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Limit of small exits in open Hamiltonian systems
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The nature of open Hamiltonian systems is analyzed, when the size of the exits decreases and tends to zero.
Fractal basins appear typically in open Hamiltonian systems, but we claim that in the limit of small exits, the
invariant sets tend to fill up the whole phase space with the strong consequence that a new kind of basin
appears, where the unpredictability grows indefinitely. This means that for finite, arbitrarily small accuracy, we
can finduncertain basinswhere any information about the future of the system is lost. This total indetermin-
ism had only been reported in dissipative systems, in particular in the so-called intermingled riddled basins, as
well as in the riddledlike basins. We show that this peculiar, behavior is a general feature of open Hamiltonian
systems.
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[. INTRODUCTION invariant sets of the system, that is, the chaotic saddle and its
stable and unstable manifolds, tend to fill up physically the
In the past few years a very particular property related tovhole phase spacé direct consequence of this result is that
fractal basins has been shown in many dissipative system#)e basins suffer a total fractalization, becoming a new kind
In some situations, and with a special symmetry, it is posof fractal basins that we have namedcertain basingor its
sible to find an attractor whose basin of attraction has thélramatic consequences on predictability. Furthermore, our
property that every point in the basin has pieces of anothgiesult fully explains the tendency of the fractal dimension of
attractor’s basin arbitrarily nearby. This type of basin isthe three invariant sets to the dimension of phase space, an
calledriddled basin because in some sense it is riddled withidea first conjectured in Ref11]. Uncertain basins share
holes of another basin. When all basins in phase space aYéth riddled and intermingled basins the main property of
riddled by the rest, the basins are calietermingled This ~ finding inside a ball of radiusy aroundany pointof the
remarkable result put in evidence in the context of dissipaPasin, points that belong to other basins, besharbitrarily
tive systems the possibility to find a degree of uncertaintysmall. It is interesting to analyze the modified logistic map
unknown at the moment, leading to extensive studies of thi§roposed in Ref.6], as a precursor of our work. Thus, in this
subject, both theoretical and experimeritat-4]. paper we claim that it is a general property shared by open
Furthermore, several reports have shown that in certaiflamiltonian systems to possess an inherent uncertainty
circumstances, fractal basins are mixed in such a way thapuch stronger than expected, which in the limit of small
from a practical point of view they resemble riddled basins eXits makes a totally deterministic system become in practice
even if they do not verify all their mathematical properties.@ hondeterministic process, following the terminology used
Different terminology has been used depending on the chaft Ref.[12].
acteristics of these sets, some of them beiddledlike ba-
s_ins [5,6], _practical riddled _basins [7_], partially_ n_early Il DEPENDENCE OE THE EXIT BASINS ON THE SIZE
riddled basing[8], or pseudoriddledasing 9], to cite just a OF THE EXITS
few. However, none of these approaches has analyzed yet the
possibility of finding a similar phenomenon in Hamiltonian  In order to present the real implications of this kind of
systems, and our work is focused in this direction. basins, we will first show evidence of its existence in a para-
When a test particle interacts with an open Hamiltoniandigmatic hyperbolic system, and finally the same analysis
system, it spends some time in a bounded area called theill be developed for a nonhyperbolic system. In hyperbolic
scattering regionbefore crossing one of the existing exits chaotic scattering, there are no Kolmogorov-Arnold-Moser
and finally escaping to infinitysee Ref[10] for a thorough  (KAM) surfaces of quasiperiodic orbits, and all the periodic
study of this phenomenon, callezhaotic scattering The  orbits are unstable. Nonetheless, in nonhyperbolic systems
orbits that belong to theonattracting chaotic invariant set KAM surfaces are mixed with chaotic regions in the phase
also known as thehaotic saddleremain inside this region space. The existence or not of these surfaces brings impor-
indefinitely, and the Lebesgue measure of this set is zero. Agint consequences to the dynamics of the system. In fact, in
we are working with Hamiltonian systems, we cannot talka hyperbolic environment, the survival probability of a test
about basins of attraction, but we can define the exit basingarticle in the scattering region decays exponentially with
as the sets of initial conditions that lead to a certain exittime[i.e., P(E,t)~e Y7, wherer is theaverage decay time
Using this definition, we have studied in detail the evolutionor average transient lifetimie while stickiness to KAM sur-
of exit basins in open Hamiltonian systems when the size ofaces should make this decay algebrgR(E,t)~t ?] in
the exits decreases and tends to zero. And we have obtainednhyperbolic systems(see Ref. [13], and references
the following striking resultin the limit of small exits, the therein.
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FIG. 2. Exit basin diagram for the three hard disk configuration,
FIG. 1. Diagram of the three hard disk configuration. The onlywith 400X 400 initial conditions X, #) andw=0.2. The initial con-
parameter that influences the systewi®, wherew represents the ditions are plotted black if the orbit escapes through exit 1, gray for
exit size andR the radius of the disks. exit 2, and white for exit 3.

