Transworld Research Network
37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

RESEARCH
NETWORK.

Recent Res. Devel. Sound & Vibration, 2(2004): 115-150 ISBN: 81-7895-119-3

i Nonlinear dynamics of the
Helmholtz Oscillator

Juan A. Almendral, Jesis Seoane and Miguel A. F. Sanjuan

Nonlinear Dynamics and Chaos Theory Group, Departamento de Matematicas y Fisica
Aplicadas y Ciencias de la Naturaleza, Universidad Rey juan Carlos, Tulipén, s/n, 28933
Méstoles, Madrid, Spain

T Abstract

e The Helmholtz Oscillator is the simplest
asymmetrical nonlinear oscillator, containing a
quadratic nonlinearity. Its nonlinear dynamics is
reviewed here including an exhaustive description of
the formulation of the model and a thorough analysis
of the solutions for the undamped and unforced case,
and the construction of the separatrix map. The effect
of the parametric and quasiperiodic driving is also
analized. A special attention is devoted when the
linear damping is considered, obtaining the
corresponding symmetries and conditions for the
complete integrability of the system. Finally the effect
of using a nonlinear damping term is considered,
showing analytical and computational results.
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I. Introduction

Oscillations and waves arc ubiquitous in nature and are easily modelled through the
help of differential equations. The general equation for the one-dimensional oscillatory
motion of a unit mass particle, can be easily understood using a mechanical analogy.
Assume that the particle moves in a force field which is generated by the potential V (x),
then the general equation of motion may be written as

g
T ‘ (1)

Stated the problem this way, different oscillators may be obtained, depending on the
potential V'(z) acting on the particle. Assuming V(z) to be a polynomial function in z,
very few cases with analytical solutions have been studied. Among them the Duffing
oscillator, with a nonlinear term of fourth order, and the Helmholtz oscillator [1] when
the cubic term is used. Obviously higher order terms may be considered, which in
general lead to rather complicated mathematical solutions. These are the nonlinear
versions of the oscillator given by Eq. (1). If only the quadratic term is taken into
account obviously the harmonic oscillator is derived. Another simple case with a non-
polynomial potential V' (z) = —cosz is the pendulum equation. It is important to remark
that from all these four model equations complete analytical solutions are known in
closed form. While circular functions are the solutions of the harmonic oscillator,
Jacobian elliptic functions are in general, the solutions of the nonlinear oscillators
considered here.

The study of an oscillator of this kind is worthwhile in spite of its apparent
simplicity, because many physical problems of application may be reduced to the
analysis of this simple nonlinear oscillator. The dynamics of the Helmholtz oscillator
mimics the dynamics of certain prestressed structures, the capsize of a ship [2] and the
nonlinear dynamics of a drop in a time-periodic flow [3] or in a time-periodic electric
field [4]. It appears also in relation to the randomization of solitary-like waves in
boundary-layer flows [5], in the three-wave interaction, also referred as to resonant triads
[6] and in connection to steady reductions of some perturbative KdV equations
governing nonlinear waves and solitons [7-9].

If it is included a linear damping & and a periodic forcing F in Eq. (1), it is obtained

£+ 6z + % = F'cos(wt), (2)

where the inclusion of damping and forcing on the system bestows rather different
dynamical behavior as compared with the case without them.

Even though an analysis in absence of damping has been accomplished for the
pendulum equation [10, 11], as well as for the Duffing oscillator [12]; very few results
are known for the Helmholtz oscillator. Perhaps this can be explained because it might
be thought that the cubic oscillator and the quadratic oscillator keep many things in
common, though this is not so. In spite of that, when damping is considered, this system
has received some attention by different authors [ 1, 2, 131].
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Damping in certain applied systems play an important role, since it may be used to
suppress large amplitude oscillations or various instabilities, and it can be also used as a
control mechanism. The role of nonlinear dissipation in double-well Duffing oscillators
received some attention by [14, 15], where a single nonlinear damping term proportional
to the power of the velocity is used and one of the conclusions is that nonlinear damping
terms affects especially the onset of the period-doubling route to chaos.

Numerous physical phenomena of oscillatory nature appearing in different
disciplines present the ability to escape from a potential well, and are described by the
Helmholtz oscillator. This nonlinear oscillator has a simple mechanical interpretation,
since it describes the motion of a particle of unit mass in the single cubic potential
V(z) = 2?/2 — 2®/3 sinusoidally driven, and is considered as a prototype for escape
phenomena. When a linear dissipative force is introduced, its equation of motion is

& + 6% + z — 2 = Fsin(wt), 3)

where & represents the damping level, F the forcing amplitude and w the frequency of
the external perturbation.

Extensive numerical and analytical studies on different aspects related to this simple
nonlinear oscillator can be found in [2, 16-21] and analytical work related to the escape
from the potential well was examined by [22-24]. Besides, an experimental apparatus
was constructed to mimic the equation and is described in [25]. A control method of the
homoclinic bifurcation applied to the nonlinear dynamics of the Helmholtz Oscillator is
developed in Ref. [26] by Lenci and Rega. When a simple linear damping term is
introduced in the dynamics of the nonlinear oscillator, it implies that a complete
integrability of the system is not allowed. However in the unforced case, certain
conditions are fulfilled in such a way that the damped oscillator is completely integrable
[27]. The effect of using nonlinear damping terms on the universal escape oscillator is
considered in Ref. [28] by Sanjuan. For a general review on nonlinearly damped
oscillators see Ref. [29]. Even though some authors [17, 25] mention the possible
interesting role played by considering nonlinear damping terms, the fact is that they only
contemplated linear damping terms. This paper is orgamzed as follows An analys1s and
description of the model equation is carried out in Section II. The analysis is rather
complete, including the analytical solutions for the undamped and unforced case and the
construction of the separatrix map. The nonlinear Helmholtz Oscillator perturbed
parametrically and quasiperiodically is analized in section III. Section IV is devoted to
the analysis of the oscillator with linear damping and its integrability and corresponding
symmetries. A thorough analysis of the effect of nonlinear damping on the dynamics of
the oscillator is done in section V. And finally some concluding remarks are descrlbed in
section VL.

I1. Analysis and description of the model

A. Introduction
The equation of motion of a particle of unit mass which undergoes a periodic forcing
in a cubic single-well potential with damping, reads

4+ 6% 4 ar — Bz = F cos(wt). (4)
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where 8, a, B, F and ware positive constants.

The Eq. (4) can be seen from the point of view of the Hamlltoman and Lagrangian
formalism, see [8, 30-33]. The original idea goes back to the article of Bateman [34],
where he introduces the transformation in the Lagrangian formulation for the linear
damped harmonic oscillator, while he was trying to prove that a linear dissipative system
can be derived from a variational principle. A generalization of the transformation used
in [30, 33] can be found in [35], where a linear oscillator with time-dependent friction
and frequency is considered. Later, Havas [36] studies the range of application of the
Lagrangian and Hamiltonian formalism. This was also used by Denman [37] in order to
study the Hamilton-Jacobi equation and to analyze dissipative systems for its possible
treatment in quantum mechanics.

Concerning Hamiltonian formalism for nonlinear oscillators with dissipation terms,
Denman [37] gives the general expression for the Lagrangian and the Hamiltonian. This
is developed later by Steeb [38] for a class of dissipative dynamical systems with limit
cycle and chaotic behavior, and the explicit Lagrange and Hamilton functions are given.

The particular case given by Eq. (4) is derived from a time-dependent Hamiltonian
and Lagrangian of the following form

. |
H(p,z,1) = 5p’e™" + "V (3,2), . (5)

L(s,2,8) = e Bm? ~V(a, t)],

(6)
where V(z,1) is the following generalized potential for the whole system
azr? pBz?
V(z,t) = — — = Fz cos(wt). | (7

In this section, it is considered that § = O (i.e., there is no damping). Hence, the
equation to analyze is

i+ az — Bz* = F cos(wt), (8)

and therefore, Egs. (5, 6) become o e ey ‘

Hpst) = 357+ V(z,9), ©)
1

L(:l: Z, t) 52: - (xit)i (10)

which will be useful for the computation of the homoclinic orbit and for the construction
of the separatrix map. This construction will be analvzed in a subseauent section.
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B. Single-well potential

When F = 0, the equation of a conservative oscillator is obtained. This oscillator
may be understood as a particle which is situated in a single potential well V(z) defined
as

ar® pzb

V(x)=T——3—. an

One important feature of this system, easily seen in Fig. 1, is that according to the
initial condition and the energy of the particle, the orbits may be bounded or unbounded.
When the value of the energy E i, =0 < E < Epayx = &%, then there exist possibilities

of bounded motions, hence oscillations, while for E > E,,,, the motion of the particle is
unbounded, that is, the particle escapes to infinity.

