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Abstract

The model of a two-dimensional fluid flow past a cylinder is a relatively simple problem with a strong impact in

many applied fields, such as aerodynamics or chemical sciences, although most of the involved physical mechanisms are

not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime with Reynolds number, Re,

around 200, where two vortices appear behind the cylinder, by using an appropriate time-dependent stream function

and applying non-linear dynamics techniques. The goal of the paper is to analyze under which circumstances the

chaoticity in the wake of the cylinder might be modified, or even suppressed. And this has been achieved with the help

of some indicators of the complexity of the trajectories for the cases of a rotating cylinder and an oscillating cylinder.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Despite the fact that the fluid flow past a cylinder has been studied for well over one hundred years, and that the

geometrical configuration is a particularly simple one, this problem is still under intensive research today [1]. Much

attention has been paid to this problem also because it might be considered a paradigm of pattern formation and

transient chaos. The principal motivation for the study of this problem here lies at the question of under which cir-

cumstances the transient chaos at the wake of the cylinder might be reduced or even suppressed. Therefore the main

objectives of the present paper are to investigate how a rotation or a transversal vibration affects the flow of an in-

compressible, viscid, time-dependent fluid flow past a cylinder in the laminar vortex shedding regime and to understand

the mechanisms of the vortex shedding suppression. The Lagrangian dynamics provides a good approach to study the

structure of the flow. Unlike the Eulerian description, which characterizes the velocity field, the Lagrangian one em-

phasizes the motion of the individual fluid particles by following them along the pathlines.

This means that using a proper stream function, w, a Hamiltonian approach can be used and, assuming incom-
pressibility, the equations of motion of the velocity field for a passive advected dye particle in the x–y plane have the

form:

uðx; y; tÞ ¼ dxðtÞ
dt

¼ owðx; y; tÞ
oy

vðx; y; tÞ ¼ dyðtÞ
dt

¼ � owðx; y; tÞ
ox

ð1Þ

For a steady flow the pathlines of the individual fluid particles coincide with the streamlines of the flow. However this is

not so for a time-dependent stream function. Even for simple two-dimensional flows, such as time periodic flows, the
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trajectories can be very complicated. This phenomenon has been termed chaotic advection or Lagrangian turbulence, and

it can be analyzed using the appropriate techniques from Hamiltonian non-linear dynamics. In fact what appears at the

wake of the cylinder, when the two vortices are acting periodically, is a sort of transient chaos from the non-linear

dynamics point of view, since the flow is an open flow.

Hence, in this paper we analyze a fluid flow past a cylinder in a laminar regime with Reynolds number, Re, around

200. And in particular, our work has been focused in the analysis of how the chaoticity in the wake of the cylinder is

modified or even suppressed when a rotation or a transversal vibration on the cylinder is considered.

The basic idea of flow control is to look for situations where there are sharp gradients or rapid variations. In such

scenarios, properly applied small perturbations can lead to huge changes and, therefore, opportunities for controlling

the flow arise. A typical region is the shear layer, the region where, due to the viscous effects, there is a velocity gradient

(or profile) perpendicular to the streamlines, and, depending on this profile, an instability can be found. Additional

regions where flow control can be carried out are vortices, which contain steep gradients of velocity and pressure, and

areas of interaction of vortices with physical surfaces.

Several relevant problems are affected by such instabilities. Fluctuating forces may enhance mixing in chemical

processes or cause structural vibrations, triggering structure failures. In fact, these oscillations due to the shedding

turbulent vortices induced in a periodic manner has been reported as one plausible reason to the Tacoma narrows

bridge collapse, as stated for instance in [2].

In order to understand under which circumstances the complexity of the trajectories of passive tracers in a fluid flow

past a cylinder is reduced or even suppressed, we analyze two control mechanisms. The first one consists of moving the

cylinder in a rotational way, whereas the second one consists of moving it in a direction perpendicular to the incoming

flow. A physical experiment concerning these ideas and showing the possibility of reducing the velocity fluctuations in a

K�aarm�aan vortex street by introducing mechanical vibrations with the right amplitude and phase is described by

Wehrmann in [3].

The remaining of the paper is organized as follows. In Section 2, we briefly describe the well-studied case of a fluid

flow past a static cylinder by using an appropriate stream function, and where the hamiltonian dynamics techniques are

used. In Section 3, we will describe how a clockwise rotation of the cylinder might modify the chaotic region in the wake

of the cylinder. Analogous results can be obtained by making the cylinder oscillate in a single direction, as described in

Section 4. Finally, we present a discussion of our results.

