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Abstract

Several prototypical distributions of finite-time Lyapunov exponents have been computed for the two-dimensional Hénon—
Heiles Hamiltonian system. Different shapes are obtained for each dynamical state. Even when an evolution is observed in the
morphology of the distributions for the smallest integration intervals, they can still serve for characterizing the dynamical state
of the system.

0 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction concepts. Then, a set of prototypical distributions for
several orbit types in the Hénon—Heiles Hamiltonian

Lyapunov exponents are a well-known diagnostic will be shown. This conservative system has been

tool for analyzing chaotic motion. In the past few years selected, because in spite of its simplicity, it shows

major attention has been paid in the distribution of a large richness concerning the behavior of its orbits.

the so-called finite-time Lyapunov exponents. As the Finally, we will end with some concluding remarks.

shapes of these distributions can serve as indicators

of the overall degree of instability of a system, its 1.1. Lyapunov exponents

evolution or stationarity is a key question. Our work

focuses in the study of the distributions calculated The ordinary (or global) Lyapunov exponent de-

with the smallest time interval available, in order to scribes the evolution in time of the distange) be-

see if they are still valid indicators, with such local tween two nearly initial conditions, separatd0) at

information. The Letter’s structure is as follows. First, =0, and it is defined in the following manner:

we will review the different definitions found in the

literature, in order to clarify many different but related x = lim lim }Io 8z(7) . 1)
1—00 §7(0)—0t 6z(0)
" Corresponding author. Note that log means lgg The global Lyapunov
E-mail address: msanjuan@escet.urjc.es (M.A.F. Sanjuan). exponents have been proven to be a quite useful tool
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for analyzing chaotic motion, and their utility comes in
part from the fact that their values do not depend upon
the metric. However, since in practice the calculation
is performed numerically, only a finite integration time
is used instead of the infinite time defined above.
This leads to an approximated value instead of the
real one, producing the so-called local (or finite-time)
Lyapunov exponent. This is of course more important
when working with experimental data, because of the
very small number of measurements.

It should be noted that neither the notation nor the
definitions are standard in the literature. Since this
can produce some confusion, it would be worthy to

summarize some of them. Some authors as in Refs. [1,

2] use the widely found terms of short-time Lyapunov

27

In this caser can be large but finite. The algorithm
for its computation will be described in the next
paragraphs, since this is the definition that we have
used along our study, but using the symbolr)
instead ofA(z).

The notion of stretching number, or generalized
Lyapunov indicator, was introduced in [9,10], and it
appears as a particular case from the local Lyapunov
exponent when = 1. Consequently the LCN is then
the sum of stretching numbers divided . And
according to [5], the average value of the stretching
number is the maximal LCN.

Finally, it can be found also the term fast Lyapunov
indicator, or FLI, as in [11], and the term smaller
alignment index, or SALI, as in [12], as simple

characteristic numbers or local Lyapunov exponents as humerical indexes for determining if a given orbit is

follows:
1 8z(At)
- : 2
At 8z(0)
This quantity also appears later referred by these
authors as (maximal) short-time Lyapunov exponent

or finite-time Lyapunov exponent. Obviously the rela-
tion between them is

lim

At) =
X (A1) 8z(0)—0

®)

Another widely used term is the Lyapunov charac-
teristic number, or LCN. This is defined for instance
in Ref. [3] as the limit when — oo of

1 8z(1)
=-lo . 4
t géz(O) )
Note that as the deviatiodx(0) is taken to be an
infinitesimal, then this definition is the same that the
ones in Refs. [1,2]. In addition, [4] uses the maximal
LCN, as

x = lim x(Ar).
At—00

8z(t)

= lim 1IO
X_ g(SZ(O),

t—oo t

®)

ordered or chaotic (see both references for detailed
information).

The definition of LLE according to Eq. (6) is
strongly related to the way in which the exponents are
obtained. Thesz(¢) is the principal semi-axis of an
initial ball of radiussz(0) after some integration steps.
For the computation of the exponents, we examine
the length evolution of the axes of the ellipsoid
defined by a set of orthonormAkdimensional vectors
centered in the initial condition. The stretch exponents,
following Refs. [13,14], are the natural logarithms
of the average growth rate per iteration (also called
Lyapunov number) by which the vectors expand along
the D directions. The sum of the stretch exponents
after N steps divided byN is the local Lyapunov
exponent (or LLE) and the limit of such sum when
N goes to infinity is the global Lyapunov exponent.
Details concerning the computation of the Lyapunov
exponents may be found in Ref. [15].