A. The hyperbolic system way. Figure 2 shows the exit basin diagram for the system,

The model we use for the hyperbolic case is a simplevhenw=0.2. The color code we have chosen to plot this
two-dimensional billiard consisting of three hard disks ofexit basin diagram is black for exit 1, gray for exit 2, and
radiusR, whose centers are on the vertices of a triangle ofvhite for exit 3. The initial conditions arg/=0, x=
sideL>2R (see Fig. 1 This configuration defines its scat- (—w/2w/2), and#=(0,7), where # is the shooting angle
tering region as the bounded area between the disks and th@d is measured from the positixexis in the counterclock-
triangle formed by their centers, and it has three exits of sizevise sense. The initial conditions must be chosen carefully,
w=L—2R. Atypical test particle moves at constant speed inbecause our results do not apply to test particles thrown from
the scattering region, suffering elastic collisions with all theoutside that do not enter the scattering region, since they do
three disks, until it crosses one of the three exits of size not even have chaotic behavior or an associated basin. Fur-
and escapes to infinity. This system was first studied in Refthermore, as this diagram is two dimensional and phase
[14], extensively analyzed in the classical, semiclassical, andpace is three dimensional, our choice of initial conditions
guantum regimes in Reff15] and examined in the context of should include as many orbits as possible. In fact, it is easy
microscopic deterministic diffusion in Refgl6,17. A nice  to realize that our selection includes all the orbits that escape
review of the properties of its dynamics can be found in Refthrough exit 1(in the opposite sense, but the system is time
[18]. This model is one of the simplest and most generateversiblg and due to the triangular symmetry of the system,
open Hamiltonian systems, and is a paradigm for low-we can say that these initial conditions represent all orbits
dimensional chaotic scattering. For these reasons and for ttirat sooner or later escape from the system. Only the chaotic
sake of universality we use it here. Furthermore, in generataddle and its unstable manifold are not included in this pic-
terms, it is extremely complicated to verify rigorously the ture, and this is because they are formed by the orbits that
hyperbolicity of a system, and for this case it was done byremain fort— —« inside the scattering region and therefore
Bunimovich and Sinaf19]. We have labeled the lower exit are not represented by the orbits that enter this bounded re-
as exit 1, the right exit as exit 2, and the left exit as exit 3.gion. However, this fact does not modify our results because
Due to the triangular geometry of the system, it is importantheir Lebesgue measure is zero. In the exit basin diagram we
to remark that the only parameter that might influence itscan see that the system is clearly fractal, as the basin bound-
nature isw/R. For this reason, we have fixed the radRs aries are a nonsmooth mixture of all three colors. We have
=1 and have varied the exit sixeas the control parameter computed its fractality calculating the uncertainty dimension
to analyze the system. Note that other parameters such as tH#0], and the result wasl=2.62+0.02 for w=0.2 (where
velocity of the test particle will not influence our results. We d=2 means nonfractality, and=3 means total fractaliza-
have situated the origin of coordinates in the middle pointtion). Moreover, these basins possess the property of Wada
between the lower disks, that is, in the center of exit 1.  [21], which means that any initial condition that is on the