V(z)

Figure 1. Potential energy associated to the Helmholtz oscillator, which may be seen as the
simplest potential with an escape. Notice that the potential has been chosen to be
V(z) = %xz - §z3, because in this way « and B are positive constants. The orbits will be
bounded only when . —5"‘5 < £ < Zand 0 < E < Enu. For instance, the bounded orbit with

energy E is comprised within [a, b]. If £ > ¢ then the orbit is unbounded.

When the particle has energy E in the range [Enin, Emas, then the cubic equation
E — V(z) = 0 provides three real roots a, b and ¢, (a < b < ¢), which represent
physically the turning points, that is, the points where the velocity of the particle changes
sign. These roots verifies the following relationships which will be important for further
results
3o 3E

a+b+c=§B, ab+bc+‘ac=0, abc=——ﬂ—.

and their ceneral expressions are

(12)
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A A

where to obtain the former results, the following parameters are used

__b—a A=c—a
m_c—a 3 = . (14)

If it is defined also
A?=1-m+m? (15)
then, from the Eqgs. (12), it is derived that

a _AA
28 3° (16)

a useful expression which allows to express the values of the roots in terms only of the
parameter m

a = 5 ,3 +(-1- )-Q—EZ,
o S
b= 2/3 + (2m )2,3A’ S L
_ (17)
¢ = ,3 +(2-m)—7~ 5 ,B N

C. General exact solution

Now the equation of motion Eq. (4) can be solved exactly in the conservative case,
i.e., in the absence of damping and periodic forcing. Hence, the analytical solutions of
the periodic orbits inside the single well will be derived.

The conservation of energy can be used to set the problem in terms of the three roots
of E — V(z) =0 in the following way '
2

z B
5 = -g(a:—a)(a:—-b)(x—c). (18)

The terms can be rearranged into

G bty

%:\/g?\/(x—a)(x—-b)(m—c), B (19)

and now after a simple integration of the above equation it is achieved the following
result

[3 [ dz
t—1g=4/— ) (20
0 2,3/; Sl — aMlr — P17 — o) )
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where it is assumed that the particle lies in x = a for the initial time ;. Now assume the
following change of variable

z=a+ (b~ a)sin?f, 21)

and introducing this result into Eq. (20) it is obtained that

/ 6 ¢ dé
= ] 22
o ﬁ(c—a)A V1 —msin?9 (22)

The solution of the integral in the right-hand side is given by the sine amplitude of a
Jacobian elliptic function [39] from where it is deduced that

/B
(C t —tp) = / m !(sin ¢; m), (23)

where ¢ is the elliptic amplitude and m is the elliptic parameter. There is a lot of
confusion in the literature about the use of the elliptic parameter m and the elliptic
modulus k, which are related by the expression k* = m. The notation of [39] is followed
here, where sn(u; k) represents the sine amplitude when the elliptic modulus is used,
while sn(u; m) when the elliptic parameter is used. For simplicity, the elliptic parameter
is used throughout.

Thus, from the last equation is inferred

sin¢g = sn ( ﬂ_(c_s—_a)(t - to);m) , (24)

and if the change of variable used before is taken into account, the following solution is
obtained ‘

z(t) = a + (b — a)sn? ( é(—cs;(-zl(t — to); m) ; (25)

which is the general solution for all the periodic orbits lying within the single well. Note
that all orbits are labelled by the elliptic parameter m. This parameter m which ranges
from 0 < m <1 is in fact the same previously defined in Eq. (14) in relation to the
turning points of motion in the potential well. It labels the energy of each periodic orbit
inside the potential well.

D. Period of the orbits

It is also interesting to calculate the period of each and everyone of the orbits inside
the potential well. For this purpose the followine inteeral has to be worked ont
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3 [c dzx _ 6 i df
T(m) = 2\/%/,, Je-ai-Ya-0 \|Be-0 /o V1-msin0 (26)

The last integral represents exactly the complete elliptic integral of the first kind
K(m) [39], so that

24
Ble—ay () @7

T(m) =

For orbits whose energy is very small in absolute terms, i.e., m — 0, the complete
elliptic integral of first kind K(m) — Z and then the period becomes T — 27. This
is obviously the period for the linear oscﬂlatlons around the elliptic fixed point (0, 0).

However for values of the energy close to the separatrix, which means m — 1, the
complete elliptic integral of the first kind diverges logarithmically in this way

16
K(m) ~ -—ln <1 - m) : (28)

and this means that the period also diverges logarithmically for values of m close to
unity

T(m) = oehn (7). | 29)

E. Equation of the separatrlx

From the general solution obtained before is rather easy to derive the equatlon of the
separatrix orbit. In fact the separatrix orbit is the orbit with energy corresponding to the
parameter m = 1 and which possesses a period infinity. The sine amplitude of the Jacobian
elliptic function has two natural limiting functions depending on the limit values of m.
These limiting functions are sn(u; m) —> sinu, for m — 0 and sn(u; m) — tanhu, form — 1.

Moreover, if m=1,then A= 1, a = ——- and b = ¢ = § from Eq. (15) and Egs.
(17). Hence, if it is assumed that 5= 0 to simphfy, the separatrlx is given by
_ 3202 (. (30)
Toz(t) = 55 [3 cosh ( 4t)}, o

3 a3 sinh ( %t) S5 and e ;«;,,f ;’-x.:"‘ SR o -
2V Pt (V5Y) | 31
bee ) 2 V B2 cosh® (V5t)’ 31

which has a fish-shaped form. Actually, it is easy to check that y,(f) and z.(f) are

ralatad thic vwwavs
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2 _ 2 o\’
ysx—gﬂ (xa:z:_"g) < sx+2B) (32)

The bounded motions lie in the interior of the separatrix, while the unbounded
motions lie outside. In this case the separatrix corresponds to a homoclinic orbit, since

the orbit connects the hyperbolic fixed point (%, 0) to itself.

F. Stochastic layer
Once the Helmholtz oscillator has been analyzed, it is interesting the study on how
the orbits behave in the proximity of the separatrix when a periodic forcing is applied.
The time-dependent Hamiltonian in Eq. (6) can be used, as it was explained in the
introduction of this section, to study the Helmholtz oscillator with a periodic forcing.
This time-dependent Hamiltonian can be seen as the sum of a time-independent
Hamiltonian

B 3 (33)
Hy(z,p) = 217 +2w 3%

and a time-dependent Hamiltonian

Hy(z,t) = —Fz cos(wt), o . (34
that is, the Hamiltonian H(p, z,t) can be written this way

H(p,z,t) = Ho(z,p) + Hi(z,1t) | (35)

The former Hamiltonian allows analyzing the effect of the forcing by means of an
area preserving map, which is called the whisker map or the separatrix map. This map
measures the energy and phase change of a trajectory close to the separatrix for each
period of the motion [40].

In order to construct this map it is needed to evaluate the change of the Hamiltonian
Hy. The total derivative of Hj is the following

4o _ OHo 0H; _
7 = {Ho, H} = {Ho, H\} = %% 8r = Fi cos(wt), (36)

where {} is the Poisson bracket.