The initial orientation of the axes leads to differ-
ent effective growth rates and, in consequence, follow-
ing Ref. [17], the local Lyapunov exponents can be
divided in two types: the finite-time Lyapunov expo-

Lyapunov exponent.

The concept of local Lyapunov exponent (LLE)
or effective Lyapunov exponent, introduced by [6—8]
for studying Hamiltonian systems, appears defined in
Ref. [5] as

8z(1)

1
A = ;Iog 520)°

(6)

set of D-orthogonal vectors undergoes a few transient
steps as their initial directions are chosen at random.
After a few steps of integration and orthonormaliza-
tion, they could be considered already locally charac-
teristic (that means specific of a certain local flow). So
the first type refers to the case when the directions co-
incide with the right singular vectors of the matrix re-
sulting from the Jacobian product, and the second one,
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to the case when they correspond to the vectors result-tral limit theorem holds and the correlations die out.

ing from the evolution of those singular vectors some
steps before starting the computations.

1.2. Lyapunov exponents distributions

If we make a partition of the whole integration
time along one orbit into a series of time intervals
of size At, then it is possible to compute the finite-
time Lyapunov exponentg (At) for each interval,

However, for small finite intervals, the shapes can be
different, as we will see later. In any case, when regu-
lar orbits appear, shapes can differ substantially.

1.3. Distribution behavior at very short times
We are carrying out a search on how to characterize

the most chaotic orbits in a given flow. As the shapes
of these distributions can serve as a valid indicator,

and to plot the resulting distribution of values. By its evolution or stationarity is a key question. This
examining such spectrum, we can get information Letter follows some of the ideas started in [1,2],
about the overall degree of instability of the orbit. where the dependency on the sampling time and
Such an approach has proved to be useful in severalthe evolution towards an invariant measure in the
fields such as galactic dynamics [18,19], analyzing distributions from orbits in chaotic domains have
chaotic fluid flows in the context of fast dynamos been analyzed. A clear description of how these
[20] or chaotic packet mixing and transport in wave spectra characterize the dynamical state in a set of
systems [21]. The mean of the distribution correlates Hamiltonian prototypical cases was a motivation for
with the maximal Lyapunov characteristic number our work. Many distributions belonging to typical
for finite sample exponents, and the shape of such maps have been studied, as, for instance, in [14,23,24],
distribution can serve as a valid chaoticity indicator, but less consideration has been given to conservative
as it shows the range of values fgr In principle, systems, where no attractors are found. Indeed, we
the shape depends on the initial condition (so on the are interested in the distributions for characterizing
invariant measure towards it evolves), and also on the not only the possible final invariant measure, but also
sampling interval sizeAr. The distribution of finite- the orbit stability itself, including the unstable and
time Lyapunov exponents can be normalized dividing the open orbits (those that will escape towards the
it by the total number of intervals thus obtaining infinity). The main goal will be then to generate a set
a probability density functionP(x), that gives the of prototypical distributions for those different orbit
probability of getting a given valug betweerix, x + behaviors.
dx]. Hence, the probability of getting a positiy€A¢) Several criteria for choosing a small are found
or F; (and analogously_) can be defined as in the literature. The shortest interval that can be used
00 in the case of maps is one iteration of the map. How-
Fo= [ PGoyd ) ever, for flows, as this time interval is a continuous
+ X QX guantity, several approaches are possible. It can be
0 taken very small, although obviously not smaller than
Two ways for calculating such distributions are the integration step. It has not been completely estab-
possible. The first one is starting from a given initial lished yet whether these finite-time Lyapunov expo-
condition and integrating during the interval, thus nents distributions are typical or stationary when com-
leading to ax (At), and starting again the cycle from puted with short intervalar [13].
that point. The second way is taking an ensemble of = We are interested in analyzing how the distributions
initial conditions on the available phase space (or en- calculated with the smallest availabl&és interval
ergy surface). For each initial poing,(Ar) is calcu- characterize the system. Even when some variability is
lated as before, without later progression in that or- expected when taken such intervals, they can still serve
bit (see, for instance, Refs. [1,2,22]). When the phase for tracing the system. In fact, a way to determine
space is largely stochastic and the regular regions the structure of a Lyapunov spectrum locally, that is,
small, both distributions coincide, in agreement with within some small (in principle infinitesimal) time
the ergodic theorem. If the finite intervals are large interval is shown in Ref. [25]. Taking the interval size
enough, the expected shapes are Gaussian, as the cems small as possible, the correlation of each value
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to the following one will depend only on the local
orbit behavior. We will try to find out if the local
information is enough for obtaining valid results or