The exit basin diagram of an open Hamiltonian systemboundary of one exit basin is simultaneously on the bound-
gives us information about its dynamical behavior. In orderary of all the other exit basins. However, it is fundamental to
to construct it for our system, we must follow a fine grid of remark that there are large smooth black, gray, and white
initial conditions until they escape from the scattering regionregions that belong to the interior of each basin, and contain
The initial conditions that lead to exit 1 will belong to the no uncertainties over which exit is reached. We can say that
exit 1 basin, while exits 2 and 3 are constructed in a similathose areas of phase space saée[12].
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FIG. 3. (a) Evolution of the exit basin diagram for the three hard  F1G- 4. (&) Evolution of the exit basin diagram for the hten-
disk configuration, when the exit size is varied. The initial con- Heiles system, when the ener@yis varied. The initial conditions
ditions are g=0y=0) and6#=(0,). Exit 1 is plotted black, exit &€ ®=0,6=0), y=(=0.5,1), andE=(E.=1/6=0.1666,0.25).
2 is plotted gray, and exit 3 is plotted whit@) Angular semiwidth ~ EXit 1 is plotted black, exit 2 is plotted dark gray, and exit 3 is
of the largest open set of initial conditions for small exit sipes ~ Plotted pale gray. The KAM surface of quasiperiodic orbits is plot-

ted white. (b) Vertical semiwidth of the two largest open sets of

Fractal basins are found both in Hamiltonian and dissipai”itial conditions for small values of the enerdﬁ_( The dark dots
tive systems, and they are composed of open sets separat&gresent the black open set around 0.87, while the pale dots
by nonsmooth boundaries. Only when the distance betwedigPresent the black set arougd-0.98 [almost unrecognizable in
our initial condition and the basin boundary is shorter than al.
the precision of our experiment, will we have trouble trying
to predict its future behavior. In order to study the evolution
of the unpredictability associated with the system when th
exit sizew is arbitrarily reduced, we have plotted in FigaB
the dependence of the exit basinswnThe test particle is 132002y 1020 \,2 2,_ 1,3
always launched fromx=0, y=0), and the range of shoot- H= 200y ) +2(CHy ) #XTy =5y (1)
ing angles is#=(0,7). In fact, this corresponds to a “1D
slice” of initial conditions (the vertical linex=0 in Fig. 2,

and it is plotted for a range of exit sizes=(0,0.2). We can ; .
clearly see that the fractal boundaries grow indefinitelyboundEd’ but for energies above this threshold value, the

while the open sets of the three different basins shrink an%{aj_ec_tques may escape fr_om the scattering region and goon
. . S . o infinity through three different exits. It was already evi-
tend to disappear in the limit af— 0. However, in order to

give a more clear evidence of this fact, we have compute(?enced in Refl23] that the dimension of all its invariant sets
for low values ofw the angular semiwidtiA 6/2 of the black ends indeed to its maximum valyee., 3 in a 3D phase

. . - space whenE—E, for E>E,, and it was also shown that
open set that belongs to basin 1 and is aro@mdr/2 in Fig. for E<0.21 a KAM torus exists. The quasiperiodic orbits

3(a). We have chosen this safe region because it becomes f(ﬂwrat belona to a KAM torus never escape from the svstem
w<0.1 the biggest open set in phase space. This is done | 9 P Y '

Fig. 3b), and it clearly confirms that the size of the biggestar{‘thongh they have energy to do so. In open Hamiltonian

safe, connected open set of initial conditions in phase spa Sﬁ/stems where the dynamics is defined by a certain potential,
' P ; P PaGRe size of the exits depends directly on the energy, and vary-
tends to zero whenv tends to zero. Obviously, the same

. . .ng this value we can easily contral. These exits appear
result applies for the rest of open sets in phase space, whic )
: when the energy reaches the escape engggyin Fig. 4(a)

are smaller than this one. . ) A
we have plotted the evolution of the exit basin diagram when
the energyE is varied. The three different exit basins have
been plotted in black, dark, gray and pale gray, while white

