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Y para que conste que la citada Tesis reúne todos los requisitos necesarios para su
defensa y aprobación, firmo el presente certificado en Móstoles a quince de junio de
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Catedrático de F́ısica Aplicada

Universidad Rey Juan Carlos





A mi padre

iii





Agradecimientos

En primer lugar, y por varios motivos, a mi Director de Tesis, el Catedrático de F́ısica
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Chapter 1

Introduction

What is the relation between neurons in the brain, components in an electric circuit,
web pages in Internet or genes in our DNA? It looks like we can hardly find a
link. They are natural and man–made systems constituted by many units whose
individual behavior may be understood or not. However, despite the enormous
differences among them, it turns out that all these systems can be analyzed from
the point of view of the so–called complex networks theory.

In this approach, the properties that we find in a system cannot be derived from
its features at a lower level of description. For instance, however much we understand
the dynamics of a neuron or the mechanisms involved in the neurobiochemistry of
the brain, they are not enough to understand the emergent properties that our brain
exhibits, such as memory or language.

This is in complete disagreement with the reductionism viewpoint which affirms
that we just need to analyze exhaustively every single component of a system to
globally understand it. This belief assumes that, once we have “broken” a system
into well studied pieces, it can be reassembled to derive all its relevant properties [1].
This is likely the thought that lead Carl Anderson to declare, after his discovery of
the positron in 1932, The rest is chemistry!

Reductionism considers that all variables are important to describe Nature and,
consequently, the knowledge we derive from a system cannot be exploited in oth-
ers. On the contrary, complex networks theory considers that there are irrelevant
variables, which can be neglected, and behaviors shared by different systems. The
success of this methodology in the past years makes complex networks theory an
essential ingredient to study complex systems.

1.1 Complex systems

The science of complex systems is regarded as one of the most important scientific
challenges for the next years since its manifest destiny is prospecting, mapping,
colonizing and developing the “interdisciplinary” territory between the traditional
sciences [2]. This broad scope is probably the reason why it is not easy to find an
all–encompassing definition of complex systems.

1



2 Chapter 1. Introduction

Nevertheless, we can start identifying some misleading prejudices which should
be discarded.

Simple systems have a simple behavior. There is a large number of examples show-
ing how simple models exhibit complex behaviors. For example, it is well
known that the nonlinear dynamics of a forced pendulum or a double pendu-
lum (even if it is not externally forced) are chaotic [3].

A complex behavior is due to complex causes. This idea, related to the previous one,
leads us to believe that only a complex model can explain the true nature of
reality. However, not only the understanding of reality is much better with
a simple model, but even its precise description can be often achieved with a
simple model.

A property rather common in complex systems is that they show fine–tuned
processes in time and fine–tuned structures in space, apparently, out of nothing
but “randomness” [4]. This is due to the fact that complex systems always lie
between order and disorder. For instance, the spatial distribution of the flour beetle
Tribolium is neither random nor geometrical [5]. Actually, this balance between
order and disorder is what an observer intuitively identifies as “complexity”.

If complex systems are found at the edge of chaos [6] is because their evolution
is not commanded by an external organizing principle, but they self–organize (e.g.
flour beetle). Interestingly, this situation is also typical in critical phenomena or
phase transitions [7], whose study in the context of the Statistical Physics caused
the development of two key concepts: Universality and scaling.

Universality. An important feature in complex systems is that the global behav-
ior cannot be derived from its parts. For example, the global dynamics of a
population is not the mere aggregation of individuals. There is not an av-
erage individual whose behavior can be considered “typical” to analyze the
population as a sum of these “standard people”. Furthermore, the psycholog-
ical features of each person, despite their importance to characterize him as
individual, are useless to describe the whole population.

Universality explains why we can find the same global behavior in apparently
different systems. When a system presents universality means that it follows
universal laws that are independent of the constituents. Consequently, the ex-
istence of universality implies that some subtle, and usually simple, mechanism
is at work.

Given the impossibility of reducing some systems to their components, it is
convenient to differentiate between complicated and complex systems. A com-
plicated system has a large number of components governed by well defined
rules to accomplish a function in a limited range of responses to environmental
changes (e.g., an aircraft). On the contrary, the connectivity of the components
in a complex system is plastic and roles may be fluid in order to self–adapt to
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changes (e.g., a flock of geese) [8]. Then, while in a complicated system the
reductionism is still valid, in a complex system fails.

Scaling. The presence of scaling laws in a self–organized system implies that its
functionality is not affected by changes in its size. In other words, a system
with scaling properties does not have an optimal size since it keeps working
as new elements are added. For instance, no human being has ever been taller
than 3 meters because we have a well defined scale. A person one order of
magnitude taller is beyond the physiological possibilities of human body. Such
a giant would die overwhelmed by his own weight as a whale beached at the
seaside. However, a city with some thousands of inhabitants can grow up to
10 millions since it self–organizes to cope with the increase of population [9].
Then, since a city can be fully functional for very different sizes, we say that
it scales.

1.2 Networks

Complex systems are often constituted by many elements interacting among them.
Hence, before considering the nature of the elements, the first step is just to describe
the set of interactions by means of a network. From this viewpoint, each element
is represented by a site (physics), node (computer science), actor (sociology) or
vertex (graph theory) and the interaction between two elements corresponds to
a bond (physics), link (computer science), tie (sociology) or edge (graph theory).
Graphically, nodes are depicted as dots and links as segments connecting two of
these dots.

Given the simplicity of this methodology, networks appear everywhere [10]. For
instance, the physical connections between computers on the Internet can be re-
garded as a network. And this approach is enough to derive several results about
its connectivity and to uncover the nodes that can be overloaded by the requests of
their neighbor computers [11]—two nodes joined by one link are called neighbors in
the jargon of networks.

Since the number of computers on the Internet is large and changing, we can
focus on the level of routers—special computers that control the transfer of data.
Then, routers are nodes in our network and their physical connections are links.
Furthermore, since routers are united in domains, it is also possible to consider a
network in which each domain is a node and links stand for connections between
domains (see Fig. 1.1).

Many other examples can be analyzed as networks. The following are only a few
of them:

Ecological and food webs. Species in an ecosystem can be seen as nodes in a network
and the existence of a prey–predator relationship between them is rendered as
a link [12].

Word web of human languages. Words can be also considered as nodes and the se-
mantic or syntactic connections in a given language as links [13].
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A B

C

Figure 1.1. Schematic representation of the physical connections on the Internet. To
transfer a file between two users, the packets encoding the file travel from the source host
to the destination host via routers. (A) This figure depicts how hosts connect to routers
(black boxes) and routers among them. (B) The corresponding network at the level of
routers is drawn and, (C) the network at the level of domains.

Social networks. We can describe the relationships in a social group as links in a
network whose nodes are people [14].

Neural networks. If we represent the 282–neuron neural network of the nematode
C. elegans as a network, nodes are neurons and links are their synaptic con-
nections [15].

Metabolic networks. Metabolites are regarded as nodes and the chemical reactions
between them define the links [16].

It is important to remark, however, that the definitions of node and link are not
always easily applied to a real system. For example, can we say that “put up” are
two words? Orthographically, there is a blank thus they are two words. However,
semantically, “put up” refers to a concept that cannot be reduced to the meanings
of each word and, in this sense, it is one word. Similar ambiguities to identify
nodes or links cause that, sometimes, the description of a system as a network is
not straightforward.

1.2.1 Types of networks

A set of nodes joined by edges is only the simplest network. We may find a complex
system whose constituents can be classified into several non–overlapping groups.
Then, the elements in each group may be represented with their own vertex. Like-
wise, we may have several types of edges to distinguish different relationships.

For instance, in a social network we can differentiate nodes by nationality, sex,
age, or many others. And edges can represent friendship, animosity, or geograph-
ical proximity. Figure 1.2 is an example of social network whose links are roman-
tic/sexual relations between students in an anonymous high school and nodes dif-
ferentiate men and women [17].
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Figure 1.2. The structure of romantic and sexual relations at a high school. Each
circle is a student (men in blue and women in pink) and lines connecting them represent
romantic/sexual relations occurring within the six months preceding the interview that
allowed gathering the data. The numbers close to some figures count how many times
that pattern was observed. After [17].

Directed and undirected networks

We have been implicitly assuming that the relationship between nodes is symmetric.
This is indeed true if a link represents, say, geographical proximity—if A is close to
B, then B is close to A. However, in many cases the connection between nodes is
asymmetric since the edge runs only in one direction. When this happens, we say
that the link is directed—directed edges are also known as arcs.

For instance, trophic relationships in a food web are good examples. Figure 1.3
is a simplified representation of the Arctic food web in which the asymmetry of the
relationships are evident. The polar bear preys on three types of seals but seals do
not prey on polar bears. This is graphically shown as three arrows from the polar
bear to the seals.

Networks composed of directed edges are referred to as directed networks or
sometimes digraphs. Likewise, those networks without directed edges are called
undirected networks. Notice that an undirected network can be represented by a
directed one having two edges between each pair of connected vertices, one in each
direction—graphically, we can draw A—B as A�B.

Weighted networks

Edges can also carry weights to measure the capacity or the intensity of the relation-
ship between two vertices [18]. Examples are the existence of strong and weak ties
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Figure 1.3. The Arctic food web as an example of a directed network. This is a
simplified representation since only the important trophic relationships appear and the
nodes corresponding to arctic birds, zooplankton and phytoplankton comprise several
species. The links are represented graphically as arrows to show the asymmetry due to
the fact that there is a predator–prey relationship.

in social networks [19], uneven fluxes in metabolic reaction pathways [20], unequal
traffic on the Internet [21], or different predator–prey interactions in food webs [22].
All these networks are better described as weighted networks—networks in which
each edge has associated a value measuring the strength of the relationship (see
Fig. 1.4C).

Bipartite networks

One of the simplest examples of network with different vertices is the so–called
bipartite network, which has two types of nodes and links joining only nodes of
unlike type (see Fig. 1.4D). The network depicted in Fig. 1.2, corresponding to a
high school, is almost bipartite since there are two kinds of nodes (men and women)
and all edges but one connect a man with a woman.