29

the other one, transverse to it. The tangent one is non-
relevant as it tends to zero in the limit case.
The distribution of the finite-time or local Lya-

if we should increase such interval. Alternatively, the punov exponents was carried out by using standard
size can be equal to any time interval with physical methods, and the initial ellipse axes were chosen at
meaning, such as the characteristic time of the systemrandom. We have used a sixth-order Runge—Kutta in-

or the crossing time of the orbit with a given Poincaré
section. Finally, instead of a fixelt, it is possible to
choose a variable sampling interval, as in [4], where
it is taken to be equal to the interval where theAr)

tegrator with a fixed time step equal to #) since
it provides enough accuracy for our purposes. And
also we have carefully checked that the propégty-
—Xs_; was kept as the integration was evolving in

reaches a temporary limit. On the other hand, when the time, to assure the goodness of the numerical computa-

size of At is increased, the local details are washed
out. In the limit, x (At — oo) tends to the global
Lyapunov exponent, and the distribution tends to be
a Diracs centered at this global value.

2. Behavior in atwo-dimensional Hamiltonian:
the Hénon—Heiles system

In order to analyze distributions of finite-time Lya-

tions. The Poincaré cross-section with the plare0
has been plotted for each state, in order to compare the
distribution with the dynamical state. We have selected
this plane because of the symmetry of the system with
respect to it, so each orbit must repeatedly intersect it.
Then, the crossing time is defined as the time between
successive section crosses.

We have started the analysis computing periodic
and quasiperiodic cases. In a fully stable periodic mo-
tion, as the harmonic oscillator, plotting the evolution

punov exponents with such an approach, we have of the x(At) as the integration takes place, leads to

chosen the Hénon-Heiles Hamiltonian, which is a
two-dimensional time independent Hamiltonian sys-
tem which was originated as a model in galactic dy-
namics [26]. The equation of this Hamiltonian is given

by

1 1 2
H= E(p§+p§)+ §<x2+y2+2x2y+:—3y3). 8)

We are interested in this model because it is con-

plot a horizontal line, since always we get the same
value x (Atr) for every interval. So calculating the
finite-time Lyapunov exponents distribution we get a
single peaked distribution centered in a given positive
value. If the interval size increaseg(Ar >) — 0,
and the peak shifts towards zero.

We can compare the former case with an orbit
near an Unstable Periodic Orbit (UPO). This can be
observed when the energy takes the value /M,

nected to a physical problem and also because in spitein the Lyapunov Orbit. This orbit defines a frontier.

of its simplicity it presents a rather rich complex dy-
namics. According to the energy of the orbit, which is
related to the initial condition, different dynamic be-

Every orbit with an initial energy larger than the
escape energy and moving outwards, if it crosses the
Lyapunov Orbit, will escape from the system and will

haviors may appear and paradigmatic examples of thenever come back (see [29]). The phase space of an

so-called pseudodeterministic models can be found.

These models only yield to relevant information over

trajectories of reasonable length due to the unstable di-

mension variability (see [27,28]). The oscillating be-
havior of the finite-time Lyapunov exponents about

example of such orbit is plotted in Fig. 1(a). For the
case of an UPO, each point must avoid all regions
x (Ar) < 0. The distribution of finite-time Lyapunov
exponents is formed by two peaks, both centered
around positive values. When the initial condition is

zero has been found to be associated to these mod-=slightly different from the one leading to the unstable

els [24]. As we are dealing with a two-dimensional
system, four Lyapunov exponents will exist. How-
ever, since it is a conservative Hamiltonian system,
M =—A5—; for (i =1,...,4) and only two different

values ofi are independent. One of them will be tan-
gent to the trajectory, parallel to the velocity field, and

periodic orbit, the distribution is similar to the solid
line of Fig. 1(b), where we observe two broadened
peaks centered around positive values, and a tail
associated to the orbit once it has escaped. The two
peaks are plotted when the orbit is confined, and the
behavior is similar to an exact UPO. But now, the value
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Fig. 1. (a) Orbit near an UPO, wheh=1/4. The periodr is roughly 36 time-units. The figure is a zoom in of the inset which appears at the
bottom right. (b) The solid line shows the probability distribution formed with an integration of 40 time-units savher0.02. The rightmost
two peaks are traced when the orbit is confined, before escaping @ftém@-units. The dashed probability distribution is whan= 0.1