Since our main interest is discussing the motion of the particle when its energy is
close to the separatrix, it is assumed that F is small enough to consider that H, is a small
perturbation. Then, it is close to the separatrix where big effects in the dynamics of the
particle may be expected. The effect of a small perturbation on the orbits of small energy
is negligible. '

The method to obtain the separatrix map, when H, is consider to be a small
perturbation, is standard [40]. The first step is the computation of the enerey AE. This
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energy accounts for the amount of the energy which an orbit close to the separatrix needs
to accomplish a complete cycle, and is given through the integration of Eq. (36)

AE =F [ gcos(wt)dt, : (37)
At

where At =T/2 =m/w. Notice that this integral signals the border of the stochastic

layer.
This energy is usually written in the following way to be evaluated around the
separatrix

t‘n+I . -+00
AEn =F 2 j;COS(wt)dt ~ F/ Ysz COS [w (t + tn)] dt. (38)
- —00 .

tn“%‘

From the third equality in Eqgs. (12) and Egs. (13) a relationship between the energy
E and the parameter m is found. Expanding around m = 1 up to second order, it is
obtained the following expression 8E ~ (1 — m)®. This approximation is used later to
determine the separatrix map and its corresponding stochastic layer.

The change of the phase is given by A¢ = «T. The expression for the energy

relationship found before in terms of m, when m is close to 1, suggests that the period of
the orbits close to the separatrix behaves like

1 32
T(m) ~ 7 In (—E—) - - (39)

In this manner the change of energy E and phase ¢ from the period n to the period
n+1 is given by the separatrix mapping [11]

Enyy = Eu+ AE,, (40)
Pnt1 = Pn+ Wiy, (41)

where the variables (E, #) are to be understood as a canonical pair. This map contains in
principle the essential dynamics in the region close to the separatrix. Thus, the separatrix
map is given by

6rw? Fsing,

En+1 = En+

B sinh (z2)’ T . 42)
bois = ot i (o). @3)

Another way of measuring the instability is through the calculation of the following
parameter K defined as [11 ]



Nonlinear dynamics of the Helmholtz Oscillator 125

6¢n+1
K.—_—l 56, —ll, (44)

from which as a by-product the stochastic layer width is achieved. It supplies the
information about how a small phase interval is stretched. The measure of the local
instability is given by K > 1, because close to the separatrix a small change in frequency
may cause a big effect in phase. The stochastic layer width is given by the value

67 Fuwd

J&f sinh (\/;%—w) (45)

which corresponds to the width of the region close to the separatrix where it is likely to
expect chaotic motions.

E

IIL. Parametric and quasiperiodic perturbations

A. Introduction

Two of the main reasons to study the periodically driven nonlinear oscillators are the
rich dynamic behavior observed in them and the enormous applications of these
nonlinear oscillators in order to model oscillatory and complex phenomena in all
branches of science [41]. Besides periodically driven nonlinear oscillators, also
quasiperiodically and parametrically driven nonlinear oscillators are worthy of analysis
[42-52]. .

The Melnikov theory is the suitable analytical tool to ascertain the critical parameter
values from which it is expected a system to show chaotic behavior of the Smale-
horseshoe type [53]. In spite of the power of the method in predicting the chaotic
threshold, it is important to note, however, that in practice the true observed threshold,
results to be above the predicted one and this is mainly due to its intrinsic perturbative
nature [52, 54, 55].

A complete study of the the homoclinic bifurcation sets of the quasiperiodically
forced Duffing oscillator can be found in Ref. [42], and a similar situation for the case of
the parametrically driven Duffing oscillator is found in Ref. [56] .

The method used in both cases is basically the same. First, the original equation is
written as a set of two coupled first order differential equations in suspended form, then
the Melnikov technique is applied, evaluating the Melnikov function which depends
upon the different parameters of the original nonlinear oscillator. Finally a criterion for
the occurrence of chaos of the Smale-horseshoe type is established for the damping
coefficient &, in such a way that whenever this coefficient is less than a critical value &,
then transverse intersections of the stable and the unstable manifolds do occur, and the
attendant chaotic dynamics is expected.

Then, the corresponding homoclinic bifurcation sets are constructed in the parameter

space, namely (6, fi,..., fa,w1,...,w,), where & is the damping coefficient,

{fi};‘=1,_,_m are the respective parameters of the forcings and {Wi}i=1,.n are the
corresponding associated frequencies. This homoclinic bifurcation set is eiven by the
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surface which is obtained through the mathematical condition provided by the Melnikov
method. For the quasiperiodically forced oscillator, {fi}i:l,...,n represent the
competing quasiperiodical external forces, while in the parametrically driven oscillator,
they represent competition between the parametric forcings and the external forcing.

The method to represent these bifurcations curves in the (wi,...,w,) space for a

chosen set of values of (& fi,..,fa) consists on defining n functions, say
{Xi(wi1)}i=1,..,n, in such a way that the mathematical condition obtained for the threshold

of chaotic behavior can be rewritten basically as
n .
-k + Zj fz’Xi(wi) =0. (46)
t= .

Since this equation is linear in f; and X;(w;), it can be regarded as a surface in the
parameter space. Then, using the properties of the functions X;(w;), it is possible to
redraw the bifurcation curves in the (wi,...,w,) space, from the curves in the
(X1,...,Xn) space. Finally, the complete homoclinic bifurcation sets of the corres-
ponding oscillator are drawn in the (Xj,...,X,) space and in the (wi,...,wy) space for
the different cases in the (9, f1,..., f») space. More details concerning this construction
can be found in [42, 56].

The main difference of both analysis lies in the different nature of the functions
Xi(ws). While in the case of the parametrically driven oscillator these functions possess
different maxima, in the quasiperiodically forced oscillator these functions possess their
maxima at the same frequency. This results in different bifurcations sets in the
(w1, ...,wy) space, along with some additional subcases for the second case, as is shown
in [56].

B. The parametrically driven Helmholtz oscillator

The equation of motion for the parametrically driven Helmholtz oscillator, with a
periodic external forcing and a parametric modulation acting both in the linear and
nonlinear dynamical variable, is given by

£ + 6% + o1 + Y sin(wat))z — B[1 + 7 sin(wgt)]z® = Fsin(Q), (47)

where o, B, 6, F, w,, wg and () are positive constants and, yaand g are parameters
which values are in the interval [0, 1].

For the unperturbed system, i.e., when Y,=7v=0=F =0, we obtain the
conservative Helmholtz oscillator. Its hamiltonian can be written as

. 2  az® Bz
P Z) = A e — 48
H(z,z) 5 T3 3 (48)
whose homoclinic orbit is given by the Egs. (30, 31).

The presence of the perturbations added to the oscillator causes the stable and
unstable manifolds to be destroved, eiving rise to the possibilitv of chaotic solutions. We
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are interested in the calculation of the Melnikov distance A(f,) for the case in which all
the perturbations are considered. A transformation of § — €8, Yo — €74, Vg — €7

and F — eF is done in order to apply the e first-order perturbation scheme of the

Melnikov theory.
Hence, the Eq. (47) may be written as

i =y, (49)

v = —az + Bz?
+e{ Fsin(Q) — a7,Tsz(t) sin(wat) + Bypx2, (t) sin(wpt) — Sy, (2)}, (50)

and the Melnikov distance is evaluated as

Aty) = / " Ysx(t —to) {Fsin(Q) — ayatsz(t — to) sin(w,t)

+Byp2,(t — to) sin(wgt) — 6yss(t — o)} d, (51)

which can be written in three parts, Ag(to), Ay, (to) and A, (te). The first term
corresponds to the case in which there is only external forcing, while the second and the
third terms are the contribution of the parametric forcing in & and 3 respectively.

Then, the computation of the Melnikov distance is A(%y) = Ao(to) + A, (to) + Ay, (o),
where

6w Q2F cos(Qty)  6a°/?

Bolta) = B sinh (7Q//a) = 562 | P (52)

B ts) = S tademloal (g ), .

B? sinh (mw,/v/@) o (53)
_ 3mo?wpyscos(wgte) (4 wh  wh
By (to) = B? sinh (rwg/+/@) (3 T o 355) ' (54)

The condition for transverse intersection and chaotic separatrix motion holds, when
A(to) changes sign at some #, [53]. This criterion for the appearance of chaos can be
finally written, for the case in which &« = 8 = 1, inthe form

TYpWh
2 sinh(7mwg)

2 2
5<6 5n FQ TYoW2

= 524
© = Soh(r$Y) * 2sinh(rwy) (4 — Swp + wp).