2. Fluid flow past a static cylinder

When a circular cylinder is placed with its axis perpendicular to the flow direction, depending on the Reynolds

number, it is possible to observe a periodic shedding of vortices in the wake of the cylinder (i.e., the turbulent area

behind the cylinder). This area is where the viscosity is truly important.

At low Re (Re < 47) the wake behind a static cylinder comprises a steady recirculation region with two vortices

symmetrically attached to the cylinder, whose size grows when Re is increased.

When Re < 200, vortex shedding occurs in the near wake behind the cylinder accompanying a periodically oscil-

lating lift force. Each half of the period, a vortex breaks off, so the surface pressure distribution around the cylinder

changes dramatically as the cylinder experiences a sudden impulse. These vortices generate alternating high and low

pressure regions on the lee side of the body in such a way that the cylinder experiences a periodic net force. This os-

cillation may amplify the vortex shedding, because now the cylinder itself is moving in the flow, forcing the vortex street

to occur with large amplitude. The frequency of the vortices is given by the so called Strouhal number St, and the
vortices produced in this manner are termed Strouhal vortices.

Finally for higher values of Re, that is, when Re > 200, the flow becomes three-dimensional and turbulent.

We are going to focus on the two-dimensional shedding regime of Re � 200, where the experimental relationship

between Strouhal and Reynolds numbers is quite well determined (St � 0:2) and the two-dimensional model is still
valid. In our study we have used the advective approach described in [5]. It is known that, when solving numerically the

Navier–Stokes equations for the flow past a cylinder, one must take into account that there is a difficulty with the setup

of the boundary conditions due to the special configuration of the problem. Depending on the treatment at large

distance of the cylinder, the value of many physical properties such as lift and drag coefficients can vary. However, by

applying Eq. (1) we can get accurate numerical results, taking advantage of the fact that the same results can be easily

obtained by letting a test particle evolve in the system. A major point is to realize that this approach actually leads to

the same results as the Navier–Stokes equations. In a strict sense, the stream function should be derived from the
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Navier–Stokes equations and, indeed, it can be numerically calculated from the Navier–Stokes velocity field. However,

by using a proper analytical stream function that fits the properties of the real solution, it is expected that the obtained

advective behavior be close enough to the real one. The main point is, therefore, to model the real conditions of the

problem with a suitable ad hoc stream function, in order to simulate the cylinder, the incoming flow and the asymmetric

periodic break off of the vortices.

As a starting point we will take the analytical model of the stream function described in [5,9]. This function simulates

the fluid flow past a static cylinder in the conditions described above. In this section, we briefly describe and explain the

terms and components of this model stream function, which will be modified in the next sections. The model stream

function for the static case can be written as

wðx; y; tÞ ¼ f ðx; yÞgðx; y; tÞ: ð2Þ

The first factor

f ðx; yÞ ¼ 1� expð�aððx2 þ y2Þ1=2 � 1Þ2Þ; ð3Þ

yields to the correct non-slip boundary condition for the overall function at the cylinder surface. The cylinder radius, R,

has been taken to be unity and the coefficient a�1=2 plays the role of the width of the boundary layer. This form ensures

that the tangential velocity linearly tends to zero as expected in the boundary layer and the radial component of the

velocity vanishes quadratically.

The second factor, gðx; y; tÞ, contains the contributions of the vortices and of the background flow with velocity u0
and can be written as

gðx; y; tÞ ¼ �wh1ðtÞg1ðx; y; tÞ þ wh2ðtÞg2ðx; y; tÞ þ u0ysðx; yÞ: ð4Þ

As it can be seen, the first two terms describe the alternating birth, evolution and damping of two vortices of equal

strength but opposite sign. The quantities w and hiðtÞ stand for the overall vortex strength and amplitudes, respectively.
Because of the alternating character, one has h2ðtÞ ¼ h1ðt � Tc=2Þ where Tc denotes the time period of the flow and

h1ðtÞ ¼ j sinðpt=TcÞj. In this model the vortex centers are assumed to move parallel to the x-axis and with a constant

velocity. Their x-coordinates, without the influence of the boundary condition prefactor f ðx; yÞ, are expected to evolve
with time as

x1ðtÞ ¼ 1þ L½ðt=TcÞmod1	;
x2ðtÞ ¼ x1ðt � Tc=2Þ;

ð5Þ

and the y-coordinates are constants,

y1ðtÞ ¼ �y2ðtÞ ¼ yv: ð6Þ

Both vortices move a distance L during time Tc and then die out. Thus, vortex 1 starts at (x ¼ 1, y ¼ yv) with zero
amplitude at t ¼ 0, and at this time, vortex 2 is just in its most developed state at (x ¼ 1þ L=2, y ¼ yv). The contribution
of the vortices to the stream function is represented by the equation

giðx; y; tÞ ¼ expð�R0½ðx� xiðtÞÞ2 þ a2ðy � yiðtÞÞ2	Þ; ð7Þ

where R�1=2
0 is the characteristic linear size of the vortices and a is the elongation factor. The last term in Eq. (4) gives the

contribution to the stream function from the background flow. The factor

sðx; yÞ ¼ 1� expð�ðx� 1Þ2=a2 � y2Þ; ð8Þ

simulates in a phenomenological manner the shielding of the background flow just behind the cylinder.