and the dotted one whetr = 0.3. The smaller panel above the probability distribution figures shows the oscillating behayickofas the
integration takes place.
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of x(Ar) oscillates between those peaks, as shown in smaller inset panel. Each oscillation is associated to
the solid line of the smaller panel of Fig. 1(b), leading an island in the Poincaré section, thus to a peak in
to the intermediate spectrum of values between the the probability distribution. Inside each period, we
main peaks. can count five oscillations, so five peaks are obtained
But after having integrated78 time-units, or af- in the distribution. Between each peak, a range of
ter roughly 1600 finite intervals, the particle escapes. values is obtained, thus leading to the spectrum of
Now the range of values gf(Ar) no longer oscillates,  values between the main peaks. As we are dealing
but get new values, leading to a left tail of totally dif- with an orbit near a period-5 orbit, only 10 peaks
ferent values, plotting, for instance, the smaller neg- can be obtained. This means that there are arbitrarily
ative centered peak that appears at 35 time-units. finite intervals for which the orbit, on the average, is
Indeed, as shown in the smaller panel of Fig. 1(a), the repelling in one of the dimensions and other intervals
motion can now follow an open track, thus the tail of for which is attracting in the same dimension. The
the distribution extends and several small peaks cen-shape of the distribution is independent on the initial
tered below~0.2 (not shown) are produced. When we condition along the orbit, and longer integrations (in
consider initial conditions far away from the UPO, that fact, larger than 600 time-units, the circuit time or
is orbits with smaller escape times, the general spec- period to plot the 5 islands) do not lead to different
trum shape is different due to the tail, as it is produced shapes, because in this case we should only be adding
by the values once the particle has escaped. But mean-more periods to the already sampled one. When the
while the orbit is confined, the shape is always quite initial condition is moved far away from the periodic
similar. If the interval sizeAr is increased, but still  orbit, the distribution broadens but remains with a
smaller than the escaping time, it is observed that the similar morphology.
main peaks shift towards larger positive values and be-  When the interval size increases, the range of
gin to merge, as shown by the dashed & 0.1) and values around which the peaks are centered is reduced
dotted (At = 0.3) lines of Fig. 1(b). As reflected inthe and it is shifted towards positive values, as shown
smaller panel, the oscillation (around a larger value) of in the lower panel of Fig. 2(b) as dotted lines, and
the finite time exponents values is preserved, but it be- zoomed in the upper leftmost panel. Whan = 10,
gins to disappear after a smaller number of integrated a multipeaked probability distribution is still observed,
intervals. since this value is larger than the crossing time but still
The following case analyzed is a quasi-periodic smaller than the total circuit time, which is roughly
orbit, found in the Hénon—Heiles system for the energy 32 time-units. This case is found as dashed-dotted in
E =1/8. Its Poincaré surface cross section is depicted the upper rightmost panel. For larger sizes of time
in Fig. 2(a), and it shows a set of ten islands, which intervals the peaks begin to merge &ssbegins to be
is associated to a period-5 orbit. The five islands on equal to the circuit time.
the left are plotted when the = O plane is crossed This behavior is different for orbits showing some
from thex < 0 subspace towards> 0, and the other  chaoticity. One example appears in Fig. 3(a), with ini-
five on the right when returning to the< 0 subspace. tial energyE = 1/12. The solid line in Fig. 3(b) shows
The distribution of finite-time Lyapunov exponents the corresponding probability distribution with an in-
for an intervalAr of 0.02 and total integration time  tegration time of 20000 units, ands = 0.02. The
of 10* time-units is the solid line in lower panel of whole available phase space is traced and longer in-
Fig. 2(b). It shows ten peaks, five centered around tegrations lead basically to the same shape. This shape
negative values and the other five centered arounddoes not correspond to a “typical”’ chaotic state, where
positive values. the central limit theorem holds for a number of aver-
In the inset panel, it has been plotted the evolution aged quantities, including local Lyapunov exponents
of the short time Lyapunov exponent with time (as (see [8,16]) and the distributions can be fitted by a
the integrated number of intervals: increases). As  Gaussian, since the correlations die out. Neither does
it is a quasi-periodic orbit, it can be observed quasi- it to an intermittent system, where the shape might be
periodic oscillations, with five oscillations per larger a combination of a normal density and a stretched ex-
period. These oscillations ip(At) are shown in the ponential tail, due to the long correlation persistence.
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Fig. 2. (a) Poincaré cross-section of a quasi-periodic orbit of enBrgyl/8, associated to a period-5 orbit. The crossing time is approximately