— B2
(=54 5wz) + 55)

Henra (fwvua Aofina
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0?2

fi=5rF X;(Q)= m, (56)
f—I X(w)——z——(—5+5w2)

2= 2')’0: 2\Wa) = sinh(7rwa) als (&Y
fa=1 X3(w )————w‘g—(4—5w2+w4) (58)

3= 578 3B = sinh(7wg) AT TR
the Eq. (55) can be rewritten in the form

—(5 + f1X1(Q) +’f2X2(wa) -+ f3X3 (wﬂ) = 0. (59)

The function X;(Q) has a maximum at Q2 = 0.61, Xz(wa)at w, = 1.65 and
X3(wp) at wp = 0.41. This can be observed in Fig. 2, which represents the plots of
X1(€2), X2(wa) and X3(wg), showing their respective maxima at different frequencies.

The remaining analysis of the homoclinic bifurcation sets for the parametrically
driven Helmholtz oscillator is then qualitatively the same as the one exposed by [56].
This is due to the similitude of the problem and also to the qualitative nature of the
analysis carried out there.

X

+0-3 - ."#\'\ XQ

40.2 L i

02 |}

-0.3 F

Figure 2. Plots of the auxiliary functions X;(Q), X(ws) and X3(wg). The most important

featiire 1c that the V.7/h 3 fiinctinne havua mav i ma af diffarant freom o oo
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C. The quasiperiodically forced Helmholtz oscillator

Now we consider that, instead of the parametric drive on the dynamic variable, we
add another external periodic forcing. Hence, the equation of motion of the
quasiperiodically forced Helmholtz oscillator is the following
i + 6% + az — Bz? = Fysin(Qt) + Fsin(Qt), (60)

which, after applying the first order perturbation theory, can be written as

!

T =y, (61)
§ = —ox + fz* + e{Fisin(ut) + Fosin(Qot) — 6y, (t)}. (62)

Then, the Melnikov distance is evaluated similarly to the parametrically driven case, ‘

A(ty)

+00
/ y,z(t — to){F1 sin(Qlt) + F2 SiIl(ta) - Jyw(t - to)} dt,

oo

61 QF Fi cos(Qito) + 61 QB F cos(Ste) 6a5/26 (63)
B sinh (7Qi/y/a) = B sinh (/@) 562 _

where y,, is given by the Eq. (31).
Therefore, for the case in which @ = 8 = 1, the expression for the bifurcation set
obtained through the Melnikov analysis is given by

—6 + 5w Fi¥csch(m Q) + 5w Fy¥csch(nQ,) = 0, (64)

which is qualitatively identical to the expression found in [42].
Notice that this implies that the homoclinic bifurcations curves are identical. The Eq.
(64) can be written as

=0 + f1.Xa (1) + f2Xo () = 0. : _ (65)

If we define

— —— ——Q% ' v

h=5mh  Xi(h) = sinh(7§)’ (66)
~ _ 02 ‘

=R X%(0)= sinh(7Q,)’ 7

then, the functions X;(€;) and X,(§%) have their maxima at the same frequency
Ql = Qg =0.61.
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IV. Analysis of the oscillator with linear damping:

Integrability and symmetries

A. Introduction

A way of studying the Helmholtz oscillator is by means of computational methods.
Nowadays, the use of a computer allows calculating good approximations to the solution
of many problems. However, analytical methods give important information about the
dynamical behavior of the system. Chaotic aspects of certain dynamical systems are
better understood when the analytical structure is known [57]. Actually, the analytical
structure comprises information about the integrability of the model, and this is useful to
assure whether chaos is possible or not. This link between integrability and chaotic
motion has been analyzed for several models, for instance, the Lorenz model [58 ] or the
Hénon-Heiles Hamiltonian [59].

The Lie theory for differential equations is a powerful method to study analytically a
dynamical system. Actually, this theory was developed originally to study differential
equations. Different techniques developed to solve certain types of equations (i.e.,
separable or exact equations) are regarded in this theory as special cases of a general
integration method.

Lie theory allows determining when the equation is integrable and its symmetry
group. Basically, a symmetry group of a differential equation is a group which
transforms solutions to other solutions of the equation. In the case of an ordinary
differential equation, this is useful to integrate it, since invariance under a symmetry
implies that the order of the equation can be reduced by one. Hence, for a second order
equation, as the Helmholtz oscillator, two symmetries are needed to integrate it and to
write the solution in terms of known functions.

However, besides the exact formulas and expressions for a generic oscillator, it is
important to remark that new insights and intuitions can be derived from its study, which
may help to understand the dynamics of other similar problems.

In this section the Helmholtz oscillator in Eq. (4) is analyzed in the absence of the
periodic forcing, i.e., when F = 0. Then, the equation of motion of a particle of unit mass
reads

%+ 6% + ax — fr? = 0. (68)

To investigate the integrability of this equation the Lie theory of differential
equations will be used [60, 61]. However, it should be noticed that the integrability of a
differential equation can be also analyzed by means of the Kowalewski's asymptotic
method (also called the Painlevé singularity structure analysis) and the same result is
achieved. For example, in [43, 62] the Duffing oscillator is analyzed in this manner.
Nevertheless, the Lie theory is used in this work because this approach, in addition to give
information about when the equation is integrable, allows reducing the problem to canonical
variables which eases integrating the equation in a more general and natural way.

It can be seen in [60, 61] that in order to find the symmetry group G admitted by a
differential equation with infinitesimal operator

9
X =n(t, x) ~ +£(t,2) 7, (69)
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it is needed to find an infinitesimal operator X,, such that
Xio(2 + 62+ az — f2?) = 0. (70)

The operator X, is

i} 0 .0 . .y O
X2 = &(t, z)a + n(t, ‘”)a_x + A(t,m,m)%— + B(t,x,x,x)(—ag, 71)

where A(¢,z,2Z) and B(t,z,z, %) are defined as follows

Altyz,2) = m+ &(ne — &) — %6, (72)
B(t,z,&,%) = my + £(2000 — &u) + 2% Nz — 26i2) ~33¢,, + E(ng — 26 — 32¢,), ’
(73)-

with the usual notation w, = %2,

All £(t,z) and n(t,z) such that verify Eq. (70) generate infinitesimal operators X

as in Eq. (69) which comprise the symmetries of the differential equation. Also, it is
known that one symmetry can be used to reduce by one the order of a differential
equation. Thus, to integrate a second order differential equation two symmetries are
needed. Hence, the Helmholtz oscillator will be integrated only if £(t,z) and 7(t, z) are

such that they generate two linearly independent infinitesimal operators.

B. Condition of integrability
Following the procedure to determine the symmetries of a differential equation
mentioned in the former section, Eq. (70) reads

Xi2(& + 0%+ ax — Bz°) = n(a—20z) + 6 (n + & (s — &) — £°&) + e
+ (200t — &) + 2% (Tox — 26m) — 8365 — (63 + 0z — B2°) (e — 26, — 32E,) . (74)

This is a polynomial of third degree in [:l:] which is zero if and only if the
coefficients of every monomial is zero

4% : &z =0, (75)
[£%] : o — 2 + 206, = 0, (76)
[£] : 272 — €u + 3&;(az — B2?) + 8¢, = 0, | a7
[1] : (e —2B) + 6n + mye — (ne — 26;) (0 — Bz*) = 0. (78)

From the condition in Eq. (75) it is plain that &(z,t) = f(t) + k(t)z, and this result
in Eq. (76) implies that n(z,t) = (k'(t) — 6k(¢))2® + zg(t) + A(t). If both results are
used in Ea. (77) it is deduced that
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4(k" — 6k') z +2¢' — (f" + k"z) + 3k (az — Bz®) + 6 (f' + k'z) = 0. (79

This is a polynomial of second degree in [z] which is zero if and only if the three
following equations are verified

[z%] : 38k =0, | (80)
[z] : k" 4 36k' — 3ak = 0, (81)
[1] : 4k" — f"+6f' +24 = 0. (82)

These three equations imply that & = 0, hence §&(z,t) = f(t) and
n(z,t) = zg(t) + h(t), with the following relation between f(t) and g(t)

of +2¢' — f" =0. (83)
According to these results the condition in Eq. (78) is reduced to
(9z + h) (o — 2Bz) + 6 (zg' + I') + zg" + A" + (az — B2?) (=g +2f') = 0. (84)

This is a polynomial of second degree in [z] which is zero if and only if the
following three equations are verified

[z%] : g+2f' =0, (85)
[z] : 2af'+6&g' + 9" — 28R =0, ‘ (86)
[1] : ah+ W + A" =0. (87)

The conditions in Eq. (83) and Eq. (85) imply that g = Aei® with A a constant.
When this result is used in Eq. (86) it is obtained that A = 515 (£6% — ) g. And finally,

this result in Eq. (87) means that L (246% +a) (£6° —a)g=0. But, since it is

supposed that @ > Oand so 4% + o > 0, there are only two options to verify all
conditions. 4

The first one is when g = 0. In this case 4 = 0 and f= constant and this means that
n = 0 and & = constant. Hence, only one infinitesimal operator is obtained, namely X =

9, and as a consequence, the differential equation is partially integrable.
The second option in order to get two symmetries is when

a= %52.