Most Hamiltonian systems are nonhyperbolic, and for thishas been used for the orbits belonging to the KAM torus. The
reason we have developed a similar analysis for a nonhypeinitial conditions are x=0, #=0) andy=(—0.5,1). The

bolic system, the Heon-Heiles system, which has become, range of energy values B=(E.=1/6,0.25).

since it was first proposed in 19622], a paradigm of simple
Hamiltonian systems with very complicated dynamics. It has
% triangular symmetry, and it is written as

This Hamiltonian has been extensively studied for the
range of energy values above the escape eng&gyl/6
=0.166 ..., in Ref. [23]. When E<1/6 all orbits are

B. The nonhyperbolic system
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Figure 4b) shows the size of the two biggest open sets of !
initial conditions when the exit size tends to zémour case
when E—E, for E>E, backwards The wide one is cen-  Zou
tered around/=0.87 in Fig. 4a), and clearly disappears be-
fore reaching the escape energy, following the behavior of
most of the safe regions. The narrow one survives for values
of the energy much closer #6,=1/6, although it is hardly 1
recognizable aroung=0.98. 08

It is clear that we have obtained very similar results to 2 0S¢
those shown in Figs.(8) and 3b) for the hyperbolic model. = 04F
All open sets inside the basins indeed shrink and tend tc **[
disappear, and therefore these basins become complete
fractalized and mixed in the limit of small exits. However, a .
remarkable difference between both kinds of systems has g
been detected. The KAM torus survives to the abrupt bifur-_- e[
cation that takes place when the energy crosses the value = o4}
the escape energy in the decreasing sense and the exits clos 02} 1 §
The reason is that these orbits, as they cannot leave the toru 9 00 1000 S0 °
do not even realize that the exits have disappeared, and in T
some sense it is possible to say that the torus is independent F|G. 5. Fraction of remaining orbits, /N, in a function of the
of the chaotic scattering phenomenon. In fact, the KAMtimet for the three-disk configuratiof®—(c) and the Haon-Heiles
torus takes part of the chaotic saddle, as its orbits remaisystem (d)—(f). For the three-disk configuration:(@ w
inside the scattering region for bath>~ andt— —«. Con-  =1,0.05,0.02,0.005,0.00rom left to righy. (b) w=0.02; (c) w
sequently, the KAM torus remains “alive” when the exits =0.005. For the Heon-Heiles systemi{d) E=0.215 (without
become arbitrarily small, and therefore the fractalized basin&AM torus, in the hyperbolic regime E=0.19 (with KAM torus,
only fill up the phase space that is not occupied by the KAMin the nonhyperbolic regime(e) E=0.4; (f) E=0.215.
surfaces.
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behavior. The striking fact is that for hyperbolic systems this
total uncertaintyis applied to all points in phase spaceéor
nonhyperbolic systems, however, if we choose an initial con-
The computational evidence obtained for hyperbolic andlition inside a KAM torus, we know that its future behavior
nonhyperbolic systems leads us to the main result of ouwill be a bounded orbit inside the scattering region, and the
work: For all points P in the escaping phase space of ansame stands for the initial conditions nearby. Then, we can
open Hamiltonian system, and for ail>0 (precision of the still affirm that arbitrarily close to any initial condition that
experiment), there exists a critical size of the exiis>\0 belongs to one basin, there are initial conditions that belong
such that for all wsw,; we can find a point P in a ball  to other basins, but we cannot talk about absolute uncertainty
centered in P and radiug that belongs to a different basin in nonhyperbolic systems, as the KAM tori remain then as
than P[see Fig. 2b)]. We nameescaping phase spathe  deterministic islandsurrounded by aandom sea
whole phase space for hyperbolic systems, and the phase As it has just been commented, the existence of uncertain
space not occupied by KAM tori for nonhyperbolic systems.basins incapacitates us from knowing in advance the exit
We propose that this result is applicable for all kinds of openchosen by the particle to escape, that is, the exit basin dia-
Hamiltonian systems, even those in which the size of thggram becomes a useless tool. However, this does not mean
exits w is not an available parametéuch as the ones de- that there are no other methods for studying dynamical sys-
fined by potentials, for exampleThe reason is that there is tems that can still give us some information about the nature
always a direct relation between the size of the ewitand  of the orbits. As a consequence of the previous discussion, it
the main parameter in those systems, the engrgy is in the context of predictability of the final state of the
All numerical or real experiments have an unavoidablesystem that we propose that uncertain basins imply total in-
finite precision associated to the choice of initial conditions.determinism, and that in essence the system becomes ran-
New techniques or more developed instruments might indom. For example, the different decay of the survival prob-
crease this precision, but will never make an initial conditionability in hyperbolic and nonhyperbolic systems should be
infinitely accurate. This fact was emphasized in RE#s6],  maintained in the limit of small exits. In order to show this
where riddledlike basins were presented in the context ofact, we have studied the evolution of the survival probabil-
transient chaos and permanent chaos, respectively. For thiy of both models when the size of the exits tends to zero. In
reason, given a finité, arbitrarily small, we are sure that if Fig. 5, we have plotted the evolution of the fraction of re-
the size of the exits is sufficiently small, all the open setsmaining orbits in the scattering regioN,;/No with time,
with points of a certain basifi.e., the safe regionwill be  whereN; is the number of remaining orbits after a tirnand
smaller than this threshold value. Then, we will not be ableN, is the number of initial orbits. The initial conditions are
to ascertain which basin any initial condition belongs to, andhe barycenter of the triangle amd= (0,7r) for the three-disk
therefore we will not have any information about its future configuration, andx=0, =0, andy=(—0.5,1) for the