Actually, many social networks are bipartite—in the jargon of sociology are
known as affiliation networks. Since a person can be member of several groups
(e.g., a football club), it is natural to consider two types of vertices—one for people
and the other for groups—with links between them representing group membership
(see Fig. 1.4D). Some examples are networks of chief executive officers [23], boards
of directors [24], scientific collaborations [25], or sexual contact networks [26].
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Bipartite networks are often studied by projecting them onto one set of vertices
or the other—they are called one–mode projections. Figure 1.4D shows a bipartite
network and its two one–mode projections. In particular, if we suppose that blue
nodes are directors of companies and green nodes are boards, how do we calculate
the neighbors of, say, director 3 in the corresponding one–mode projection? Since
this director is member of boards A and B, he becomes neighbor of 1−2−4 because
2 is also in B and 1−4 are in A. The projection onto boards is similar. For example,
board A is integrated by director 1 − 3 − 4, thus its neighbors are B and C since
director 3 is also in B, 4 is in C and 1 is only in A.

C

A

D

B

Figure 1.4. Graphical representation of the main types of networks. (A) Here a general
network is depicted with two types of vertices (blue circles and green diamonds) and two
types of edges (dashed and dotted lines). (B) This figure shows a directed network as a set
of vertices linked with arrows to emphasize the directionality of the edges. Notice that the
bidirectional arrows between some pairs of nodes in fact represent two directed edges. (C)
In this weighted network each edge has associated a value measuring the strength of the
relationship. Although the edges in this case are undirected, it is also possible to define
weights in a directed network. (D) Bipartite networks (top diagram) are characterized by
having two types of nodes and links connecting always vertices of unlike type. They can
be projected onto one set of nodes or the other to obtain an undirected network (bottom
diagram).

Adjacency and weights matrices

All the former networks can be described using a matricial formalism and, usually,
it is a fruitful approach to study their properties. Given a network with N nodes,
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we can define the so–called weights matrix W whose entry wij (i, j = 1, ..., N) is the
weight of the link from node i to node j.

If there is no weights in the network, we define instead the adjacency (or con-
nectivity) matrix A. The elements of A are fixed as follows: aij = 1 (i, j = 1, ..., N),
if the link from i to j exists, and aij = 0 otherwise (see Fig. 1.5).

⎛⎜⎜⎝
0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 1 0 1
1 0 0 0
0 1 0 1
0 1 0 0

⎞⎟⎟⎠
A B

Figure 1.5. The adjacency matrix. An undirected network is shown on (A) and a
directed network on (B). Notice that the diagonals of the matrices only contain zeros and
that the undirected network has associated a symmetric matrix.

We can obtain the Laplacian matrix L (also known as Kirchhoff matrix ) from
the adjacency matrix A. The Laplacian matrix is simply L = K −A, where K is a
diagonal matrix with elements

kii =
N∑

j=1

aij .

Note that all rows of L sum, by definition, zero.
From the spectra of L—the set of its eigenvalues—we can derive useful informa-

tion about the corresponding network [27, 28]. This is due to the fact that spectral
properties are related to the topological features of the network.

1.2.2 Basic concepts about networks

Once we have defined the best network to describe a real system, we can start
studying its features. Many quantities have been proposed in the past few years to
analyze a network, but three of them are of major importance to understand the
recent development of complex network theory [29].

Average path length

A path in a network is defined as a sequence of vertices in which each successive
vertex, after the first, is adjacent to its predecessor in the sequence. Then, a path
between a given pair of vertices is said to be a shortest path if its weight is minimal—
the weight of a path is just the sum of the weights that we find along the path. In
unweighted graphs, since all edges have weight one, the weight of a path is just the
number of edges.

We define the distance dij between vertices i and j as the weight of the shortest
path that connects these two vertices. Then, the diameter of a network with N
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nodes is the maximal distance between any pair of vertices and the average path
length � is the average distance between all pairs of vertices (see Fig. 1.6A),

� = 〈dij〉 =
1

N(N − 1)

∑
i�=j

dij .

Notice that the former definitions are only valid if the path between two nodes
exists. However, this is false in general. For instance, we may find in a directed
network that there is a path from node A to B but not from B to A. Likewise, in an
undirected network, nodes are not usually in a unique component—the set of nodes
that can be connected through a path—but in several isolated components.

Nevertheless, there are two possibilities to tackle this problem. In the case of
undirected networks, it is usual to calculate the average path length only within
the giant connected component—the component with more nodes. An alternative
approach to avoid working only with the largest component is to define the average
path length as the “harmonic mean” distance between all pairs,

� =
1

〈d−1
ij 〉 =

(
1

N(N − 1)

∑
i�=j

1

dij

)−1

,

where dij = ∞ if there is no path between nodes i and j. Some authors call efficiency
of a network to E = 〈d−1

ij 〉 (see Fig. 1.6B).

⎛⎜⎜⎝
− 1 2 1
1 − 1 1
2 1 − 2
1 1 2 −

⎞⎟⎟⎠
⎛⎜⎜⎝
− 1 ∞ 1
1 − ∞ 2
2 1 − 1
2 1 ∞ −

⎞⎟⎟⎠
A B

Figure 1.6. The average path length. (A) Here it is depicted an undirected network
and the corresponding distance matrix D, whose entry dij is the distance from node i to j.
The average path length may be obtained from D as � = 〈dij〉 = 1.3 or 1/E = 1/〈d−1

ij 〉 =
1.2. (B) A directed network and its distance matrix D are shown. Since some pairs of
nodes cannot be connected and the distance between them is infinite, we can only use the
efficiency to measure the average path length, 1/E = 1.6.

Despite the concept of efficiency can be applied to any network, it has been
adopted only occasionally [30] since, usually, the numerical difference between both
methods is little but the analytical treatment is more difficult using the “harmonic
mean”. This is due to the fact that many directed networks can be analyzed as
undirected and because, as we will see later, the giant connected component of a
real network often spans the majority of its nodes.

Degree distribution

This concept is the simplest and most studied one–node feature that we can find in
a network. Since it is still an open question how to define this quantity in a weighted
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network, we focus here on directed and undirected networks. The degree of a vertex
i, ki, is defined as the number of edges that are connected to i. In terms of the
adjacency matrix is just

ki =
N∑

j=1

aij ,

where N is the number of nodes in the network.
We can then calculate the degree distribution P (k), which gives us the probability

of finding a vertex with degree k, as P (k) = M(k)/N , where M(k) is the number
of vertices whose degree is k (see Fig. 1.7A). Obviously, we can also calculate the
average degree or coordination number,

〈k〉 =
1

N

∑
i

ki =
∑

k

kP (k) =
2L

N
,

where L is the total number of edges in the graph.
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Figure 1.7. The degree distribution. (A) Here the degree distribution of the undirected
network in Fig. 1.6A is plotted. Since the degrees are ki=1...4 = {2, 3, 1, 2}, the average
degree is 〈k〉 = 2.0. (B) The in–degree (blue) and the out–degree (red) distributions of
the directed network in Fig. 1.6B are shown. The in–degrees are kin

i=1...4 = {1, 3, 0, 2} and
the out–degrees are kout

i=1...4 = {2, 1, 2, 1}, thus 〈kin〉 = 1.5 and 〈kout〉 = 1.5

If the network is directed, the degree of a node is twofold. We have the so–called
out–degree of the node (i.e., the number of outgoing links),

kout
i =

N∑
j=1

aij ,

and the in–degree (i.e., the number of ingoing links),

kin
i =

N∑
j=1

aji .

Consequently, we need two distributions, P (kout) and P (kin), to describe the network
(see Fig. 1.7B).
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Clustering coefficient

Watts and Strogatz (WS) define in [31] the local clustering of a vertex i, Ci, as the
ratio between the number E of edges connecting the ki nearest neighbors of i and
the total number ki(ki − 1)/2 of possible edges between these nearest neighbors,

Ci =
2E

ki(ki − 1)
.

Ci is only defined for those vertices i with degree greater than 1 and it is always
a number between 0 and 1. While Ci = 1 means that all neighbors of node i link
each other (node 4 in Fig. 1.8C), Ci = 0 implies that there are no links between
them (node 4 in Fig. 1.8B).

A B C

Figure 1.8. The clustering coefficient. The local clustering Ci and the clustering coeffi-
cient C are here calculated for three simple examples. (A) Ci=1...4 = {1/3, NA, 1, 1} and
C = 7/9. (B) Ci=1...4 = {NA, NA, NA, 0} and C = 0. (C) Ci=1...4 = {1, 1, 1, 1} and C = 1.

Since the definition of local clustering given by WS holds only for undirected
networks, several authors have proposed other alternative measures to include di-
rected and weighted networks [32, 33]. Although these measures are not equivalent
in general, they all define the local clustering of a vertex i in a directed network as

C
(d)
i =

A

ki(ki − 1)
,

where A is the number of arcs (directed edges) linking the ki nearest neighbors of i.

Note that C
(d)
i , applied to an undirected network, coincides with Ci since an edge

can be seen as two arcs, one for each direction.
The clustering coefficient of a network, C, is just the average value of Ci. Since

the local clustering is within the interval [0, 1], the clustering coefficient is also
a number between 0 and 1. Notice that C = 1 is only possible in a full connected
network—a network in which each node is linked to every other node (see Fig. 1.8C).

The clustering coefficient has its roots in Sociology where it is named fraction
of transitive triples or, simply, transitivity. In a social group, it is typical that two
individuals with a common friend (a connected triple in the jargon of Sociology)
are also friends and, consequently, they form a triangle—this set of three nodes
completely connected is called a transitive triple in Sociology. Then, transitivity
measures the ratio of triangles in a network of acquaintances as

T = 3 × number of transitive triples

number of connected triples
.
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The transitivity T and the clustering coefficient C are different mathematically
since the latter weights the contributions of low–degree vertices more heavily [34].
For instance, T and C coincide in networks B and C of Fig. 1.8, as expected since
they are two extreme cases, but network A has T = 3/4 and C = 7/9. In this
case, the difference is small but it can be striking in other social networks, as in the
network of film actors where T = 0.20 and C = 0.79.