The values of the parameters used throughout this contribution are a ¼ 2, R0 ¼ 0:35, L ¼ 2, a ¼ 1 and yv ¼ 0:3.
Since we want to set the time unit equal to the system period, that is Tc ¼ 1, and the vortices should be around 7 times

slower than the incoming flow, the velocity of the incoming flow must be 14.

The complicated motion of each flow particle in the flow is organized around the invariant chaotic saddle formed by

all the periodic orbits lying in the wake and their heteroclinic and homoclinic connections. It is known that the low-

order periodic orbits play a fundamental role in the system. The long-lived scattering trajectories come close to periodic

orbits, and any periodic orbit can be built up from segments of the low-order ones. However, the shorter periodic orbits

generated by the vortices are not sufficient for explaining the shadowing of the complicated orbits by the low-order

ones. In addition, the wall of the obstacle consisting of a continuum of parabolic points has to be included as a further
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low-order periodic orbit. Therefore, the invariant set has two components. The first one contains the short hyperbolic

orbits as well as the ones shadowed by them. The second one contains the obstacle wall as well as the periodic orbits

shadowed by it. See [5] for details. In the following sections, we describe how such structures are modified by rotating

the cylinder or by making it oscillate in a direction perpendicular to the incoming flow.

3. Fluid flow past a rotating cylinder

The rotation of a cylinder in a viscous flow is expected to modify the wake flow pattern and vortex shedding

configuration. It may reduce the flow-induced oscillation or increase the lift force. This latter is termed Magnus force

and it is due to the asymmetric displacement of the boundary layer caused by the combined spinning and flow past the

cylinder. The cylinder can impart a spinning motion only to a very thin layer next to the surface. This motion affects the

way in which the flow separates from the surface in the space behind the cylinder. Boundary layer separation is delayed

on the side of the spinning object that is moving in the same direction as the free stream flow, while the separation

occurs prematurely on the side moving against the free stream flow. Then, the wake shifts towards the side moving

against the free stream flow, so the flow is deflected and the resulting change in momentum causes a force in the op-

posite direction. This net force is referred to as lift. For clockwise rotation, the stagnation points are moved downwards

Fig. 1. The shape of the one-periodic orbits in the wake of the cylinder as the rotational parameter is increased. The different values of

x are (a) upper-left panel, 0.00, (b) upper-right panel, 0.10, (c) lower-left panel, 0.25 and (d) lower-right panel, 0.30.
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and remain at opposite locations on the circle. If the rotation is counterclockwise, the net force is called drag and the

stagnation points are moved upwards.

Some results from solving directly the Navier–Stokes equations are found in the literature [6,7]. In particular, in [7] a

general description of the system can be found. However, only very recently (see [4]) experimental and numerical results

have been shown to agree.

One of the goals of this contribution is the analysis of how the rotational motion affects the chaotic structures

described in [9]. This requires two modifications in the stream function of Eq. (4). The first one is in the geometrical

part, since now the non-slip condition leads to a velocity vector that must be defined in accordance with the cylinder

clockwise rotation at speed x. The second one is in the background flow term, as a general vorticity term must be added

for generating the desired overall circulation and Magnus lift. The shielding factor is not modified. Since we are going to

deal with only small x values, the vortices are considered to be not affected by the overall circulation. Thus, their terms

will also remain unaltered.

Functions f ðx; yÞ and gðx; y; tÞ are modified as follows:

f ðx; yÞ ¼ xððx2 þ y2Þ1=2 � 1Þ þ 1� expð�a½ðx2 þ y2Þ1=2 � 1	2Þ;

gðx; y; tÞ ¼ �wh1ðtÞg1ðx; y; tÞ þ wh2ðtÞg2ðx; y; tÞ þ u0y
h

þ x
2p

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p i
sðx; yÞ:

ð9Þ

Several small values for x are set in order to see how the structures described in [5,9] are modified. In the static case, the

complicated motion of each flow particle is organized around the invariant chaotic saddle formed by all the periodic

orbits lying in the wake and their heteroclinic and homoclinic connections. There was a hyperbolic effect in short time

scales due to an infinity of strictly unstable periodic orbits, and another non-hyperbolic effect that affects the long time

behavior of the tracers due to the obstacle wall.