6.2 time-units. Each time a point crosses the section, a different island is crossed and the total time before repeating an island isSoughly 31
time-units. (b) The lower and larger panel shows the probability distribution of finite-time Lyapunov exponents, showing 10 peaks both in
positive and negative values, whea = 0.02 and total integration time #Gime-units. The dashed probability distribution is when= 10

and integration time 19 and is zoomed in the upper leftmost panel. The dotted line represents the probability distributioamha@®0 and
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Fig. 3. (a) Poincaré cross-section of an orbit of endigy 1/12. The crossing time is approximately 6.75 time-units. (b) The solid line shows

the probability distribution of finite-time Lyapunov exponents formed with an integration of 20000 time-unitsAvke.02. The dotted and

dashed lines represent the probability distributions corresponding to partial 1000 time-units integrations started at arbitrary pointseof the sam
orbit. These partial integrations reflects some of the different transients of Table 1. The smaller panel shows the oscillating bghavjor of

as the integration takes place.
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As we are analyzing the evolution or stationarity Table 1
of the probability distributions, it is important to Several probability distribution behaviors in the caBe= 1/12
keep in mind the difference between stationarity, for the_smallest |r_1terval'3|zen = 0.02. The statistics are for
. L. .. integrations of 18 time-units starting afy
due to the dynamics at certain time, and ergodicity,

time-averaged property of the trajectories. In a non- 0 Mean Std. Dev.  Median  F+ (1)
ergodic orbit, the trajectory does not cover the whole 0 004402 018489 044017 043435
hypersurface of constant energy, so two different 10°  -001337 016457 001337 067674

S o . 2x10° —0.01318 016437  —0.01318 066708
initial conditions cover different parts of the energy 3010° 001318 016438 001318 067882

surche Ieading to differept temporal averages even ;,. 13 _0.04406 018492  —0.04406 047806
for times tendlng to |nf|n|ty. In such systems there 14x 10° —0.016346 0152195 —0.016346 0700080
is not a unigue equilibrium state, but different ones
depending on the starting point. Conversely, a unique
equilibrium state can be reached in an ergodic. And
generic ensembles of initial conditions will evolve
towards a given distribution, time-independent or with
little variability on long time-scales. One key point is
the time involved in such evolution towards the final <
state. If the physical time scales are relevant and that =
time is too long for being realistic, those ensembles
will not be able to be used as a valid skeleton for the
observed system behavior.

So when computing probability distributions from
a set of initial conditions, we need to be sure that they -0.1 0 0.1
are in the same domain of the Poincaré section. Inthat %% [ ' T
case, we get again the solid histogram of Fig. 3(b). (g5
On the other hand, the stationarity of a distribution =
can be defined when the statistical parameters do not 0.004 |-
change with time, and this depends on the variable & iy
dynamics along the given orbit. When the probability & 7|
distribution from a single orbit is computed, the 0.002 -
morphology may depend on the initial point, when -
the total integration time is not large enough, as  0.001—
several transients of different behavior are found (see
Ref. [17]). 02 -01 0 01 02 03 04

In order to catch the behavior of the transient Short Time Exponent (X)
perlods,_ we haYe C,0mpm,ed prol:_)ablllty dl.strlbutlons Fig. 4. The distribution of finite-time Lyapunov exponents in the
formed integrating just Totime-units (150-times the  cager = 1/12 formed with an integration of £0ime-units when
crossing time), which are described in Table 1. At =1 is plotted as solid line in the lower panel. The same when

Three of them appear in Fig. 3(b). The characteris- At =10 appears in dashed line, and is zoomed in the upper panel.
tic time on which the orbit forgets its previous degree In this later one, it is also traced the distribution when= 100.
of instability is small (low correlation time), as they
are quite different. The standard deviation of the dis- different behaviors, regular at some stages, chaotic in
tributionso gives a measure of the degree in whjch  others, as reflected in the shape of the distributions.
deviates from the mean, being a measure of the stabil- For instance, the first transient shows two well sepa-
ity or variability of the values of along the orbit. The rated peaks, like a quasi-periodic orbit (dotted line),
probability of getting a positive value for a finite-time  while the third transient shows a multi-peaked dis-
Lyapunov exponenf, takes different values rang- tribution (dotted-dashed line). When the time evolu-
ing from 04 up to Q7 quite randomly, what indicates  tion of the finite-time Lyapunov distributions (and the