Both measures are used in the literature since, usually, T can be derived ana-
lytically and C is easy to calculate numerically. Then, when working in this area,
it is important to clarify which one is being used. Nevertheless, these two quanti-
ties reflect the same concept and, as it will be clear in the following sections, the
mathematical differences will not be important for our purposes.

1.3 Brief history of network theory

1.3.1 The beginning

The legacy of Leonhard Euler (Basel 1707—St. Petersburg 1783) has never been
equaled in quantity and quality along the history of Mathematics. He was publishing
in many fields of Mathematics and Physics since 1726 (winning the French Academy
Award) until he died. The 73 large volumes that comprise all his work, Opera Omnia,
contain 886 books and articles written in Latin, French and German. Just the view
of this work, shelf after shelf, is overwhelming.

Furthermore, besides quantity and quality, Euler always wrote to ease, not to
obfuscate, the reading of his work. He was aware of the difficulties that many people
find learning mathematics and he tried to be as kind as possible with his readers.
The following generations of mathematicians appreciated this fact and they chose
his notation to write their own results. Nowadays, his work still looks modern.

Among all the pages in Opera Omnia, there are seminal works which addressed
new fields in mathematics, such as the variational calculus, complex analysis or
differential equations. Actually, there are important theorems due to Euler almost
in every mathematical area. In particular, he was the founder of the so–called graph
theory, in which the term graph should be understood as synonymous of network
(although some authors consider that only the mathematical abstraction of a real
network is a graph).

Könisberg, now Kaliningrad (Russia), had in 1735 seven bridges to connect two
islands to the margins of the river Pregel and between them (see Fig. 1.9). Many
people who liked to go for a walk wondered if there was a route that crossed the
seven bridges only once—this is referred to as the Könisberg puzzle.

When the citizens concluded that it was impossible, they presented the problem
to Euler who, in turn, formulated a more general problem [35] that set the basis of
graph theory:

Given any configuration of the river and the branches into which it may
divide, as well as any number of bridges, to determine whether or not it
is possible to cross each bridge exactly once.
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Figure 1.9. The old city of Königsberg. In 1735, Königsberg had seven bridges to
connect the margins and the two islands in the middle of the river Pregel. Euler set the
basis of graph theory when he was asked to answer the question: Is it possible to go for a
walk using each bridge only once?

Euler’s answer exemplifies how often the accurate formulation of a problem is
almost its solution. He noted that only the constraints imposed by the bridges are
important, not the distances. Thus he transformed the Könisberg puzzle into an
equivalent topological problem that admitted an easy solution. Könisberg became a
graph in Euler’s mind. The edges were the bridges and the vertices were the islands
and the margins of the river (see Fig. 1.10).

A B

Figure 1.10. Königsberg puzzle solution. (A) Euler noted that distances are not im-
portant in this problem, thus he focused on the constraints: The margins (A and C), the
islands (B and D) and the bridges (in red). (B) Graph rendering the city. Each link is a
bridge and nodes are the four areas in which the river Pregel divides Königsberg.

Once the city is represented as a graph, the Königsberg puzzle can be formulated
as follows: Is it possible to find a path between two nodes for which every link
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appears exactly once? Such path is called an Euler walk in graph theory.
Euler proved that any graph with N nodes and L (undirected) links verifies that∑N

i=1 ki = 2L, where ki is the degree of the node i. Hence, the sum of degrees is
even and, consequently, the number of nodes with odd degree is even.

This simple result was enough for Euler to demonstrate that the solution depends
on the number No of nodes with odd degree in this manner:

1. if No > 2, no Euler walk exists;

2. if No = 2, Euler walks only exist starting from one of the odd nodes;

3. if No < 2, there are Euler walks starting from any node.

Therefore, since Königsberg had four nodes with odd degree, there was no solution
to the problem, that is, no Euler walk exists.

In this elegant manner, Euler was the first to show that graphs have intrinsic
properties that may be hidden but allow or forbid certain events. Furthermore, the
Königsberg puzzle is a good example of how small changes (i.e., adding or removing
one bridge) may have global consequences (i.e., the existence or not of Euler walks).

1.3.2 Regular graphs

After the death of Euler, graph theory received many contributions from mathe-
maticians such as Hamilton, Kirchhoff or Cayley. They mainly focused on finding
and cataloguing the properties of regular graphs. Actually, several terms are named
after them in graph theory such as a Hamiltonian path—a path in an undirected
graph that visits each vertex exactly once—, a Cayley graph—a graph that encodes
the structure of a group—, or the Kirchhoff’s matrix tree theorem—a theorem about
the number of spanning trees in a graph.

In a regular graph, all vertices have the same degree (i.e., the same number of
neighbors). Then, a regular graph with vertices of degree K is called a K–regular
graph or regular graph of degree K. Notice that the degree distribution of a K–regular
graph is the Kronecker delta,

P (k′) = δk′,K ≡
{

1 if k′ = K
0 if k′ �= K

.

A widely studied regular network is the nearest–neighbor coupled network, also
known as lattice, in which every node is connected only to its neighbors. A minimal
lattice is obtained arranging the vertices in a straight line and connecting each node
to the nearest neighbors (see Fig. 1.11A). However, it is often convenient, yet not
strictly necessary, to apply periodic boundary conditions to the lattice, so that it
becomes a ring (see Fig. 1.11B).

A very special case of lattice is the so–called globally coupled network or fully
connected graph. In these graphs, there are N nodes and the N(N − 1)/2 possible
edges between them, that is, each node is linked to every other node (see Fig. 1.11C).
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A B C

Figure 1.11. Lattices. (A) A one–dimensional lattice with each node linked to its 6
nearest neighbors (three on the left and three on the right). (B) The same lattice with
periodic boundary conditions. Now, the nodes are arranged in a ring. (C) In a fully
connected graph each vertex is linked to the rest.

In a lattice whose N nodes have degree K < 2N/3, which is true for almost all
graphs, the clustering coefficient C is

C =
3(K − 2d)

4(K − d)
,

where d is the dimension of the lattice [36]. Then, in general, lattices are highly
clustered. For example, C ≥ 0.5 in a one–dimensional lattice with K ≥ 4 and only
for K = 2 (i.e., when every node is just linked to one neighbor on each side) the
clustering coefficient is small, in fact C = 0.

On the other hand, given the regularity of lattices, it is also easy to check that
the average path length is

� ∼ d

√
N

K
.

Hence, the average path length in low dimensional lattices is large in general. Only
if the degree is very large, K � N , it is small (i.e., in a globally coupled network
� = 1 since K = N).

Although the analysis of regular graphs solved many and interesting problems
from a mathematical viewpoint, nobody addressed the important question of how
networks emerge. Graphs were just static entities without history. This problem
was unanswered during two centuries until Paul Erdös proposed a theory to explain
how graphs evolve.

1.3.3 Random graphs

Paul Erdös (Budapest 1913—Warsaw 1996) is indeed the most prolific mathemati-
cian in history after Euler. He published around 1500 articles in his lifetime about
graph theory, number theory, classical analysis, approximation theory, set theory
and probability theory. Standing out, especially, the development of Ramsey theory
and the application of the probabilistic method.

However, while Euler was a family man and a sociable person, Erdös is famous
by his eccentricities. As Erdös was never interested in possessions, he often donated
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his awards and other earnings to charity. In fact, it is said that all his belongings
fitted in the suitcase that he used in his many travels. All his life was travelling
between scientific conferences and the homes of colleagues all over the world. He
typically said at a colleague’s doorstep, “my brain is open”, staying long enough to
“turn coffee into theorems” before moving on.

Erdös and his colleague Alfréd Rényi (ER) started working on graphs to un-
derstand the structure of social networks. To tackle this issue, they focused on the
so–called random graphs [37] in which the existence of a link between a pair of nodes
has probability p. This implies that, given a network with N nodes, the average
degree is

〈k〉 = p(N − 1) ∼= pN,

and the number of random connections between them is

〈L〉 =
1

2
pN(N − 1) =

1

2
〈k〉N.

A remarkable fact that ER found was that the important properties that a graph
exhibits appear suddenly [38]. They rigorously proved that a unique giant cluster
emerges, almost in every random graph, for probabilities greater than a certain
threshold

pc ∼ ln N

N
.

Precisely, for probabilities p > pc, the number of nodes that are not in the giant
cluster decreases exponentially as new links are added.

Note that pc corresponds to a rather low degree, 〈k〉c ∼ ln N , thus it is very easy
that the majority of nodes in a random graph are connected, even for very large
networks.

Mathematicians call this phenomenon the emergence of the giant connected com-
ponent and physicists refer to it as percolation—the moment in which a phase tran-
sition occurs (see Fig. 1.12). In fact, if we choose the size of the giant cluster as
the order parameter, the transition at pc has the typical features of a second order
phase transition.

A B C

Figure 1.12. The emergence of the giant connected component. Here we show the
evolution of a graph with 100 nodes as the average degree is increased with new links
added randomly. (A) 〈k〉 = 1.5, (B) 〈k〉 = 2.5, and (C) 〈k〉 = 3.5.
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Given a random graph with N � 1 nodes and average degree 〈k〉 = p(N − 1)
fixed, the probability of a vertex having degree k is

P (k) =

(
N
k

)
pk(1 − p)N−k 	 e−〈k〉 〈k〉k

k!
,

where the approximation becomes exact when N → ∞ but 〈k〉 remains fixed. That
is, the degrees of a random graph follow a Poisson distribution [39].

A Poisson distribution has a well defined mean value (i.e., a natural scale) in-
dicating that all nodes have essentially the same number of links. Nodes on either
sides of the peak may have many more or fewer links than the average vertex, but
these nodes are extremely rare since the distribution rapidly diminishes for values
far from the mean.

In random graphs, the probability that two neighbors of a node are connected
is the probability that two randomly chosen nodes are linked. Then, the clustering
coefficient is simply

C = p ∼= 〈k〉
N

� 1,

which means that large–scale random networks have no clustering in general.
Furthermore, clustering can only appear in a network if there is some type of

degree–degree correlation—correlation in the degrees of two adjacent nodes. In the
absence of correlations, clustering is only a finite size effect [40].