(88)
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In this case h = 0 and g = Aes®, which implies that f = B — %Ae%“ and
1 . . .
consequently £ = B — 2575‘463& and n = Azest, Therefore, two infinitesimal generators
are found, namely

X, = (89)

a)

1

—_ __E —Jt_?_ ldti
Xy = 2565 6t+mes pe (90)

In conclusion, only when it is verified that o = %52 the Helmholtz oscillator with

damping is completely integrable. Therefore, there is a lot of information about the
oscillator in this particular case, but there should be noticed that the information applies
just for a 2-dimensional manifold in the parameter space {4,a,S,7}. When o ;é

the oscillator is only partially integrable and there is no way to write down the SO]Ut]Ol‘l
in terms of known functions.

C. Reduction to canonical variables
The infinitesimal generators X; and X, defined in Eqgs. (89) are a 2-dimensional
algebra L, since [X1, X5] = ng, where [] is a commutator, called Lie bracket, defined

in the following manner [X;, X,] = X,X, — X,X). This Lie algebra can be classified
according to its structural properties [60] as type III because [X1, X5] = ng #0 and

X1V Xy = zes® # 0, where V is a pseudoscalar product defined this way X, v X, =
& — &, if X; = £8, + & for i=1, 2. Actually, L, is the algebra of the homothety

transformations of the real line R, where X, is a homothety operator and X, is a

translation operator.

Then, it is known that there exists a pair of variables w and 2, called canonical
variables, which linearizes the action of the group G on R and reduce the algebra L, to
X1 = w8y +28, and X, = 0,.

Let wand zbe

w = Azel®, s ©D
= Be 1%, o » (92)
where A and B are constants, then

x. - 20,0 69 '
1= 5w 5%82° (93)

B 9
Xy = ——.

fOAN
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Although it is not the canonical form, there is no need to introduce more changes
because it is simple enough to reduce the Helmholtz oscillator to an easily integrable
equation.

From the definitions stated in Egs. (91) the following result is obtained

d (dw\ 254 1,d 2.\ s
n _ & [ow) T Y 35t
Y S % (dz) B2 &t [(m + 55“;) ¢ }

254 45 f. .. 682 258
= Fzsc’ ¢ (m—}-&x—i—-—z—gx) = sagV (95)

X

Therefore, if A and B are chosen such that

25
2
_ 2P 6
AB® = =, o (96)

then w" = 6w/ , which is easily integrated yielding

(w')? = 4u® — g3, ‘ (97)

where g; is a constant.

The solution of this differential equation is the Weierstrass function p(2;0,gs),
since (2; g2,93) verifies that (p')? = 4p3 — gopp — g5. Hence, the solution of the
Helmholtz oscillator with damping is w = p(2;0,93), which is called the

equianharmonic case of the Weierstrass function because g, = 0 [39].

It should be noticed that g3 = 4w3 — (w')? is a first integral of motion and when a
change of variables from (w, 2) to (z, t) is carried out in Eq. (97), the first integral g
becomes I(t, z, ) in this manner

. 2 2 2 [ . : . it
[(a: + géx) — 5,3333] es’t = Aga=1 (t,.r,:c), (98)

2
— [ 6B34° . .
where A = ( 1955 ) , and consequently is always a positive constant.

The former result is an explicitely time-dependent first integral which is analogous
to the first integral of the Duffing oscillator obtained in [62]. Also, it can be related to
the Hamiltonian function of the Helmholtz oscillator with friction in the following way.
Define two variables p and g as follows

p = \/§ (SC -+ %51}) e%&, (99)

g = Voretst (100)
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so the first integral I(¢,z,Z) can be written as

1
I(p,q) = = —F (101)

Define a function H(p, g, ¢) related to the first integral I(p, g) as

H(p,q,t) = I(p,q)e 3% = (%p’ - 3—%«13) e 3%, (102)

This function verifies the Hamilton equations, namely

O _ petit =2 (x + géz) s =g,

op
%1;1 _ __%qze-sa —V/2Ba2ed (103)

and hence H(p, g, t) is a Hamiltonian function. Moreover, by means of Egs. (103) it is
obtained that

_1 B 2 1. 1 f
§= (p — —5p) ems% = ok % — =0pe™5, (104)
which can be written in terms of (z, ) by using Egs. (99, 100) as

642
okt (H&H 5 b ) —o. (105)

Therefore, H(p, g, r) is the Hamiltonian function of the Helmholtz oscillator with
friction for the integrable case since the solutions to E+0z+ 5% 667 25T — —fz? = 0 and the
solutions to the Hamilton equations of H(p, g, f) are the same. Then two remarks can be
made. Firstly, the explicitly time-dependent Hamiltonian is not a first integral of motion,
which is reasonable since the energy is not constant in this system because of the
damping. Secondly, the first integral I(p, g) can be seen as the energy of a particle in a
potential V(q) = —E%q“" and thus, the Helmholtz oscillator can be regarded as a system
with energy I(p, q) at ¢ = 0 which vanishes exponentially with time.

D. Solutions of the integrable case
1. Case g3=0

The equation to solve is (w')? = 4w® whose solution is w = (z—¢)™2 with ¢’ an
arbitrary constant. The definitions of wand z and the relation in Ea. (96) implies that
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2(t) = 20 (1+ coei®) ~ (106)

where c; is an arbitrary constant because ¢’ is arbitrary.

2.Case g3 >0

The Weierstrass function g (z;¢2,93) for g = 0 and g; > 0 can be written in terms
of the Jacobian Elliptic cosine cn [39] as

1+cn (2\/ﬁz+cz;m)
1—cn (2\/ﬁz+cz;m)

b)

w(z)=r+H (107)

with ¢, an arbitrary constant and where m = 2_3@ ~ 0.067 and H = V/3r with
r= 3 %‘1- Notice that, as it was explained in section II C, it is being used the elliptic
parameter m instead of the elliptic modulus %, which are related in this way k* = m

By using the definitions of w and z and the relation in Eq. (96) the following result
in terms of ¢ is obtained

662 : 1 1l+4ecn (cle_35‘+oz;m)

~25t .
x(t + e 87,
( ) 100ﬂ \/— 1—cn (Cle—-é&t + C2;m) (108)
where ¢, = 2y/HB and hence c is arbitrary because B is arbitrary.
3.Case g; <0
It is known [39] that p(2; 92, 93) = —p(i2; g2, —g3)- This relation lets apply the
result in Eq. (107) for g; < O this way
1 +cn (2\/H'iz + 2cg; m)
w(z) = -7 - ;
ey (2vVHiz +ioym) (109)
where m = 228 and H' = 3 with ¥ = ¢{ J&l By means of the relation

2
en(iu; m)en(u; m') = 1 where m + m' = 1, it is possible to write Eq. (109) as follows

‘1+ecn (2\/1—{_’23 + cz;m')
w(z) = -+ H' :
1—cn (2\/f{7z + ¢ m’) (110)




Nonlinear dynamics of the Helmholtz Oscillator 137

Hence, the solution may be written in terms of 1 by changing variables and using Eq. (96)

662 1 l+en (cle'%“ + ¢y m')
Cl I +
V3 1-e (cle"%‘“ + ¢ m’)

z(t) =

1008 (111)

where m' = 2%@ =~ 0.933 and ¢; = 2VH'B and hence c, is arbitrary because B is
arbitrary.