Ill. EXISTENCE AND NATURE OF UNCERTAIN BASINS
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Henon-Heiles systen{see Fig. 4a)]. Figure %a) shows exits will remain in the system forever as boundary points,
N;/Ny for w=1, 0.05, 0.02, 0.005, and 0.001 for the three-constituting the stable manifold of the chaotic saddle. The
disk configuration, and Fig.(B) shows the same quantity for escape time functionf a set of initial conditions is defined
E=0.215 and 0.19 for the Hwn-Heiles system. In both as the time that each initial condition takes to escape from
figuresN; /Ny is plotted in a logarithmic scale, so the expo- the system. In the interior of every open set belonging to the
nential approximationgdashed lingsare straight lines. In  exit basin diagram of a generic open Hamiltonian system, the
Fig. 5(a) we can clearly see that the exponential approximaescape time function is continuous and has no singularities,
tion that should be expected for a hyperbolic system is veryhile it tends to infinity in its boundary. In some sense, the
accurate, no matter how small the exits are. In Figl) 5ve  orbits that belong to these sets escak together and
have plotted the same curve for the né@-Heiles system, through the same exit, as we are sure that the neighborhood
and two different values of the energy. AB=0.215 there of each orbit leads to the same exit. The size of these sets
are no KAM tori[see Fig. 48)], and therefore we are in the obviously depends on the size of the exits. If the exits de-
hyperbolic regime of the Hen-Heiles Hamiltonian. For this crease, these open sets will also shrink, since less and less
reason, the exponential approximation is also very accurat@rbits will be able to pass through the exits a group For
However, forE=0.19, there is a KAM torus that fills the this reason, in the limit of small exits the open sets in each
14.5% of the initial conditions used to paint these curveshpasin tend to have zero volume. Intuitively, we could say that
and the exponential approximation fits until only 3% of thein the limit only one orbit can escape at a time, thefe
escaping orbits remain in the system. Note that to paint thisegionshave become points, and therefore all basins, totally
curve, the quasiperiodic orbits of the KAM torus were notfractalized, tend to coincide with their own boundary. Then,
included inNg. Furthermore, it is important to say that the the number of orbits that remain in the system forever will
exponential approximation d=0.19 was done taking into increase indefinitely, making the stable manifold of the in-
account onlyt<250, as it is obvious that the rest does notvariant set tend to fill up the whole phase space. The unstable
follow it at all. The results obtained fdE=0.19 mean that manifold will behave in the same way, because both mani-
most of the orbits are not sensible to the existence of théolds are symmetric, and also their intersection, which is the
KAM torus, and only the orbits that start very close to it nonattracting chaotic set.
suffer the expectedtickinesghat makes them escape with a  Moreover, the tendency of the fractal dimension of the
slower rate than the exponential. It is remarkable that thignvariant sets to the dimension of phase space when the exits
new rate does not fit very accurately the expected algebraiend to zero is clearly explained as a corollary of our results.
decay, and therefore we suppose that what we have in thiBhe uncertaintydimension 20] is calculated as a function of
case is a complicated mixture of both phenomena. the variation of the number afncertain orbitswhen the grid