On the other hand, if the average degree in a a random graph is 〈k〉, every node
has approximately 〈k〉 neighbors. Then, since each neighbor has in turn other 〈k〉
neighbors, every node has 〈k〉2 second neighbors. Extending this argument, the
number of links � required to reach all nodes in the network is roughly estimated by
the condition

〈k〉� ∼ N =⇒ � ∼ ln N

ln〈k〉 ,

which implies that the average distance in a random network is rather small, even
for very large systems.

Notice that we can carry out this calculation because the clustering is small. In
a network with large clustering, it is not true that node A has 〈k〉2 second neighbors
since many of those second neighbors are also themselves neighbors of node A. As
a consequence, the number of second neighbors may be much smaller.

Generalized random graphs

Sometimes, the random graphs proposed by ER are called Poisson random graphs
to avoid confusion with other random graphs whose degree distributions are non–
Poisson. All these generalizations of the ER model, in which the degree distributions
are arbitrarily fixed, are known as generalized random graphs.

There are mainly two methods to calculate the most important properties of
a generalized random graph: The configuration model [41, 42] and the formalism
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based on probability generating functions [43]. Although they are different methods,
they coincide essentially in their results.

The configuration model can be used to determine when a generalized random
graph with degree distribution P (k) percolates. It is obtained that the giant cluster
emerges, almost surely, when

kmax∑
k=0

k(k − 2)P (k) > 0,

if the maximum degree kmax is not too large. Then, if we apply this result to the
ER model (i.e., when P (k) is a Poisson distribution), we find that the percolation
occurs when

〈k〉2 − 〈k〉 > 0 ⇐⇒ 〈k〉 > 1,

which means that the giant cluster emerges at pc = 1/N . This agrees with the
conclusions of ER since ln N ∼ 1, given that kmax is not too large.

The method based on probability generating functions allows to calculate the
following approximate formula for the average shortest path length,

� = 1 +
ln (N/z1)

ln (z2/z1)
,

where zm is the average number of neighbors at distance m. To verify that this
expression yields the average distance in a Poisson random graph, we just need to
take into account that z1 = 〈k〉 and z2 = 〈k〉2 in these networks, thus

� = 1 +
ln (N/〈k〉)

ln〈k〉 =
ln N

ln〈k〉 .

Finally, the clustering coefficient in a generalized random graph is

C =
〈k〉
N

[〈k2〉 − 〈k〉
〈k〉2

]2
,

regardless the method applied. Notice that it is the value C for the Poisson random
graph times an extra factor which depends on P (k). Then, although the clustering
coefficient is large for finite (and not very large) random graphs with highly skewed
degree distributions, in general, it is very small.

Therefore, generalized random graphs are not qualitatively different from the ER
graphs. There is a probability at which a phase transition occurs and the clustering
coefficient and the average distance between vertices are small for large systems.

The theory of random graphs is, in Erdös’ words, “written in the Book”—an
imaginary book in which God had written down the best and most elegant proofs
for mathematical theorems. This theory gave insight into how networks emerge and,
for the first time, their evolution was considered.

However, this approach to networks misidentified complexity with randomness
without analyzing if real systems fitted into this description. In fact, although ER
mentioned in their 1959 seminal paper [37] that
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the evolution of graphs may be considered as a rather simplified model
of the evolution of certain communication nets (railway, road or electric
network systems, etc.),

they were finally charmed more by the mathematical beauty of random graphs than
by its applicability and they did not verify their own suggestion.

1.3.4 Small–world networks

Six degrees of separation

Stanley Milgram (New York 1933–New York 1984) was a controversial social psy-
chologist who conducted an experiment in 1967 that is considered the first evidence
of the so–called small–world phenomenon and the source of the six degrees of sepa-
ration concept [44].

In a first attempt, Milgram sent letters to 60 people in Wichita (Kansas) in which
they were asked to forward that letter to the wife of a Divinity student in Sharon
(Massachusetts). They could only pass the letters to personal acquaintances who
they thought might be able to reach the target—whether directly or via another
friend. The result was that three letters of the 50 people who responded to the
challenge reached their destination. Furthermore, one of these three letters required
just two intermediaries and four days to be handed.

Next, Milgram introduced several changes in the methodology to improve the
perceived value of the letter, which was an important factor to motivate people to
pass it. In the subsequent experiment, 100 people in Omaha (Nebraska) received a
letter whose target was a stock broker in Boston (Massachusetts). In this case, the
number of letters that arrived at Boston was 39.

The analysis of the letters that completed the task revealed that the median
number of intermediaries was 5.5, a very small number. In addition, Milgram found
a “funnelling” effect, that is, there was a small group of people with high connectivity
that were often one of the intermediaries along the path. For instance, he noted that
in the first experiment “two of the three completed chains went through the same
people”.

Some researchers casted doubts on the validity of the results since other exper-
iments that tried to link people of different races showed clear differences (despite
the race of the target was unknown). Others argued that the number 5.5 obtained
by Milgram was an overestimation since the shortest paths could not be known in
advance and, then, the actual ones were longer.

Nevertheless, Milgram’s result showed that, although the precise value might be
different of 5.5, the separation between any person and everybody else in a social
network was much smaller than the number of people in it. In fact, Milgram never
rounded up his result to talk about “six degrees of separation” since he was aware
that it was just a rough estimate. This term was born in 1991 when John Guare
used this appealing idea about our close interconnectedness in a play with that title,
which was eventually made into a homonym movie due to its success on Broadway.
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Sometimes, two people who meet for the first time are amazed at knowing that
they share a friend and cheer: “What a small world!” This smallness of our world is
precisely what Milgram showed and from which the experiment takes its name. But,
is this result only a property of social networks? Is this “small–world” phenomenon
uniquely human or some subtle, but general, principle is at work?

Small worlds

A first example of the “small–world” phenomenon is a network inspired in the out-
standing output of Erdös. His friends created the so–called Erdös number to keep
track humorously of their distance from him. He has assigned the Erdös number
zero. His immediate collaborators have Erdös number one. Those who write a paper
with any Erdös coauthor are Erdös number two, and so on. The 90% of the world’s
active mathematicians have an Erdös number smaller than eight, being typically
between three to five.

Furthermore, although the initial scope of the Erdös number was the mathemat-
ical community, finally it went beyond this field. Thus, we can find small Erdös
numbers between physicists (Albert Einstein, two), economists (Paul Samuelson,
five) or linguists (Noam Chomsky, four). Even William (Bill) Gates, founder of Mi-
crosoft, has an Erdös number of four. This smallness of most Erdös numbers shows
that the scientific community is a highly interconnected network [45].

Another, and somewhat frivolous, example is the parlor game “The six degrees
of Kevin Bacon” in which Kevin Bacon is linked to almost any actor through two or
three movies. For instance, Brigitte Bardot played in Shalako with Sean Connery,
who played in The first great train robbery with Donald Sutherland, who in turn
played in Animal house with Kevin Bacon (see Fig. 1.13). Then, using the Erdös
number analogy, Bardot has Bacon number three. Amazingly, even actors dead more
than 75 years ago can be connected to him by few links (e.g., Rudolph Valentino
has Bacon number three).

Figure 1.13. The six degrees of Kevin Bacon. Brigitte Bardot has Bacon number three
since she played in Shalako with Sean Connery, who played in The first great train robbery
with Donald Sutherland, who played in Animal house with Kevin Bacon.

However, although Kevin Bacon is a famous actor, he does not occupy a special
place between actors. When Brett Tjaden and his colleague Glen Wasson managed
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to gather the complete database of all actors and movies ever released [46], they
found that all actors are separated on average by only three links. That is, the
network of actors also shows the “small–world” phenomenon.

Nowadays, it is known that Milgram’s experiment unveiled a property that has
been found in a large number of systems. As Table 1.1 shows, the average path length
in many real networks is rather small. Notice that, although the median separation
in these networks is not six degrees, the “six degrees of separation” concept can be
still used to emphasize the striking closeness between their nodes.

Network Size 〈k〉 � �rnd C Crnd

1. Movie actors [31] 225 226 61.0 3.65 2.99 0.79 0.00027
2. Power grid [31] 4 941 2.67 18.7 12.4 0.08 0.00054
3. WWW site level (undir.) [47] 153 127 35.2 3.10 3.35 0.11 0.00023
4. Words (co–ocurrence) [13] 460 902 70.1 2.67 3.03 0.44 0.00015
5. LANL co–authorship [25] 52 909 9.70 5.90 4.79 0.43 0.00018
6. MEDLINE co–authorship [25] 1 520 251 18.1 4.60 4.91 0.07 0.00001
7. Math. co–authorship [48] 70 975 3.90 9.50 8.21 0.59 0.00005

Table 1.1. Clustering coefficient and average path length of real networks. For each
network, the number of nodes (size), the average degree 〈k〉, the average path length �
and the clustering coefficient C are shown. If we compare this values to the average path
length �rnd and the clustering coefficient Crnd of a random graph with the same size and
average degree, we find that � ∼ �rnd but C � Crnd.

Interestingly, the average path length in these networks is roughly the corre-
sponding to a random graph with the same number of nodes and average degree.
This fact can be used to define mathematically the “small–world” phenomenon in
the following manner.

If we compare the average shortest path length in a random graph, �rnd ∼ ln N ,
to the expression �lat ∼ d

√
N for a d–dimensional lattice, we find that the size

dependence �(N) is slower in random graphs than in lattices. This growth of �(N)
slower than any positive power of N is what we call the “small–world” phenomenon
and networks with this characteristic are referred to as small worlds [40].

However, if we carefully analyze the networks on Table 1.1, we can see that their
clustering coefficients are much larger than in a Poisson random graph with the
same number of nodes and average degree. Actually, all of them have a clustering
of the order of a lattice. For example, a three–dimensional lattice with the degree of
the LANL co–authorship network has C = 0.41 and a one–dimensional lattice with
the degree of the movie actors network has C = 0.74, which are approximately the
real values. Therefore, most of complex systems are both small worlds, as random
graphs, and highly clustered networks, as lattices.