0.01

0.008

0.006

0.004 —

0.002 |-
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Table 2
Several distribution behaviors in the ca8e= 1/12 for interval size
At = 1. The statistics are for integrations of3lfime-units starting

the statistics for the transients with an integration
(sampling) ofAr = 1.
The mean value calculated with the larger interval

atio on each transient is different to the calculated one with
0 Mean Std. Dev. Median  F4 (1) the smallest interval. Moreover, the valueskf are
0 007362 017391 007362 046000 larger, and for even larger interval sizes, the transients
10 009552 017119 009552 074000 may vanish. Nevertheless it is remarkable that the
2x10° 009203 017478 009293 072000 gyqalution of F,, which is an indicator of the local
3x10° 0.09117 017415 009117 073000 Lo T
12% 168 0.06484 016613 006484 051000 chaaoticity, is slmllar in both cases. The Tgble 3 shgws
14x10® 008573 014284 008573 075000 how the total integration time for a given interval size

is correlated with these indicators, showing that for the
smallest interval we obtain similar results.
time evolution ofy (Ar) itself, as shown in the smaller This can be explained indicating that by integrating
panel) is compared with the way the consequents of 2 x 10* time-units, we have already passed through all
the Poincaré section fill the available phase space, wepossible values of the oscillating short time Lyapunov
see how each distribution corresponds to a different exponent, so even increasing the total integration time
way of tracing the Poincaré section. up to 2x 10° time-units, the spectrum is basically

If we change the interval siz&r by a small integer ~ the same. For larger intervals, the statistics is poorer,
factor, our result is only a rescaling of the spectrum, as as the total number of intervals taken into account is
was shown in Ref. [19]. However, when it is increased smaller, but the same reasoning can be used. When
up to, say,At = 1, which is still smaller than the Ar =1, we are still getting almost the same pattern
averaged crossing time, a different multi-peaked shape in the oscillations with 2« 10* time-units or 2x 10°,
is obtained, as the solid line in the lower panel of so the values are still quite similar. But witky = 10,
Fig. 4 shows. The local details are washed up as thethe values are slightly different, as the pattern of the
interval size is larger than the crossing time, so with oscillations of the short time Lyapunov exponent is
a At = 10 (dotted line), the shape is again different. also slightly different.
This distribution is zoomed in the upper panelandtwo  Finally, the characterization of the distributions cor-
smooth peaks well fitted by Gaussians, the main one responding to chaotic orbits is discussed. We take an
centered around positive values are observed. For everorbit with an initial energyE = 1/8, that almost fills
larger values ofAr = 100, a probability distribution ~ completely the available phase space, as shown by the

with a the form of a single peak Gaussian is found,
which is plotted as a solid line in the upper panel
of Fig. 4, since the central limit theorem begins to
hold. Finally, for much larger values @fr = 100, the
distributions collapse té-functions centered around
the global Lyapunov value. In addition, the chaoticity
indicators vary with the interval size. The values in

Poincaré cross section in Fig. 5(a). The correspond-
ing probability distribution is plotted as a solid line
in Fig. 5(b). The smaller panel shows again the oscil-
lations of x (Ar) as the integration takes place. The
same probability distribution is obtained by integrat-
ing along a single initial condition or an ensemble of
initial conditions, due to the ergodicity of the system.