4. Discussion

In Fig. 3 the two basins of attraction of the Helmholtz oscillator are depicted in the
phase space. The grey region represents the set of initial conditions which end up in the
attractor (0, 0). They correspond to bounded orbits in the phase space which
asymptotically spiral inside the potential well. The white region is the set of initial
conditions which correspond to unbounded orbits, i.e., tending to infinity. The boundary

g3 >0

Figure 3. Relation between the geometry of the basins of attraction and the analytical features of
the exact solutions when the Helmholtz oscillator is integrable. The grey region is made of the
initial conditions which tend to (0, 0) and the white region is made of the ones tending to infinity.
The boundary between both basins corresponds to the set of initial conditions tending to the local
maximum and whose solutions have c, = 0. Also the curve g; = 0 is depicted and represents the
initial conditions whose solutions have the first integral of motion I(,z,) = 0. Finally, in dark
grey is shown the region where there are bounded orbits in absence of damping. It is
comparatively smaller than the region z — 0 because the integrable case implies a large damping,

since o = 56352, and hence dissipation makes more initial conditions end up inside the potential

well
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between both sets is formed by the stable manifold of an unstable periodic orbit.
Actually, this orbit is the one that stays forever on the local maximum (%ﬂ, 0) of the

potential, which means that all points in the boundary tend asymptotically to this point.

The basins of attraction are related to the analytical solutions via ¢, and to check
this, it is necessary to study the asymptotical behavior of the solutions. To calculate the
limit £ — oo when g5 > 0 the following change of variable z = c;e ~5% s carried out, so
the former limit becomes z — 0. This implies in Eq. (107) that

662 1+en(z+cym)\ ,
:llirgox(t) = 1m 1005 0 1008 (f iz en(z + cg;m) e (12)

It should be noticed that the Jacobian Elliptic function cn(z; m) is a periodic function

since cn(z + 2K; m) = —cn(z; m) 1i.e., 2K plays role similar to 7 in a circular function.In
fact, cn is periodic with period 4K where 2K ~ 3.197 because m = ;2:4@, and thus ¢; is
comprised within (-2K, 2K). Consequently, if c; = 4NK with N € Z then

. . 682 (1 l4en(zm)) ,
tl—lglox(t) - il—rftl) 1008 (ﬁ Tz cn(z;m) z
662 1 4 - 22 2 662
o 1 _ 68 113
230 1008 <\/§ T ) © = 2p (1)

where it has been used the following result cn(z;m) = 1 — 12? + o(2*) [39]. Therefore,
the boundary when g3 > O can be defined to as the points in the phase space whose
analytical solutions have ¢, = 0.

When g3 < 0 the result z(t — oo0) = 25,3 when ¢, = 0 is equally achieved.

However, now cn(z;m') is a periodic function with 2K' =~ 5.535 since m' = 2—'9@,
and thus c; is comprised within (—2K’ 2K'). Nevertheless, also in this case the
boundary can be defined to as the points in the phase space whose analytical solutions
have ¢, = 0. Also, it is easy to verify from Eq. (106) that in the case g; = O the solution

tends to 6% whency; =0
258 2=

In summary, the condition ¢, = 0 on the exact solutions yields the boundary between
the two basins of attraction, which links the geometry of these two regions in the phase
space with an analytical feature in the exact solutions.

Inside the gray region in Fig. 3, it can be seen in black the region where there are

bounded orbits in absence of damping. It is a small region as compared with the

integrable case because o = %65- and then, dissipation is more important than its

potential energy. In other words, many initial conditions which were unbounded orbits
without damping dissipate energy quickly in this case and, as they go by the potential
well, are trapped in it.

The existence of a strong dissipation in the integrable case also explains why there is
no oscillatory behavior in Fig. 4. When the orbit tends to the minimum inside the well
the particle is so damped that it goes straicht to that minimum.
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xz(t)

2442

Z — 1008

z—0

Figure 4. The phase space of the Helmholtz oscillator with friction has two basins of attraction
and hence there are three kinds of orbits. Orbits spiralling inside the potential well tending to the
minimum g« —+ 0, orbits tending to infinity # — oo and orbits tending to the local maximum

T — %% which correspond to initial conditions upon the boundary of both basins. Notice that

particles are so damped in the integrable case that inside the potential well they go straight to zero
instead of spiralling and so there are no oscillations in the curve z — 0.

V. Effect of the nonlinear damping

A. Introduction

Much of the discussion in the physics and engineering literature concerning damped
oscillations, focuses on systems subject to viscous damping, that is, damping
proportional to the velocity, even though viscous damping occurs rarely in physical
systems. This is done mainly because the introduction of a linear term in the differential
equation modelling the system makes easy its analysis.

Other types of dissipative forces, such as Coulomb damping or aerodynamic drag
exist and are present in real systems. However, they are usually neglected, since their
presence leads to nonlinear terms in the differential equation, making the system much
more difficult to analyze. This is why in describing many oscillatory phenomena that
occurs in nature, nonlinear oscillators with linear damping terms have been considered.

It is known also that frictional or drag forces which describe the motion of a object
through a fluid or gas are rather complicated, and different phenomenological models
have been proposed. One of the simplest empirical mathematical model is taken to be of

the form f(v) ox v|v["™", where v represents the velocity of the object and p, a

positive integer, the damping exponent.

Phenomenological models describing some type of nonlinear dissipation have been
used in some applied sciences such as ship dynamics [63, 64], where a particular interest
has deserved the role played by different damping mechanisms in the formulation of ship
stability criteria, and vibration engineerine (see [14. 151).



140 ‘ Juan A, Almendral ef al.

Of special interest to our purposes is the comprehensive study on the effect of
damping on basin and steady state bifurcation patterns of this oscillator, which is
reported in [19]. In particular they investigated the effect of damping on the resonance
response curves and how the main bifurcation boundaries, such as period-doubling
bifurcation and boundary crisis, where the system escapes, are affected. (see [65] for a
basic and rigorous description of boundary crises and the associated concept of transient
chaos).

They also showed how the damping level affects the erosion of the non-escaping
basin. Basically its main results are that, once the parameters of the system are fixed, a
decrease in the damping level produces the effect of shifting backwards in parameter
space the period-doubling bifurcation and the final boundary crisis leading to escape,
destroying the safe basins and increasing the basin erosion patterns. As a consequence, it
suggests the use of damping to suppress large scale erosion of the basin.

Nonlinear damping terms are of diverse nature and we choose here strictly
dissipative nonlinear damping terms proportional to the pth power of velocity. Taking
nonlinear damping terms of different damping exponent, we carry out a comprehensive
study on how this affects the dynamics of the oscillator, the main bifurcations and the
basin of attraction patterns when different periodic attractors may coexist prior to escape
from the potential well.

The numerical results obtained show evidence that the period-doubling bifurcations
and boundary crises leading to escape shift backwards in parameter space. An analytical
study using Melnikov theory predicts rather well a shift of this kind in the computation
and numerical observation of the appearance of the fractal basin boundaries [66, 67].

On the other hand different numerical experiments show that increasing the damping
exponent strongly influences the erosion pattern of the basin. All these phenomena
suggest that fixing parameters of the system and varying only the damping exponent p,
taking positive integers, has similar effects as decreasing the damping level for the linear
damping case.

B. The nonlinearly damped universal escape oscillator

In [19] it is studied with considerable detail the effects of the damping level on the
resonance response of the steady state solutions and in the basin bifurcation patterns of
the escape oscillator. In particular they analyzed the effect of using different damping
levels and how this contributes to the erosion of the safe areas in phase space, and they
also provide a comprehensive global picture of the main bifurcation boundaries.

If it is considered the same equation but including nonlinear damping terms as a
power series on the velocity, the equation of motion reads

n
i+ 626l + oz — Bz = Fsin(wi), (114)

p=1

where & is the damping level, p is the damping exponent, @ and B define the potential
and F and w the forcing amplitude and the frequency of the external perturbation
respectively.

However, for simplicity, only a single damping term proportional to the pth power
of the velacity e falken thiic the anitafinm ta cfiidy 1o
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i+ 6% |£]P" + 2 — 22 = Fsin(wt), (115)

where it is assumed that « = f = 1 in order to emphasize the effect of the damping. A
similar nonlinear damping term was used by [14, 15, 63].