For high values of the size of the exits, that is, for high of initial conditions is changed. The uncertain orbits are de-
andE [see Figs. f) and Fe)], the existence of big open sets fined as the orbits that tend to one exit while their closest
of initial conditions makes the curves start with an irregularneighbors tend to different exits. If the size of all open sets in
pattern formed by several components, while the exponentidhe basin diagram goes to zero, all points in the escaping
approximation is only suitable for high timéfer a thorough  phase space become uncertain at all scales, making the di-
explanation of this phenomenon, see R&3]). However, mension of the stable manifold of the chaotic saddle tend to
when the exits get smaller and smaller, the open sets shririks maximum value, which coincides with that of the phase
and in consequence the survival probabilities tend to fit thepace. This behavior must also be shown by the other two
exponential approximation very accurately even for smalinvariant sets, due to the relationship that exists among them.
times. This is shown in Figs. (§ and 5f), where w  The uncertainty exponert is defined asr=D —d, D being
=0.005 andE=0.215, respectively. According to these the phase space dimension ahthe uncertainty dimension.
curves, we might affirm that the accuracy of the exponentiaFor this reason, the uncertainty exponendf an uncertain
approximation for small times is a measure of the fractalizabasin should tend to zero in the limit of small exits.
tion of phase space, and it gives us an idea of how determin- Finally, in order to give visual evidence of the uncertain
istic systems lose in the limit some of their particular char-basins discussed in this paper, we have plotted them for both
acteristics, to obtain a probabilisticlike nature. examples, the hyperbolic and the nonhyperbolic system. Fig-

An important goal of this paper is to explain, from a ure §a) shows the exit basin diagram for the three hard disk
qualitative point of view, the consequences of the existenceonfiguration, for a very low value of the exit size in
of uncertain basins in a Hamiltonian system. In this contextparticular,w=0.001. As expected, the basins are far worse
the total fractalization of phase space presented in this worklefined than in Fig. 2, where=0.2, and no open sets are
can be explained as follows. When a set of initial conditionsnow recognizable. The picture is a mixture of dots that be-
hits a hard diskor the wall of a potentia it is divided in  long to all three basins. In order to show that all three basins
several sets of orbits, some escape, and some remain insitend to fill up the whole phase space at all scales, we have
the scattering region. After the next hit tearvival sets are  plotted in Figs. @), 6(c), and &d) basin 1, basin 2, and
again divided in smaller groups, some of them escaping andasin 3, respectively. They show clearly the unstoppable
some of them hitting another disk. This situation is repeatedjrowth of the fractal region, as well as the tendency of each
ad eternumand is responsible for the existence of a Cantorbasin to become its own boundary. Each pixel in Fig. 6 has a
set of orbits that never escape from the system. In fact, theertical size ofA #=7/200=0.016, and according to Fig.
orbits that separate the sets that escape through two differeBth), the biggest open set in phase space will have a vertical
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_FIG. 6 (a) Exit ba_si_n_ diagrar_n_ for the three hard disk co_nfigu- FIG. 7. (@) Exit basin diagram for the Hen-Heiles system,
ration, with 200< 200 |n|'_[|al conditions , 6) andyv:Q.001. Exitl  with 200x 200 initial conditions &,y) andE=0.3. Exit 1 is plotted
is plotted black, exit 2 is plotted gray, and exit 3 is plotted white. black, exit 2 is plotted dark gray, exit 3 is plotted pale gray, and the