Nevertheless, we can obtain a large clustering coefficient, while the average path
length remains small, in a generalized random graph with a highly skewed degree
distribution. Is it possible that complex systems are random graphs with awkward
degree distributions?
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On the other hand, if the dimension d of a lattice is large, its average path length
becomes a slowly increasing function of N , �lat ∼ d

√
N . Then, a d–dimensional lattice

whose average degree is much larger than 2d shows a small average path length and
a high clustering coefficient. Despite this requieres a large average degree, could it
be that real networks are high dimensional lattices?

Although both possibilities are reasonable for some networks, none is actually
regarded as the answer. Real networks cannot be described neither as random
graphs nor lattices, but they lie somehow between both of them, between order and
disorder. This type of networks in which these two apparently irreconcilable terms
coexist are called small–world networks.

At this point, it is important to remark that small worlds are not the same as
small–world networks. Small worlds are a wide class of networks more compact
than any finite–dimensional lattice. Small–world networks are small worlds with
the typical high clustering of a lattice [40].

The Watts–Strogatz model

The first model that conciliated the existence of a large clustering with a small
average path length was proposed by Duncan J. Watts and Steven Strogatz (WS)
in 1998 [31].

They start from a low–dimensional lattice with N nodes and L links (a ring, for
example). Then, each link is “rewired” with probability p, that is, one of its ends
is randomly reassigned to a new node—with the constraints that any pair of nodes
cannot have more than one edge and no node is linked to itself (see Fig. 1.14).

In this manner, the WS model continuously interpolates between the two limiting
cases of a regular lattice (p = 0) and a random graph (p = 1). And consequently,
we can consider that both the clustering coefficient and the average path length are
functions of the rewiring probability p.

A B C

Figure 1.14. The Watts–Strogatz model. Here we show how a ring with 12 nodes and
24 links can be continuously transformed into a random graph by “rewiring” the ends of
each link with probability p. The initial regular lattice (A) becomes a small–world network
for halfway probabilities (B), and finally transforms into a random graph (C).

The interesting finding of WS was that only a few extra links are enough to reduce
the average path length between nodes without changing the clustering coefficient
significantly. In other words, they realized that there is an interval of rewiring
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probabilities in which the clustering coefficient is still the corresponding to a lattice
but the average path length is similar to a random graph (see Fig. 1.15).

L(p)
L(0)

C(p)
C(0)

p
110 -110 -210 -310 -4

1.0

0.8

0.6

0.4

0.2

Figure 1.15. Small–world networks. As the probability p of rewiring increases from zero
to one, we move from a regular lattice (p = 0) to a random graph (p = 1). Interestingly,
the distance between nodes rapidly drops, thus there is an interval of probabilities in
which the network is a small world and highly clustered, that is, a small–world network.
After [31].

This result simply reflects that, although a few random links are enough to reduce
the separation between nodes (since remote areas of a lattice are now connected),
they are insufficient to change the local properties of a lattice and, in particular, its
clustering coefficient. Hence, the “six degrees of separation” phenomenon is rooted
in the fact that, even if most of people are very provincial in choosing their friends,
a small fraction of the population with long–range links is enough to have a small
world.

The WS model has many technical difficulties that prevent its analytical study,
thus other equivalent models have been proposed in the literature to ease the math-
ematical treatment of small–world networks. A typical variant is the model in-
dependently developed by Monasson [49] and Newman and Watts [50] in which,
rather than moving the edges between nearest neighbors, new links are added with
probability p—these long–range connections (i.e., links between nodes that are not
neighbors) are also known as shortcuts.

Since any pair of nodes cannot have more than one edge and no node is linked
to itself, the Newman and Watts (NW) model interpolates between a lattice (p = 0)
and a fully connected graph (p = 1). Then, while the WS model may lead to
the formation of isolated clusters, the NW model has the desirable property that all
vertices are always connected in one cluster and, consequently, it is easier to analyze.
Nevertheless, despite these differences, both models are essentially equivalent and
the results obtained for one of them can be applied to the other [36].

A first question prompted by Fig. 1.15 is when small–world networks emerges.
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Numerical and theoretical studies show that the small–world regime appears when
the probability p of having long–range connections verifies that pN ∼ O(1) [51, 52,
53]. Since the NW model is roughly a random graph on a lattice, the probability
p ∼ 1/N coincides with the onset of the giant connected component associated
to the links randomly added (i.e., without taking into account the edges between
nearest neighbors).

If the initial lattice is one–dimensional, the clustering coefficient can be easily
calculated [53, 54]. Thus, while the WS model has

C =
3(K − 1)

2(2K − 1)
(1 − p)3,

the NW models verifies that

C =
3(K − 1)

2(2K − 1) + 4Kp(p + 2)
,

being K the average degree in the initial lattice and p the rewiring (or adding)
probability.

On the other hand, it is now widely accepted that, although the average path
length has no exact solution, it has the general scaling form

� =
N

K
F (pKNd),

where N is the number of nodes, K is the average degree in the initial d–dimensional
lattice, p is the adding probability and F (x) is a universal scaling function that
asymptotically behaves as

F (x) ∝
{

1 if x � 1
ln(x)/x if x � 1

Notice that this form of F is reasonable since the small–world network model be-
comes a random graph for large p (in which � scales logarithmically with system
size) or a lattice for small p (in which � scales linearly).

The variable pKNd that appears as the argument of the scaling function is simply
two times the mean number of shortcuts in the model and F (x) is the average
fraction by which the vertex–vertex distance is reduced for the given value of x.
Then, � basically depends on how many shortcuts there are for a given K.

The scaling function F (x) can be calculated for one–dimensional networks (i.e.,
d = 1) using a mean–field approximation [55],

F (x) =
4√

x2 + 4x
tanh−1

(
x√

x2 + 4x

)
,

which is exact for small and large values of x but only approximate when x 	 1.
Finally, although these two models of small–world networks explain the large

clustering coefficient and average distance between nodes of real systems, they are
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Figure 1.16. Degree distribution of the WS model for K = 8 and different rewiring
probabilities p. Since the rewiring process only reallocates the existing edges, all distribu-
tions have the same average degree 〈k〉 = 8 and the minimum number of links that a node
has is kmin = K/2 = 4. The black curve is a Poisson distribution with average degree
eight as the others.

essentially random graphs from the viewpoint of their degree distributions (see
Fig. 1.16). That is, they have a pronounced peak at their average value and their
tails decay relatively fast.

In both models, all vertices have approximately the same number of connections
since they present a pronounced peak at 〈k〉 = K and decay exponentially for large
k—such networks are called exponential networks.

In fact, if the initial lattice has average degree K, the degree distribution of the
WS model is [53]

P (k) =

⎧⎨⎩
0 if k < K

2∑min{k−K
2

, K
2 }

i=0

(K
2
i

)( 1
2
pK)

k−K
2 −i

(k−K
2
−i)!

(1 − p)i p
K
2
−i e− 1

2
pK otherwise

being p the rewiring probability (see Fig. 1.16), and the degree distribution of the
NW model is

P (k) =

{
0 if k < K(

N
k−K

) (
pK
N

)k−K (
1 − pK

N

)N−k−K
otherwise

where p is the adding probability.

1.3.5 Scale–free networks

Power–law degree distributions

In 1999, Albert–László Barabási and coworkers found [56, 57] that the degree dis-
tribution of some complex systems were power laws (i.e., P (k) ∼ k−γ) instead of
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being Poisson–like as in exponential networks (see Fig. 1.17).

A B

Figure 1.17. Scale–free networks. (A) The largest cluster of the yeast protein–protein
interaction network is shown. The color of a node indicates the effect of removing the corre-
sponding protein (red=lethal, green=non–lethal, orange=slow growth, yellow=unknown).
After [58]. (B) A graph of Internet based on IP addresses. Each color represents a geo-
graphical localization: Asia Pacific = cyan, Europe/Middle East/Central Asia/Africa =
magenta, North America = yellow, Latin American and Caribbean = blue, Unknown =
Black. From the Opte Project.

This was an important (and unexpected) finding in the field of complex networks
since power laws have two distinguishing features that makes them very different
from Poisson–like distributions:

Power laws are relatively slow decreasing functions. Given the slow decay rate of a
power law, the likelihood of extreme events is much greater than in Poisson–
like distributions. For example, the distribution of wealth in most of European
countries is a power law, meaning that many people possess relatively little
wealth while a minority are extremely wealthy. This “explains” why it is easy
to find people who is three or four orders of magnitude richer than others but
it is inconceivable a human being even twice taller than the average. Whereas
the distribution of wealth is a power law, the distribution of human heights is
Gaussian.

A power–law distribution has no peak at its average value. Due to the fat tail that
a power–law distribution has, the mean is much higher than what we would
consider its “typical” value and, consequently, it is not very meaningful. Thus,
the absence of a peak in the wealth distribution implies that there is no a
characteristic individual but, on the contrary, a continuous hierarchy of them,
spanning from the rare superrich to the numerous poor.

A network whose degree distribution is a power law is referred to as a scale–free
network due to the lack of a characteristic scale. Actually, the important feature
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that describes the distribution of these networks is the exponent γ which essentially
reflects how the distribution changes as a function of the underlying variable.

Nowadays, it is known that the initial observation of Barabási and his colleagues
was not an exception (see Table 1.2). Many empirical results show that real networks
are often scale–free. This result implies that networks can be found both following
power laws and exponential distributions.

Network Size κ γin/γout

1. Movie actors [57] 212 250 900 2.3
2. WWW [59] 2 · 108 4000 2.7/2.1
3. Internet, router [60] 260 000 — —/1.94
4. Words (co–ocurrence) [13] 460 902 — 2.7
5. Neuro. co–authorship [61] 209 293 400 2.1
6. SPIRES co–authorship [48] 56 627 1100 1.2
7. E-mail messages [62] 59 912 — 1.5/2.0
8. Metabollic network [63] 778 110 2.2

Table 1.2. Degree distributions of real networks. Nowadays, it is well known that
many real–world networks are scale–free, that is, their degree distributions are power laws,
P (k) ∼ k−γ . Since all empirical power law has a cut–off that may prevent its observation,
it is important that this cut–off is not too small. This table shows, for eight networks, the
number of nodes (size), the cut–off κ and the exponent γ. If the network is directed, both
the in–degree and the out–degree are listed.

