uncertainty ex
nent.

We point out possible practical consequences of
Wada property: the deposition patterns on the tokamak w
may reveal a complicated mixing between footprints of h
and cold particles of the plasma. This can be of interest,
example, if the plasma is subjected to a noninductive cur
drive by beam injection.

VII. CONCLUSIONS

We have studied the action of a set of ergodic magn
limiters ~EML! from the point of view of Hamiltonian cha
otic scattering processes in open systems. We have paid
cial attention to the structure of exit basins and its relat
with invariant sets such as stable and unstable manifolds
chaotic saddles. In particular, the exit basin boundaries
given by the stable manifolds of periodic points embedded
the chaotic layer near the tokamak wall. We have compu
the fractal dimensions of some relevant invariant sets and
exit basin boundaries.

The escape pattern of chaotic magnetic field lines gi
us an accurate picture of the process whereby field lines
lost due to collisions with the tokamak wall. It was studi
by means of escape plots, which presented the same fr
structure as the exit basins themselves. This was noticed
lyzing how large field lines connecting wall to wall ar
Those field lines, which spend a large number of toroi
turns before hitting back the wall, come from a Cantor-li
set of initial poloidal angles on the wall. This Cantor-like s
is the intersection of the stable manifold and a curve of ini
poloidal angles. The set of final poloidal angles, connect
wall to wall through field lines coming from deep chaot

FIG. 14. The forward image of a small droplet~identified as a bullet! after
20 iterations of the EML map, for the same parameters as in Fig. 2.
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regions, forms a stripped-like structure on the tokamak w
called a magnetic footprint, with the same Cantor-like stru
ture as the set of initial poloidal angles for long chaotic fie
lines. We have observed even the more restrictive W
property for exit basins, which puts into evidence the ph
nomenon of final-state sensitivity, extensively investiga
for dissipative systems.

In our study we aimed to clarify the mechanism leadi
to the experimentally observed nonuniformity of th
plasma–wall interactions due to the formation of the chao
layer by an EML. The homoclinic tangle formed by stab
and unstable manifolds of unstable periodic orbits embed
in the chaotic layer creates channels through which the fi
line escape is considerably faster. The resulting fractal st
ture of the magnetic footprints suggest that, according to
experimental findings, the heat and particle loadings on
tokamak wall are not uniform. Another physical consequen
is the non-Gaussian nature of the diffusive process, lead
to superdiffusive transport influenced by the escape chann
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