As in [19], for most of the numerical computations it is used a fixed frequency w=
0.85 and a damping level 6 = 0.1 and when the damping exponent p is modified, it is
observed that the basins erose strongly as the damping parameter p increases. The effect
is similar to keeping fixed all parameters and decreasing the forcing term. For p = 1 and
for the initial condition (0.175, —0.55), which is close to a fixed point attractor, a nice
Feigenbaum period-doubling cascade in the forcing parameter range 0.1 < F < 0.109 is
found (this corresponds to the result shown in [2, 16]).

It is indicated in [19] that reducing the damping level, the period-doubling-escape
scenario takes place at lower forcing amplitudes. In particular they studied the influence
of modifying the forcing and damping level. When a quadratic nonlinear damping is
used, that is p = 2, and for the same initial condition as before, a chaotic cascade in the

parameter range 0.087 < F < 0.096 appears, and which is shown in Fig. 5. One of the
effects of using the quadratic nonlinear damping is precisely the lowering of the critical
forcing for which the homoclinic bifurcation and the escape boundary take place. In
particular for F = 0.0954, the result is a beautiful two piece chaotic attractor with a
Lyapunov dimension Dy = 1.22.

[ 0.088

0.09

[ 6.092

[ 6.094

o5 . |

Figure 5. Plot of the period-doubling bifurcation diagram of the nonlinear escape oscillator with
equation £ + 0.1z |¢| + = — 22 = Fsin0.85t for the initial condition (0.175, - 0.55). The
variation of the forcing amplitude is 0.086 < F < 0 096
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When p = 3, that is a cubic nonlinear damping, chaotic solutions are found as well in
the parameter region 0.083 < F < 0.093. Consequently it appears to be a shift backwards
in the period-doubling bifurcation threshold and escape as the damping exponent p is
increased. If the numerical experiments are compared to the results shown for the linear
damping case p = 1 in [19], we may conclude that increasing the damping exponent p
has similar effects as decreasing the damping level &.

There is a rather intuitive argument to justify this behavior. Think for simplicity in a
particle moving with certain energy inside the potential well. Using topological
arguments concerning the phase space of the escape oscillator, the velocity #(t) is
bounded and |2(¢)| < 1 for all times, for any motion inside the potential well. This being
so, it implies that |£(¥)|P < |2(t)| <1, for p > 1. So this explains intuitively the
observations of the numerical experiments carried out for different values of the
damping exponent, since using a parameter p > 1 implies a reduction of the damping
term which numerically is equivalent to using the linear damping term with a lower
damping level.

C. Melnikov analysis for the nonlinear damping case

The numerical results given in the previous section suggest that when a nonlinear
damping term is used instead of a linear damping term the global pattern of bifurcations
is affected. The Melnikov analysis provides an analytical estimate of the parameters for
which homoclinic bifurcations occur, and as it was proved by [66], the critical
parameters derived from this analysis signal the appearance of fractal basin boundaries
between coexisting attractors.

The aim now is to apply the Melnikov method to the nonlinearly damped and
sinusoidally forced escape oscillator

i+ 6% _|:E:|”_1 + z — z* = Fsin(wt), (116)

where p 2> 1 is the damping exponent. From the Egs. (30,31), it is easy to check that the
equations of the separatrix orbit for the unperturbed system given by the Eq. (115) are

Tep(t) = 1 - gcosh~2 (g) , (117)

3sinh (%)

2 cosh® (%) (118)

Ysz(t) =

When the damping and the forcing are taken into account as a small perturbation to
the unperturbed system, there is an associated Melnikov function which is given by

+00

o0
Yoo (8) Fsin (¢ + to)] df — / 52 (1)t (119)

—00

A(to,w, p) =/

—0Q

Thus the Melnikov function can he written ac



Nonlincar dynamics of the Helmholtz Oscillator 143

o . 1 orey 1P
Ato, w,p) = §Fcos(wto) /+ oin h(2) Sln(Wt)dt“fS/ [_{is;nh_(_g)_:, dt, (120)

w cosh® () (%) 2cosh® (£)

which gives the following result

_ 6mw? F cos(wio) 3\ p+2
A(to,w,p) = sinh(7) —26\5) Bl —5p+1 (121)

where B(m,n) is the Euler Beta function, which can be easily evaluated in terms of the

Euler Gamma function [39].

The critical forcing parameter F,, for which homoclinic tangles intersect, that for a
certain frequency w depends on the damping exponent p and the damping coefficient 6,
may be written as

_ sinh(mw) (3" (p+2 p+1 (122)
Fp=20 3mw? (2) B 2 ' 2 )

When more nonlinear damping terms are considered, then the Melnikov function
takes the form of

6mw?F cos{wt Ak +2
Alte,w,p) = ( 0) 226( ) B(p ; ,p+l) (123)

sinh(7w)
p=1

and consequently the critical parameter of the external perturbation is given by

n p+1 ‘
Fop = sinh(m) ) 50y (g) B (p—;—? 13%1) , - (124)
p=1

which gives an idea of the effect of the nonlinear damping terms on the threshold of
homoclinic chaos and the associated appearance of fractal basin boundaries.

The Melnikov ratio R(w, p) represents the ratio of the forcing to the damping level
(Fe/6), which obviously depends on the frequency w and the damping exponent p.
According to Eq. (122) it takes the expression

sinh(rw) (3" p+2 p+1 : '
Rlw,p) = =55 (E) Bl73 ) (125)

Fig. 6 depicts the variation of the Melnikov ratio R(w,p) with the damping exponent
p, which shows a decaying dependence on p. Hence when a nonlinear damping term is
used instead of a linear damping term, with a fixed damping level 6, then the critical
forcing for fractal basin boundaries to occur decreases.

In the case of linear damping, p = 1, the Melnikov ratio is given by R(w, 1) =
sinh(7w)/5 mf and the critical forcing, when w = 0.85, is F = 0.6334, which is the
expression obtained by [2, 16].



144 Juan A. Almendral er ul.

Melnikov Ratio

0.0 1.0 2.0 3.0 4.0 5.0
Damping exponent {p)

Figure 6. The Melnikov ratio R(w,p) = F.,/6 versus the damping exponent p is plotted. Here is

evidenced that for higher values of the damping exponent, the critical forcing necessary for the
fractalization of the boundaries decreases.

The critical forcing terms for the quadratic and cubic nonlinear damping, with
damping level § = 0.1, have been explicitly calculated. Its values are F' = 0.0297 for the
quadratic case and F = 0.0148 for the cubic case. As it was proved by [66], this critical
forcing gives the threshold for the fractal basin boundaries. Moreover for this critical
values the invariant manifolds associated to the fixed point of saddle type of the Poincaré
map associated to the escape oscillator, intersect themselves tangentially.

Fig. 7(a) shows the tangency of the unstable (the inset) and stable (the outset)
manifolds associated to the saddle fixed point situated at (0.999, —0.015), for F = 0.0297
and w = 0.85, with quadratic nonlinear damping. The homoclinic tangency for the
invariant manifolds associated to the saddle fixed point at (0.999, —0.007) for F = 0.0148
and w = 0.85 is shown in Fig. 7(b), when a cubic nonlinear damping is considered. The
inset is the unstable manifold and the outset is the stable manifold.

Hos
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'
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F M ] 0.5 2 P A ] ] 05 R

Figure 7. The figure shows the homoclinic tangency for different nonlinear damping terms, as
calculated with the help of Melnikov theory. (a) For a quadratic nonlinear damping term, p = 2, £
—01 and F=0 0297 (h) Faor a cuihie nonlinear damnino term n=2 A=01 and F = 0.0148
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D. Basins of attraction

A basin of attraction is defined as the set of points that taken as initial conditions are
attracted to a fixed point or an invariant set (see [65, 68]). As it was mentioned
previously, the escape oscillator may be seen as a mechanical oscillator where a particle
of unit mass moves inside an asymmetrical potential well, with the possibility of escape.
This means that besides the possible attractors that may coexist in the interior of the
well, the infinity may be taken as an attractor as well. The basin of attraction in this case
signals the points in phase space that are attracted to a safe oscillation within the
potential well, and the set of points that escape outside the potential well to the infinity.