Notice that, although the finite size of a network is problematic for any degree
distribution, it is particularly troubling for power laws since vertices with large
degree are absent and, consequently, the degree distribution P (k) always presents
a cut–off κ. This cut–off is so important in networks with few nodes that the
accurate observation of the degree distribution may be impossible. Then, the effect
of the finite size of a network must be carefully analyzed to affirm confidently that
a network is scale–free and not exponential [40].

The Barabási–Albert model

Although it is possible to construct a generalized random graph with a power–law
degree distribution, reducing complex networks to sheer randomness cannot be the
solution in general. We need a new paradigm to answer the important question of
how scale–free networks emerge.

In 1999, Barabási and Reka Albert (BA) proposed a new model to explain the
origin of power–law degree distributions in complex networks [57]. They started
noting that other models had not considered two important features of real–world
networks.

First, although edges could be added or rearranged in exponential models net-
works, they had a fixed number of nodes, contrary to most real networks that are
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open and in continuous change. For example, the World Wide Web is endlessly
adding, removing and reallocating web pages, thus neither nodes nor links are fixed.

Second, both random and small–world networks show a well defined scale due to
the fact that each new link is created according to a uniform random distribution.
However, an important consequence of having a power–law degree distribution is
that some nodes, referred to as hubs, are much more connected than others.

Then, BA proceeded to show that scale–free structures emerge because of two
factors: Growth and preferential attachment. Precisely, scale–free distributions ap-
pear when a network is continuously grown by adding new vertices (growth) that are
linked to existing nodes proportionally to their degrees (preferential attachment).
Consequently, hubs attract new connections with higher probability—this is the
so–called “rich gets richer” phenomenon.

Once a small initial number N0 of nodes is defined, the algorithm to obtain a
BA model network has the following two steps:

Growth. A new node is added and linked to n ≤ N0 of the other nodes. Notice that,
after t time steps, the number of nodes is N(t) = t + N0 and the number of
edges is L(t) = nt, thus the average degree asymptotically tends to

〈k〉 =
nt

t + N0

∼ n.

Preferential attachment. The vertices to which the new node is attached are ran-
domly chosen according to the preference function

pi =
ki∑N(t)

j=1 kj

,

where pi is the probability that node i = 1, ..., N(t) has of being linked and kj

the degree of node j.

If these steps are iteratively repeated (see Fig. 1.18), the degree distribution
finally stabilizes in a power law with exponent γ = 3, being independent of n which
is the only parameter in the model.

If we consider a model in which, at every time step t, a new node is linked to n
old vertices without preferential attachment, we can assume that this new node is
connected to node i following an uniform distribution (i.e., independent of ki),

pi =
1

N0 + t
,

where N0 is the initial number of nodes. In this case, it can be analytically proved [57]
that the resulting degree distribution decays exponentially, P (k) ∼ exp(−k/n), as t
tends to infinity.

On the other hand, if we start with a fixed number N of nodes and no edges, but
we create new links by preferential attachment, numerical simulations show that the
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C

A

D

B

Figure 1.18. The Barabási–Albert model. (A) The network has initially N0 = 3 nodes
and two links. (B) Then, a fourth node is linked to n = 2 < N0 out of the three existing
vertices with probability proportional to their degrees (i.e., pi=1...3 = {1/4, 1/2, 1/4}). (C)
At the following step, a fifth node is attached to n = 2 out of the four existing nodes with
probabilities pi=1...4 = {2/8, 3/8, 1/8, 2/8}. (D) If we repeatedly iterate this procedure, a
heterogeneous degree distribution is finally obtained since nodes with more connections
have a higher probability of being linked to new vertices.

scale–free behavior only exists at early times [64]. Precisely, after a transient time of
t ≈ N2 steps in which the degree distribution is a power law, the network becomes
a fully connected graph (since N is constant but the number of edges increases) in
which any node is characterized by a Gaussian distribution with mean degree

ki(t) =
2

N
t.

Therefore, both growth and preferential attachment are required simultaneously
to obtain a power law. The absence of one of them derives in an exponential network
rather than in a scale–free structure. Then, an interesting question is if the BA
preference function is unique or others also produce power laws.

Although the amount of papers on that issue is impressive (see [61, 18, 65] for
an exhaustive and exhausting description of many of them), the main result is that
scale–free degree distributions emerge only if the preference function pi (i.e., the
probability that a new edge is linked to node i with degree ki) is linear,

pi =
ηiki + ci∑N(t)

j=1 ηjkj + cj

,

where ηi is a fitness constant that measures the intrinsic ability of a node to attract
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connections (e.g., new scientific articles can be more cited than old ones, if they are
more interesting), and ci is the initial attractiveness of node i. Depending on the
concrete parameter values of the model, any γ ≥ 2 can be obtained with this form of
preferential attachment, contrary to the original BA model which has always γ = 3.

When the preference function is non–linear, the scale–free nature of the network
is destroyed. Thus, while a sub–linear preference function produces a exponential
degree distribution, a super–linear preference function leads to a network in which
one node is nearly linked to all other vertices—this known as the “winner–takes–all”
phenomenon.

It is important to remark that the preferential attachment is incorporated in the
model with no explanation for its origin. In fact, although several “microscopic”
mechanisms have been proposed to justify the existence of the preferential attach-
ment (e.g., copying mechanism [66], edge redirection [67], walking on a network [68],
or attaching to edges [69]), it is widely accepted that there is no universal answer to
this question but it is model dependent.

Another interesting fact is that the BA model generates a small world as the
behavior of its average path length � shows. Actually, analytical results [70] prove
that any network with a power law distribution is a small world since they grow
slower than any power of N ,

� ∼
⎧⎨⎩

ln ln N if 2 < λ < 3
ln N/ ln ln N if λ = 3
ln N if λ > 3

Note that, for λ = 3 (i.e., the BA model), the double logarithmic correction to the
logarithmic N dependence is a constant in practice.

Finally, although there is no analytical prediction for the BA model, numerical
simulations show that its clustering coefficient approximately follows a power law,
C ∼ N−0.75 [61]. This decay is slower than in random graphs (i.e., C ∼ N−1) but it
is still different from the constant value obtained for the WS model.

Getting rich can be hard

We have seen that both the scale–free model of Barabási and Albert and the model
proposed by Watts and Strogatz are small–world networks since they are small
worlds with a large clustering coefficient. Note that scale–free networks are small–
world networks but the inverse is not true in general.

However, empirical data suggest that the differences between their degree distri-
butions are irreducible and the existence of the following three classes of small–world
networks cannot be neglected [71]:

1. Single–scale networks, characterized by a degree distribution with a fast de-
caying tail, such as exponential or Gaussian.

2. Scale-free networks.
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3. Truncated scale–free networks, characterized by a degree distribution that has
a power–law regime followed by a sharp cut–off that is not due to the finite
size of the network.

This fact arises the interesting question of how this three type of small–world
networks are related. In 2000, Lúıs A. N. Amaral and coworkers found this rela-
tion when they noted that the governing principle in a scale–free network (i.e., the
preferential attachment) can be overridden by other stronger factors, preventing the
emergence of a power law [71]. These factors are mainly the following:

Aging. In some cases, a node (even a hub) may be part of a network and contribut-
ing to network statistics without receiving new links. This can be found in
networks in which the probability of connection of the new site with some old
one is proportional not only to the connectivity of the old site but also to some
function of its age. For example, researchers in a citation network only receive
links (i.e., citations) as long as their work is considered not “too old”. When
this occurs, these authors and their citations remain in the network but the
“preferential attachment” no longer applies to them.

Cost of adding links and limited capacity. The “preferential attachment” principle
implicitly assumes that connections are costless, thus nodes can have any de-
gree regardless the difficulty of establishing (or maintaining) them. This can
be true for the WWW but not for human, technical or biological networks.
For instance, the number of friends that a person has is not limited by the
size of the global population but by the energy and time they require. Hence,
the “preferential attachment” principle in a network of acquittance (i.e., “pop-
ularity is attractive”) only works while nodes are not saturated, after which
time newcomers will tend to befriend other more accesible people.

Limits on information and access. Even though the creation of a connection has no
cost, it is generally false that a new node can know the degrees of any other
node in the network to establish its links by “preferential attachment” [72].
New nodes appear in a particular part of the network and it is required a costly
process of search to find out how the rest of the network is. For example, the
outgoing links in a web page may well be directed to pages with many ingoing
links (i.e., preferential attachment) but only among those that the new web
page knows.
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[38] P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5, 17–60 (1959).

[39] B. Bollobás. Random graphs, Academic Press, New York, 1985.

[40] S.N. Dorogovtsev and J.F.F. Mendes. The shortest path to complex networks.
arXiv.org:cond-mat/0404593 (2004).

[41] E.A. Bender and E.R. Canfield. The asymptotic number of labelled graphs with
given degree sequences. Journal of Combinatorial Theory A 24, 296–307 (1978).

[42] M. Molloy and B. Reed. The size of the largest component of a random graph
on a fixed degree sequence. Combinatorics, Probability and Computing 7, 295–306
(1998).

[43] M.E.J. Newman, S.H. Strogatz and D.J. Watts. Random graphs with arbitrary
degree distributions and their applications. Physical Review E 64, 026118 (2001).

[44] S. Milgram. The small–world problem. Physiology Today 2, 60–67 (1967).

[45] A.-L. Barabási. Linked: The new science of networks, Perseus Publishing, Cam-
bridge, Massachusetts, 2002.

[46] B. Tjaden and G. Wasson. Available at http://www.cs.virginia.edu/oracle/
(1997).

[47] L.A. Adamic. Proceedings of the Third European Conference, Springer–Verlag,
Berlin, Germany, 1999.

[48] M.E.J. Newman. Scientific collaboration networks I: Network construction and fun-
damental results. Physical Review E 64, 016131 (2001).