(b), (¢), and (d) depict exit basins 1, 2, and 3, respectively. All 5hits not allowed for this value of the energy are plotted wili.
three basins tend to coincide with their own boundaries and fill URc), and(d) Exit basins 1, 2, and 3, respectively, fir=0.1675.

the phase space when the exit sizelecreases. The KAM torus that exists foE<0.21 is plotted gray. All three
basins tend to coincide with their own boundaries and fill up the

that all open sets are smaller than one pixel. If the resolutionng tends td,=0.1666.

of this picture coincided with our experimental precision,

this exit basin diagram would be useless to predict the future ,
of the system. We would only know that every initial condi- already commented, we can always find a threshold value for

tion has a probability 1/3 to reach each exit. the size of t.he gxits under Wh.iCh we are sure that the open

The fractal dimension calculated as the uncertainty disets(or the interioy of the basins are smaller than the un-
mension for this value ofv=0.001 isd=2.998+ 0.005, and avoidable precision of the experiment. For that reason, for a
therefore the uncertainty exponent=D—d=0.002 finite, arbitrarily small accuracy, there is no physical way to
+0.005, whereD is the dimension of phase space (3 in ourdistinguish the shrinking open sets of uncertain basins from
casé. In Refs.[5,6] it is emphasized that the uncertainty the totally disconnected points in riddled basins. In fact, we
exponenta~0 for riddled basins, and several reported val-have shown that the uncertainty dimension of uncertain ba-
ues aree=0.017[2], «=0.003[24], and «=0.0089[25]. sins tends to that of phase spdoethe uncertainty exponent

In the same way, Figs.(B), 7(c), and 7d) show basins 1, tends to zerh which is the value that would be measured in
2, and 3, respectively, for the 'Hen-Heiles system, for a a typical riddled basin. On the other hand, there is a basic
value of the energye=0.1675 (very close to the escape mathematical difference between both concepts. It is the fact
energyE=0.1666). We have plotted in Fig(& the same that, formally speaking, the uncertain basins do not coincide
exit basins but with a higher enerdy=0.3, and if we com-  exactly with their own boundary, as their open sets are in-
pare this picture with the other three, we can observe that thgeed arbitrarily small but of positive size. In the limit of
safe regions that can be easily recognizet@rhave clearly =0 (no exity the size of these sets is strictly 0, but then
disappeared irb)—(d). As it was shown in Fig. 6, there are pasins 1, 2, and 3 disappear and the Lebesgue measure of
no recognizable open sets or defined structures in these Ufke chaotic saddle suffers a discontinuous jump from 0 to a
certain basins, apart from the KAM torus. It must also beqsitive value, the measure of phase space. In some sense,
observed that the KAM torus ifb)—(d) does not appear in the transition between an open and a closed Hamiltonian
@. system can be understood as a bifurcation in which the cha-
otic saddle suddenly fills up the whole phase space, making
impossible the escape of any orhit.

In order to compare the phenomenon of uncertain basins N conclusion, we have presented a thorough analysis of
in Hamiltonian systems with the already known of riddled the bifurcation that takes place when the size of the exits of
basins for dissipative systems, it might be useful to observ@pen Hamiltonian systems tends to zero. We have seen that
again Figs. 6 and 7. A riddled basin is a basin where althe exit basins show a peculiar behavior, very similar to that
points have pieces of another basin arbitrarily nearby. It coof riddled basins in dissipative systems. They suffer a total
incides with its own boundary, and a consequence of thifractalization, tending to become their own boundaries while
definition is that riddled basins do not have any open setthe dimension of the invariant sets coincides with that of
inside. From a practical point of view, the similarities be- phase space. Furthermore, these invariant sets tend to fill up
tween uncertain and riddled basins are striking. As it waghe whole phase space for both hyperbolic and nonhyper-

IV. DISCUSSION
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bolic systems. This behavior makes any prediction based on ACKNOWLEDGMENTS
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