We have computed the 1-periodic orbits for several small rotation parameters, as they are the building blocks for

more complicated behavior. As it can be seen in Fig. 1, we found two different orbit types: a pair of symmetric lobes and

one 8-shaped orbit. The eigenvalues associated to both types are modified as the rotation is increased, as is illustrated in

Table 1 for the lobes and in Table 2 for the 8-shaped orbit. When a rotation is applied to the cylinder, the periodic orbits

are modified in such a way that they are stretched and, at the same time, moved towards the cylinder. Meanwhile, the

first eigenvalues are decreased and even converted into complex ones. In addition, the rear stagnation point, that caused

the very long delays in the static case, is moved downwards (Magnus effect).

We have also computed the time-delay plots as a valid indicator of the chaoticity of the orbits. These plots are

computed by starting the tracer dye from the same initial condition (in our case, x0 ¼ �5:0 and y0 ¼ 0:01) for different
starting times, t0, from 0 to Tc. Thus, each tracer finds the system in a different state. By plotting the difference between

the time the particle should reach a given abscissa (xf ¼ 10 in our case) with and without bluff body, termed as dt, versus
t0, we obtain the set of figures with fractal structure that can be seen in Fig. 2. The peaks are associated to longer
intervals when the particle is trapped by a periodic orbit, and in the limit, an infinite peak means the particle is trapped

Table 1

Eigenvalues of the lobe shaped 1-periodic orbits for several rotational parameters x

x K1 K2

0.00 �5.33 0.18

0.10 �4.34 �0.23
0.25 �0:44 þi0:90 �0:44 �i0:90
0.30 �0:34 þi0:94 �0:34 �i0:94

Table 2

Eigenvalues of the 8-shaped 1-periodic orbits for several rotational parameters x

x K1 K2

0.00 23.83 0.04

0.10 19.42 0.05

0.25 6.29 0.16

0.30 3.24 0.3
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forever. It can be seen how the highest peaks disappear, as the rotation increases, so less chaoticity is found for the given

initial condition, but a certain level of fractality still remains. In our model, the peaks are caused by the run near

hyperbolic periodic orbits and by orbits that pass near the rear stagnation point. This point is slightly pushed

downwards as x increases. The general complexity of the figure is kept, but dt decreases as x increases. As the flow is

impelled by the general rotation, the particle moves faster and finds the vortices as if they were moving more slowly. In

the limit, no transient chaos is expected since the particle moves so fast that the system is found like if it were on a time

non-dependent potential (static vortices).

Finally, we have also traced some stable and unstable manifolds of the 1-periodic orbits. In Fig. 3 these sets as-

sociated to the prior periodic orbits are clearly observed and they have also been stretched around the cylinder surface,

showing how even small rotations lead to a change in such sets. Consequently, for higher values of the rotation this set

is strongly affected.

The effect of the rotation is to change substantially the streamline pattern near the surface of the cylinder. In the case

of viscous flows, closed streamlines will always exist for all non-zero values of the rotational speed x.

Fig. 2. Delay plots for the initial condition (x0 ¼ �5:0, y0 ¼ 0:01) at different starting times, t0, as the rotational parameter is increased
(the different values of x are 0.00, 0.10, 0.25 and 0.30). Note that as x is increased the height of the peaks are lowered. This shows that

the trapping time of the trajectories decreases as x increases and hence their chaoticity diminishes.

Fig. 3. Stable and unstable manifolds associated to the lobe-shaped one-periodic orbits of Fig. 1, for two different values of x: (a) left
panel, 0.00, (b) right panel, 0.10.

260 J.C. Vallejo et al. / Chaos, Solitons and Fractals 15 (2003) 255–263



4. Fluid flow past an oscillating cylinder

In this section we are going to study the influence of the transversal oscillating motion of the cylinder placed per-

pendicularly to the incoming hydrodynamical flow described in the introduction. We want to simulate transversal

harmonic oscillations of the cylinder of the type A sinð2pftÞ, where A and f represent the amplitude and the frequency of

the oscillations, respectively.