[49] R. Monasson. Diffusion, localization and dispersion relations on “small–world” lat-
tices. European Physical Journal B 12, 555–567 (1999).

[50] M.E.J. Newman and D.J. Watts. Renormalization group analysis of the small–
world network model. Physics Letters A 263, 341–346 (1999).
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Chapter 2

A real complex network:
The 5th Framework
Programme

2.1 Introduction

Understanding the relationship between research and industry is essential to improve
the quality of life in any modern society. Ranging from faster application of new
discoveries to knowing whether or where investment should be employed, this flow
of knowledge between research and industry has long been of general interest.

However, knowledge is a very special resource whose study demands new tech-
niques. The traditional approach to resources is based on the concept of scarcity
since they are usually finite. But knowledge cannot be seen this way because it
grows, and the more it is used the more it spreads [1]. In addition, existing studies
on the research and industry interplay have neglected its network character [2, 3, 4].

We address in this chapter this relationship between research and applications
by means of the complex networks theory [5]. As it was explained in Chapter 1,
many other real systems (e.g., Internet, biological or social networks) are now best
understood from this point of view. This is indeed the reason why investigations on
this subject have been attracting so much attention in the past few years [6, 7, 8, 9].

We also explained in Chapter 1 that the success of this novel approach to Nature
is based on the fact that the comprehension of a real complex system cannot be
reduced to the study of its constituent elements. That is, it is necessary a complete
analysis of the relations between all its components.

This can be done in two main ways, either proposing theoretical models or in-
vestigating real systems. This chapter corresponds to the latter case since we focus
on an initiative that sets out the priorities for the European Union’s research and
technological development: the Framework Programme (FP).

The Framework Programme (FP) is a system in which structure and information
flow affect each other simultaneously, which is interesting since it is usual to find
that either the topology of a network constrains the flow of information on it [9] or
the information stored in the network defines its topology [10].

Currently, the 6th programme is under execution and the 7th is being planned,
thus we focus our investigation in the 5th Framework Programme (FP5), correspond-
ing to the period 1998−2002, in order to analyze a completely finished programme.

37
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The first step to study this network is to fix the vertices and the property de-
termining if there exists a connection between any couple of them. In our case, it
is natural to consider that each vertex is a participant in the Programme and each
edge represents two participants collaborating in a project.

Once the vertices and the edges of the network are defined, the data to generate
the graph can be obtained from CORDIS [11]. This information is not given in the
form of a database, thus it is necessary to program a robot to gather it. The result
is a large database made of 15 776 projects, from which it is derived a graph with
25 287 nodes (participants) and 329 636 edges (collaborations).

Despite the presence of more than 25 000 participants, they can be split in two
major groups: Companies and Universities. The first is made of over 16 700 compa-
nies and other industry related participants who expect their investments in R+D+I
to be profitable. The second group can be regarded as the opposite, more than 8 500
participants involved in some type of research for whom results do not necessarily
return income (see Appendix).

Exploring the relationship between these two groups not only provides a good
example of the interplay between structure and information flow, but also offers a
glimpse on how research links with innovation and if the distance between basic
research, applications and products reduces [12].

At this point, it is important to remark that we are mainly interested in the
capacity of the FP5 to create and transfer information and nothing can be said about
this question inside each node. Notice that some participants are large institutions
or companies with complex organization charts and if they have several projects,
their coordination cannot be guaranteed in general. However, our concern is how
to set the means to integrate research, development and innovation efficiently, not
if these means are successfully used.

To characterize the FP5, we compute five important features in any network:
degree distribution, shortest path distribution, betweenness, clustering coefficient
and the degree–degree correlation. The detailed description of the dataset can be
found in the Appendix.

2.2 Degree distribution

We find that the degree distribution of the FP5 follows a power–law, P (k) ∼ k−γ,
with a striking maximum degree kmax = 2 784 and average degree 〈k〉 = 26.1 (see
Fig. 2.1A).

In general, the observation of a power–law is troubling because it may be hindered
by the fluctuations at large degrees [13]. Then, to measure the degree distribution
confidently, it is required that N � 103 when γ < 2 or N � 102.5(γ−1) when γ > 2.
Consequently, the scale–free behavior of the FP5 can only be assured if the points
are fitted to a power law with γ < 2.7.

But if a linear regression is calculated for all the points lying on the right of
the maximum, the FP5 fits a power law P (k) ∼ k−γ with γ = 1.86 ± 0.02 and a
correlation coefficient R = 0.92, which is an exponent smaller than the threshold
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discussed previously.
Likewise, the probability that a University collaborates with k other Universities

is a power law with γu = 1.56 ± 0.03 and a correlation coefficient R = 0.93, and
the degree distribution of Companies is also a power law with γc = 2.32 ± 0.07 and
R = 0.94 (see Fig. 2.1B).

These results imply that the FP5 has a scale–free topology that Universities and
Companies share [14]. Then, collaborations within these networks were established
following some type of preferential attachment during their growth. In other words,
participants with more collaborations establish new ones at higher rate than par-
ticipants with few connections. As a consequence, the so–called “rich–get–richer”
phenomenon arises, in which the most connected participants increase their collab-
orations at the expense of the latecomers.
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Figure 2.1. Degree distributions. (A) The FP5 network. The average degree is k = 26.1
and the maximum degree is a striking kmax = 2 784. The points lying on the right of the
maximum fit well a power–law, P (k) ∼ k−γ , where γ = 1.86 ± 0.02 with a correlation
coefficient R = 0.92. Consequently, the FP5 is scale–free. (B) We find that both Univer-
sities (red squares) and Companies (blue circles) follow a power law, P (k) ∼ k−γ , thus
having a scale–free topology. If a linear regression is calculated as before, we obtain that
γu = 1.56±0.03 with a correlation coefficient R = 0.93 for Universities, and γc = 2.32±0.07
with R = 0.94 for Companies. The fact that Universities show γu < 2 whereas Companies
have γc > 2 implies that the mean degree of Universities grows in time but not the mean
degree of Companies. From this result we conclude that some form of synergy encourages
the creation of new collaborations between Universities but not between Companies.

Nevertheless, the main result is not the concrete value of γ since, as a consequence
of the finite size of a network, there is always a cutoff region that makes difficult to
derive it accurately. The main result is that the degree distributions of the FP5 and
Universities are power laws with exponents smaller than two. This is interesting
since it means that their average degrees diverge as the networks grow.

A possibility to explain this result is that they are accelerated growing net-
works [13]. In these networks, the total number of edges grows faster than a linear
function of the total number of vertices and, consequently, it may be verified that
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1 < γ < 2.
To elucidate this issue, we can compute the average degree 〈k〉 during several

years to check its tendency. Although we have only the data corresponding to four
years (Table 2.1), they are enough to confirm the existence of an accelerated growth
since 〈k〉 is not constant but it grows.

N 〈k〉 C

Year Univ–Comp (Total) Univ–Comp (Total) Univ–Comp (Total)
1999 3 075– 4 658 (7 733) 17.2–6.2 (16.30) 0.65–0.58 (0.87)
2000 5 377– 9 359 (14 736) 21.9–6.8 (19.25) 0.66–0.53 (0.86)
2001 7 355–13 905 (21 260) 27.7–7.9 (23.56) 0.67–0.53 (0.86)
2002 8 522–16 765 (25 287) 31.9–8.2 (26.07) 0.68–0.59 (0.85)

Table 2.1. Evolution of Universities and Companies in the FP5. Here we show the
total number of vertices N , the average degree 〈k〉 and the average clustering coefficient
C during the four years that the FP5 lasted. This data let us conclude that there is an
accelerated growth in the network since the average degree is not constant but it grows.

But if collaborations grow faster than proportional to the number of participants,
it is because they do not emerge by the mere increase of participants. Not only
new participants contribute to increase the number of collaborations, but also the
old ones. Then, some form of synergy exists that encourages the creation of new
collaborations.

However, the average degree of Companies is practically constant during the four
years that the FP5 lasted (table 2.1). Then, although the creation of collaborations
is encouraged (e.g., when the FP5 was finished the mean number of collaborations
had risen from 10 to 26 and some participants had surpassed 2 500 collaborations),
these results reveal that the synergy exists only between Universities. In this sense,
the FP5 fails to improve the network of Companies and only Universities use this
opportunity to create new collaborations.

2.3 Shortest paths

Although the FP5 network is not completely connected, we find that its giant con-
nected component (GCC) spans 91.17% of the nodes (23 055 vertices). Likewise, the
GCC of the network including only Universities spans 7 987 vertices (i.e., 93.7% of
them) and the GCC of Companies is made of 10 801 nodes (i.e., 64.4%).

Hence, while most of Universities are linked between them, Companies are more
fragmented and one third of them fall in other smaller components (actually, the
second biggest component contains only 48 participants). This result shows that
Universities are important to compact the FP5 network since its GCC comprises
88.7% of Companies and 96.0% of Universities.

In addition, we can obtain the distribution of shortest paths P (d) as follows:

P (d) =
2N(d)

Ngcc(Ngcc − 1)
,
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where Ngcc is the number of vertices in the GCC and N(d) is the number of times a
distance d occurs in this component. Once P (d) is known, we can easily derive the
average distance in this manner:

� =
∑
i>j

2dij

Ngcc(Ngcc − 1)
=
∑
d>0

P (d)d,

where vertices i and j belong to the GCC.
In Fig. 2.2A, we plot the shortest paths distribution P (d) to show the large

compactness of the FP5 network, which is indeed useful to integrate the R+D+I in
Europe. The greatest distance in the network is only 8 and the average distance is
� = 3.14.

Likewise, we find that the farthest pair of Companies is separated by 14 edges
and the average distance is �c = 5.67, in contrast with the network of Universities in
which the greatest distance is 7 and the average distance is �u = 3.34 (see Fig. 2.2B).
Thus also here Universities are essential for Companies to reduce the separation
between them.
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Figure 2.2. The distribution of shortest paths. (A) The P (�) in the giant connected
component of the FP5 is shown. The mean value is � = 3.14 and the farthest pair of nodes
in the graph is separated by only 8 edges. (B) The distribution of shortest paths in the
GCC of Universities (red squares) and Companies (blue circles) is shown. The mean value
is �u = 3.34 for Universities and �c = 5.67 for Companies. Furthermore, while the farthest
pair of Companies has 13 intermediaries, for Universities the maximum separation is 7
edges.