Table 2 are calculated as in Table 1, so here it appearsThe shape reminds the one described for attractors in

Table 3

Sensitivity of the statistics of the finite-time Lyapunov distributions in the dasel1/12 for several integration time and interval sizes

t (total time) At (time) Mean Std. Dev. Median Fy(tg)
2x 10% 0.02 —0.04403 018490 —0.04403 064226
2x 10° 0.02 —0.04407 018492 —0.04407 065772
2x 10t 1 0.08553 017873 008553 069000
2x 10° 1 0.08454 018004 008454 071060
2x 10t 10 003215 006258 003215 090400
2% 10° 10 002509 006671 002511 089565
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Fig. 5. (a) Poincaré cross-section of an orbit of endtgy 1/8. The crossing time is approximately86 time-units. (b) Probability distribution

of finite-time Lyapunov exponents. The solid line corresponds to an integration of 20000 time-units\whe@02. The dotted and dashed

ones to partial integrations of 4@ime-units. The double peaked one corresponds to a sticky period. The smaller panel shows the oscillating
behavior ofy (Ar) as the integration takes place.
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Refs. [23,28], although the tail of the peak centered ing a smaller number of largexr (to allow the values
around positive values extends through negative valuesto saturate). Third, selecting carefully an ensemble of
quite smoothly, instead of showing an exponential tail. N initial conditions in the same domain.
Two different transients of Fotime-units are plotted Our calculations have focused in the use of the
as dotted and dashed lines in Fig. 5(b). We also see thatsmallest interval size, searching for the stationarity or
the sticky orbits, those that remain near a regularisland evolution of the distributions. It has been observed
for alongtime, tend to have smaller exponentsthan the that they characterize the motion in the different
non-sticky orbits. During the sticky periods, when the possible cases. Shapes well differentiated from the
orbit appears next to a quasi-periodic orbit torus, the ones described in the literature have been found as they
distribution is clearly similar to a quasi-periodic case. depend both on the motion type, the interval size and
However, in the chaotic regime the peaks are broad- the integration time. In the fully regular motion, the
ened. With larger intervalsAr = 10) and integration  shape is independent on the size of the chosen small
times (1§ time-units), an almost Gaussian shaped dis- interval. When the case of a UPO was analyzed, it
tribution is obtained, centered around a positive value. was observed the importance of the size of the interval
This shows a morphology different from tiie= 1,12 with respect to the time the particle was confined
case, that did not reach such Gaussian form even whenbefore escaping. In the quasi-periodic case, the final
At = 10, meaning a different dynamics, which is also shape is independent of the initial point along the orbit
manifested by the time the distribution takes to its final and is reached after a small integration time (a few
state. times the crossing time). For larger intervals, the shape
Such different morphology can be seen by compar- is still well differentiated from the other cases, even
ing the solid lines of Fig. 3(b) and Fig. 5(b). In the when a short integration time is used. In the chaotic
later case, the peak is not so clear, and the distribution motions of energy values = 1/12 andE = 1/8, the
is smoother, indicating that there is no larger proba- shape depends strongly on the initial point for short
bility of getting a value over another one. In the pre- total integration times, since the distribution evolves
vious case, there is a clear peak, indicating that there through several transients and consequently several
is a high probability of getting the range of values on cycles are required before reaching the final shape.
which the peak is constructed. So the later case indi- According to Ref. [5], the spectrum of chaotic orbits
cates that there is more “chaoticity” in the sense that is invariant with respect to the initial conditions along
there are no privileged values, as in the- 1/12 case, the same invariant curve, but this only is applicable for
so there is a larger ergodicity, in the sense that the or- large integrations or large intervals. However, tracing
bit is able to reach with the same probability all the the distributions with the smallest intervals gives
available phase space. However, it should be taken intoinformation on the local evolution of the stability for
account that during certain transient periods, the be- short time scales. The morphology of the distributions
havior is equivalent to regular motions, as during the traces the dynamics and the evolution of the vatye
sticky transients (double-peaked distributions). is the same independently of the interval size.
One interesting point is to analyze the sources of
the components of the distribution morphology. The
3. Conclusions local behavior is given by the local exponents, thus
the overall shape depends on the local orbit behavior,
The results presented here are of general interestas the exponents can be considered specific of a
in describing how the distributions of finite-time Lya- certain local flow. And as we have seen, the overall
punov exponents are valid indicators when computed behavior is the sum of the different behaviors: the
with the smallest time interval. Several prototypical ones corresponding to the smaller intervals when the
distribution morphologies have been plotted for differ- local exponents were calculated. In addition, the local
ent energy values of the Hénon—Heiles Hamiltonian. orbit behavior can be understood in terms of simpler
These calculations can be carried out in three ways. periodic orbits, as possible basic blocks for shadowing
First, calculating a huge numb@t of short-time ex- the observed complicated behavior. This is a quite
ponents of sizeAt along the same orbit. Second, tak- interesting research topic that can extend the current
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results, by studying the role of such periodic orbits in project BFM2000-0967, and by the Universidad Rey
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