In order to avoid problems related to the boundary condition at the cylinder’s surface, we modify the factor gðx; y; tÞ
of the stream function given by Eq. (2). In particular, we set a new non-static frame origin at the center of the cylinder,

so that the background flow oscillates in the vertical direction in an opposite way to the motion of the reference system

(the cylinder itself), which is A2pf cosð2pftÞ. It is important to note that the inertial phenomena are neglected since the
amplitude of the vertical vibrations of the background flow is small. This means that in a first approach the quantities

that describe the overall vortex strength and amplitudes (see Eq. (4)) do not change. We assume that the vortices move

with the cylinder in the original reference system. Thus, when we describe the model stream function from the new

reference frame in motion, the vortices do not move. As a consequence, the quantities giðx; y; tÞ do not change with
respect to the ones of Eq. (7). The only change must be done in the background flow because in this case it has a

uniform motion in the horizontal direction, but an oscillating motion in the vertical direction. Thus, to model this

modification, we replace the term u0ysðx; yÞ, in Eq. (4), by the new term sðx; yÞ½u0y þ A2pfx cosð2pftÞ	. Thus, the
complete gðx; y; tÞ term can be written as

gðx; y; tÞ ¼ �wh1ðtÞg1ðx; y; tÞ þ wh2ðtÞg2ðx; y; tÞ þ sðx; yÞ½u0y þ Axx cosðxtÞ	: ð10Þ

We have computed the time-delay plots of a particle placed at the initial condition ðx0; y0Þ for different starting times,
t0. The initial point is chosen as in Section 3, that is, (x0 ¼ �5:0 and y0 ¼ 0:01). Fig. 4 represents the difference between
the time the particle reaches the abscissa xf ¼ 10 with and without bluff body, that is, dt, versus the initial time t0. As in
the previous section, t0 varies from 0 to Tc, being Tc ¼ 1. Notice that dt has been evaluated for two different situations.
In the first one (curve in black colour in Fig. 4) a static cylinder is considered, whereas in the second one (curve in gray

colour in Fig. 4) the cylinder is moving harmonically with the same frequency as the frequency of the vortices and with

an amplitude of 0.2 length units. One observation is how the chaoticity diminishes as the cylinder oscillates, for this

initial condition. Notice also that the area below the curve is higher for the static situation. This is due to the choice of

the initial point close enough to the y-coordinate corresponding to the center of the cylinder. Such trajectories, that

experience most of the effect of the vortices in the static situation, become clearly less complex due to the cylinder

motion. On the contrary, the complexity of the trajectories which are more distant of the y-coordinate corresponding to

the center of the cylinder may increase. This phenomenon can be observed by comparing Fig. 5(a) and Fig. 5(b). In both

plots dt is represented at different colours over a grid in which the horizontal axis represents the different initial times, t0,
at which the particles are placed at x0 ¼ �5, and the vertical axis represents the different values of y0 that have been
considered. Fig. 5(a) shows the case of the static cylinder, whereas Fig. 5(b) shows the case of the oscillating cylinder

which moves with the same frequency as the frequency of the vortices and with an amplitude of 0:2 length units.
In summary, oscillating the cylinder vertically provides a means of reducing the complexity of a set of desired

trajectories, at the expense of increasing the complexity of other trajectories.

Fig. 4. Delay plots for the initial condition (x0 ¼ �5:0, y0 ¼ 0:01) at different starting times for the case of the static cylinder (curve in

black) and for the case of the oscillating cylinder with amplitude equal to 0.2 length units and frequency the same as the one of the

vortices (curve in gray).
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5. Conclusions

The fluid flow past a fixed and static cylinder is a paradigm of pattern formation and transient chaos, and it has

deserved much attention by directly solving the corresponding Navier–Stokes equations, and also from the chaotic

advection perspective. Our approach here has been to analyze under which circumstances we can control the transient

chaos at the wake of the cylinder precisely from the perspective of non-linear dynamics. In order to apply a certain

control technique which might, as a consequence, reduce the chaos present in the wake of the cylinder, we need to apply

certain action on the cylinder. We have considered here two options of acting on the cylinder. From the previous ideas,

we have adapted the model of the stream function, initially defined for a fluid flow past a static cylinder, for a certain

value of the Reynold number, (see Ref. [5]), to two different situations in which the cylinder is not static. In the first one

the cylinder moves in a rotating way and in the latter one the cylinder oscillates in a direction perpendicular to the

incoming flow. By using standard methods of non-linear dynamics, we have analyzed how the chaoticity in the wake of

the cylinder can be modified, or even suppressed for these situations. Several indicators of the complexity of the orbits

have been used in order to check the effects on the dynamics of moving the cylinder. Moreover these results open new

ways and perspectives at looking at the controlling the transient chaos of certain dynamical systems of invaluable

applied interest.
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