A study of these basins of attraction for the escape oscillator was done extensively
and with considerable detail by [2, 16-21]. Attention is focused here in especial to the
paper by [19], where the effect of the damping level is analyzed. What we want to remark
here is the effect of using nonlinear damping terms on the equation of the escape oscillator

and how the basins of attraction are affected as the damping exponent p is increased.

We follow two strategies. The first one consists in fixing the forcing amplitude F =
0.05 and for three different sets of damping levels at § = 0.1, § = 0.15 and 6 = 0.2 for
different damping exponents, that is, linear damping, quadratic damping and cubic damp-
ing, to compute the basins of attraction. To numerically generate the basins of attraction, a
grid .of 300 x 300 points is selected in the region of phase space determined by the
rectangle of points (0.8, 1.4) x (=0.8, 0.8), which are taken as initial conditions. Depending
to which attractor an initial point goes, it is assigned a different color. Those initial points
which go to any attractor located in the interior of the well are assigned the color white.
The color black is assigned to any initial point which escapes the potential well.

These computations are shown in Fig. 8. The first column shows the basins of
attraction for a fixed value of the damping level, §= 0.1, the second column corresponds
to 6= 0.15 and the third column to 6= 0.2. On the other hand the first row corresponds
to damping exponent p = 1, that is, linear damping, the second row to p = 2, quadratic
nonlinear damping, and the third row to p = 3, cubic nonlinear damping. Observing these
basins of attraction in Fig. 8 it is inferred that for a fixed damping level, the increase of
the damping exponent, has a clear effect on the destruction of the safe areas inside the
well and the erosion of the basins increases notably. If we compare these results to the
corresponding results for linear damping for which only the damping level is varied, the
conclusion is that they are equivalent to a decrease of the damping level.

The second strategy is fixing the damping level at §= 0.1 and considering different
values of forcing amplitudes such as F = 0.03, F = 0.05 and F = 0.07 for the linear,
quadratic and cubic dampings. The first column of Fig. 9 shows the basins of attraction
for F = 0.03, the second column corresponds to F = 0.05 and the third column to F =
0.07. The rows correspond to linear, quadratic and cubic damping respectively.

The basins in this figure show that indeed the damping exponent has a strong effect
on the erosion of the basin, but the strongest effect is manifested by the increase of the
forcing as it happens as well in the linear damping case. Similar heuristic arguments as
the ones given in the previous sections explain this behavior.

In some of these basins shown in Fig. 8 & Fig. 9 two attractors coexist in absence of
any kind of fractalization of the boundaries. Something interesting to mention
concernine most basins shown here ic the nrecence of verv clear hacin cellc 12 &R £01
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Figure 8. The figure shows the basin erosion pattern of the escape oscillator %+ 4 |£P~! +
z—z% = 0.05 sin 0.85¢. The first column corresponds to a damping level §= 0.1, the second to §
= 0.15, and the third one to é = 0.2. Different rows represent different damping exponents. The

first row corresponds to p = 1, the second row to p = 2 and the third row to p = 3.

Figure 9. Basin erosion pattern of the escape oscillator & + 0.1z |z[P~! + z — 22 = F'sin0.85¢.
The first column corresponds to a forcing amplitude F = 0.03, the second to F = 0.05, and the third
one to F' = 0.07. Concerning rows, the first row corresponds to p = 1, the second row to p = 2 and
the third row to n =3
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The notion of a trapping region clarifies this idea. A trapping region is a region in phase
space from which points cannot escape. Once the trajectory enters the region cannot
leave it and also there must be at least one attractor located there. A cell is a region in
phase space whose boundary consists of pieces of the stable and unstable curves of some
periodic trajectories. When a cell is a trapping region then is a basin cell. One of these
basin cells is shown crosshatched in Fig. 10, and corresponds to p =3, § =0.1 and F =
0.03. A period 1 orbit which generates the basin cell, which is situated at the coordinates
(0.092, 0.425) and the boundaries are its associated stable and unstable manifolds.

L R 8.5 8 9.5 1

Figure 10. Basin cell, crosshatched, of the escape oscillator with equation # + 0.1% |:z:|2 +
z — 22 = 0.03 sin 0.85¢ generated by a period 1 orbit situated at (0.092; 0.425).

VI. Concluding remarks

The Helmholtz oscillator is a simple model for studying phenomena which under
certain conditions present a stable behavior of oscillatory kind, but for other conditions
the behavior is unstable (i.e., this oscillator presents an escape). Then, a question of
interest is what happens close to the separatrix when a forcing term is introduced. The
effect of forcing is not relevant for an orbit with little energy (i.e., close to the minimum
in the potential well), because essentially its stable behavior is not altered by the forcing.
The width of the stochastic layer by using the separatrix map has been computed. This
gives the width of the energy band around the separatrix, where it is likely that an orbit
presents transient chaos.

We have shown that there exist two basic types of homoclinic bifurcation sets. If we
have a quasiperiodically driven nonlinear oscillator, we obtain a bifurcation set from
which a homoclinic bifurcation set as in 421 ic derived However if we cancider the
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parametric drive of one component of the state variable, or both, along with the external
forcing, the homoclinic bifurcation set for the nonlinear oscillator is similar to one in
[56]. This is nothing strange, because the calculation of the bifurcation set depends
directly on the computation of the Melnikov integral. For the quasiperiodically driven
systems this integral involves integrands of the same nature. For the parametrically
driven systems, the Melnikov integral involves terms of different nature, since the
parametric terms involve the state variable.

Another important aspect considered in this paper is the inclusion of friction. To
solve the equation of the Helmholtz oscillator with friction and without forcing the Lie
theory for differential equations is used. We show that the Helmholtz oscillator is
completely integrable only when certain relation between the parameters is satisfied.
When this relation is not satisfied, the equation is partially integrable. Also, we calculate
that the symmetries for the completely integrable case are a translation and a homothopy.
Moreover, this two symmetries are the two dimensional algebra of the homothety
transformations of the real line, and the symmetry for the partially integrable case is a
translation.

A first integral of motion is obtained when the equation is integrated by using one
symmetry. We prove that this time-dependent integral of motion is related to a
Hamiltonian function. The second symmetry allows integrating the first integral of
motion to obtain, as a solution, the Weierstrass function. Finally, we write this solution
in terms of Jacobian Elliptic functions to show that there exists a relation with the basins
of attraction of the oscillator.

We have analyzed the case of nonlinear dissipation in detail. We understand that,
although the study of the effect of the damping level on the dynamics of the universal
escape oscillator is interesting, this has to be extended to the case of nonlinear
dissipation, because it is a natural extension to some phenomenological models. In
particular we have analyzed by numerical methods, and also by using the analytical
method provided by the Melnikov theory, how the introduction of nonlinear damping
terms affects the threshold of the period-doubling bifurcation route to chaos, the
boundary crises leading to final escape to infinity and the threshold parameter for the
appearance of the fractal basin boundaries.

As a result, a good agreement between the analytical estimates and the numerical
observations is observed. Moreover the effect of using different nonlinear damping terms
on the erosion of the non-escaping basin has been studied. By fixing all the parameters
of the system and varying only the damping exponent, the observation is that the
increase of the damping exponent provokes a rapid erosion of the basin of attraction.
When the damping level is increased a safe region increases, but it is rapidly eroded as
the damping exponent also increases. Decreasing the forcing level for the linear damping
case helps in the suppression of the erosion basin, but if at the same time the damping
exponent is increased the situation is similar as if the forcing were increased. When the
forcing is increased the erosion of the basin is bigger, and becomes even bigger if at the
same time the damping exponent is increased. In the case of the linear damping and a
fixed forcing, the erosion of the basin increases while the damping level is decreased,
and a fixed value of the damping level the erosion is bigger when the forcing is
increased. All this suggest that the increase of the damping exponent has similar effects
as of decreasing the damping level for a linearly damped model.
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Much work has been done on the study of this simple nonlinear oscillator, although

it should not be thought that it is exhaustive. As a paradigm in nonlinear dynamics, the
progress carried out on it, might be applied to analyze the different phenomena in nature
that can be modeled by it. In this context it is possible to affirm that in spite of the work
done, many aspects are still open for future research.
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