Notice that the average distances obtained are approximately the value obtained
for a random graph [15] with the same number of nodes and average degree (i.e.,
� ≈ ln N/ ln〈k〉 = 2.61 for Universities, � = 4.62 for Companies and � = 3.11 for the
whole network).

It is also possible to calculate the average distance of a vertex of degree k to
all other vertices in the GCC [16]. To obtain �(k), one first calculates the average



42 Chapter 2. A real complex network: The 5th Framework Programme

distance from vertex i to all other vertices j in the GCC:

�i =
∑
j �=i

dij

Ngcc − 1
,

and then takes the average of �i over all vertices i that have ki = k:

�(k) =
∑

{i:ki=k}

�i

NgccP (k)
.

We note that, within the GCC of the FP5, �(k) has a logarithmic dependence
on k since we can fit �(k) ∼ −β log k with β = 0.555 ± 0.004 and a correlation
coefficient R = 0.986 (see Fig. 2.3A). Also, we find this logarithmic dependence in
the GCC of Universities, being βu = 0.503 ± 0.003 with R = 0.994, and within the
GCC of Companies in which βc = 1.13 ± 0.03 with R = 0.958 (see Fig. 2.3B).
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Figure 2.3. The average distance of a vertex of degree k to all other vertices. (A) The
logarithmic dependence of � within the GCC of the FP5 is shown: �(k) ∼ log k−β where
β = 0.555 ± 0.004 with R = 0.986. (B) This figure depicts the logarithmic dependence
�(k) � ∼ −β log k in the GCC of Universities with red squares (βu = 0.503 ± 0.003 with
R = 0.994) and in the GCC of Companies with blue circles (βc = 1.13 ± 0.03 with
R = 0.958). Note that the lowest degree vertices in the network of Universities show
a distance to other vertices comparable to the one of the highest degree vertices in the
network of Companies.

Since the three networks have power–law degree distributions, it is easy to prove
that

� =
∑

k

P (k)�(k) ∼ −β
∑

k

P (k) log k ∼ −β log kmax ∼ β

γ − 1
log k1−γ

max.

Then, if we take into account that the maximum degree kmax in a scale–free network
with N nodes verifies N ∼ k1−γ

max [13], we obtain that

� ∼ β

γ − 1
log N.
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Therefore, the logarithmical dependence of �(k) within the three networks implies
that they all display the small–world effect, that is, they are small worlds [17].

Therefore, the presence of Universities eases the flow of information since they
are much closer to each other than Companies. This could be expected since the
main purpose of a company is to satisfy its shareholders, which does not include the
spread of information from which competitors can take advantage.

But, interestingly, the consequences of this fact go beyond. When Universities
are excluded from the projects, Companies become isolated despite Universities are
only one third of the participants. Companies tend to form clusters, turning difficult
(if not impossible) the communication between them and, consequently, little can be
developed or innovated since other results are not available to work with. Thus the
natural tendency of Companies to protect their findings would finish killing R+D+I.
The presence of Universities contributes to moderate this.

2.4 Betweenness

To further investigate the interplay between Companies and Universities, we can also
measure the betweenness in the FP5 [8]. The betweenness σm of vertex m measures
the extent to which m lies on the paths between other participants. Then, since it
accounts for the influence of a participant between other two distant participants, it
is a measure that relates the local structure and the global topology of the network.
It is defined as

σm =
1

(N − 1)(N − 2)

∑
i,j:i�=j �=m

B(i,m, j)

B(i, j)
,

where B(i, j) is the number of shortest paths between nodes i and j, B(i,m, j) is
the number of such shortest paths passing through vertex m, and the sum is taken
over all pairs of vertices i and j that do not include m. The pre–factor, where N is
the total number of nodes, accounts for normalization, so that 0 ≤ σm ≤ 1.

Since the computation of the betweenness for the whole FP5 is an extremely
time–consuming task, we focus our study on one of its subprograms: ‘Small and
Medium sized Enterprises’ (SME), which is formed by 195 research institutions and
212 Companies (see Appendix).

Given our ability to split the SME into Universities and Companies, several
different situations are considered. The average betweenness of the SME, taken
over all its vertices, turns out to be 〈σ〉 = 5.19 · 10−3. Considering only those
vertices m that are Universities, we find that their average betweenness among all
other vertices in the SME is 〈σu〉 = 6.76 ·10−3. Likewise, we obtain 〈σc〉 = 3.74 ·10−3

for Companies.
Now, if we only take into account those shortest paths whose endpoints are Com-

panies, the betweenness measures the role Universities play in linking Companies:
〈σcuc〉 = 5.44 · 10−3; on the other hand, when the endpoints are Universities, the
average betweenness of Companies is 〈σucu〉 = 2.34 · 10−3.

Thus, we see that the role Universities play between Companies is just above
twice the one played by Companies between Universities. Moreover, given that
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〈σu〉 > 〈σ〉 > 〈σc〉, we observe again the central function played by research institu-
tions in the FP5 network.

2.5 Clustering coefficient

The first finding is the large average clustering coefficient that the three networks
possess: C = 0.85 in the FP5 network, C = 0.68 for Universities and C = 0.59
for Companies. In fact, they are 3 orders of magnitude higher than the clustering
coefficient of an Erdös–Rényi graph with the same N and 〈k〉 (i.e., C ∼= 〈k〉/N [15]).

Moreover, C is independent of the number N of participants in all cases (see
Table 2.1), in contrast with the prediction of a scale–free model [14] where C ∼
N−0.75 [5]. This high and size–independent average clustering coefficient evidences
the organization of Universities and Companies in modules.

To further analyze this issue, we have measured the clustering coefficient C(k)
as a function of the degree k. This function is obtained by considering all vertices
with degree k and, for these vertices, computing the average value of Ci:

C(k) =
1

NP (k)

∑
{i:ki=k}

Ci.

The function C(k) for the FP5, after the region of low values of k in which
C(k) is approximately constant, decays as a power law (see Fig. 2.4A). Thus, if the
initial plateau is not considered, the FP5 network verifies that C(k) ∼ k−α, where
α = 0.77 ± 0.01 with a correlation coefficient R = 0.94. Similarly, C(k) is a power
law C(k) ∼ k−α for Universities, where αu = 0.54 ± 0.01 with R = 0.97, and for
Companies, where αc = 1.05 ± 0.06 with R = 0.86 (see Fig. 2.4B).

Therefore, these networks have hierarchical modularity because both scale–free
and modular networks are degree–independent, whereas hierarchical modularity is
characterized by the scaling law C(k) ∼ k−1 [18].

This result suggests that Universities and Companies have an inherent self–
similar structure [19], being made of many highly connected small modules, which
integrate into larger modules, which in turn group into even larger modules.

But this is certainly true since 16 313 of the vertices in the FP5 have local cluster-
ing coefficient Ci = 1, indicating the presence of many completely connected clusters
(see Fig. 2.5A). This is due to the fact that 15 814 of these entities participate only
in one project, having as neighbors other vertices, which in turn are all connected
between them by virtue of the participation in the project.

Furthermore, given that this result suggests that they have weak geographical
constraints [20], we searched for communities in them [21] and found precisely that
they were not based on nationality (see Fig. 2.5B), whence, the FP is successfully
applying a policy that avoids its segregation by nationality.

Finally, since the hierarchical organization of a network is a poorly defined term,
we study this question through the notion of hierarchical path [23] because it is
uncorrelated with C(k). A path is said hierarchical if the degrees of the vertices
along this path vary monotonously or they grow monotonously up to some maximum
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Figure 2.4. The clustering coefficient as a function of k is shown. From these figures, we
conclude that the three networks have hierarchical modularity since scale–free and modular
networks are degree–independent, whereas hierarchical modularity is characterized by the
scaling law C(k) ∼ k−1. After the initial plateau, where C(k) is approximately constant,
it decays as a power law C(k) ∼ k−α where (A) α = 0.77±0.01 with R = 0.94 for the FP5,
(B) αu = 0.54 ± 0.01 with R = 0.97 for Universities (red squares), and αc = 1.05 ± 0.06
with R = 0.86 for Companies (blue circles).

A B

Figure 2.5. The existence of hierarchical modularity in the networks of Universities and
Companies suggests that they have a self–similar structure. (A) Since projects in the FP
are classified in 8 subprograms depending on their objectives, we choose, for clarity, to
illustrate this self–similar structure with the smallest one (SME). (B) To verify if there is a
bias by nationality in the collaborations, we searched for communities reflecting groups of
participants collaborating strongly among them. The result is that all networks (even when
analyzed by subprograms) behave as this one, corresponding to the SME subprogram. If
we color each node according to its nationalities and arrange all of them with a standard
algorithm [22], we find that they are all mixed.

value, from which decrease monotonously. Then, the fraction H of shortest paths
that are hierarchical can be used as a metric of a hierarchical topology [24]. We
find that the FP5 has H = 0.91, which confirms the hierarchical structure of the
FP5. Actually, the distribution of hierarchical shortest paths is rather similar to the
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distribution of all shortest paths. And this implies that most of the shortest paths
between nodes are hierarchical.

2.6 Degree–degree correlation

An interesting question is which vertices pair up with which others. It may happen
that vertices connect randomly, no matter how different they are. But usually
there is a selective linking, there is some feature that makes more (or less) likely
the connection [10]. If nodes with the same feature tend to link among them, the
situation is called assortative mixing. In the opposite case, when vertices with some
feature do not tend to connect among them, we have disassortative mixing.

A property that is usually used to investigate the presence of assortative mixing
is the degree correlation. In this case, we say that there is assortative mixing when
the nearest neighbors of vertices with high degree have also high degree. And there
is disassortative mixing when the nearest neighbors of vertices with high degree have
low degree [25, 26].

To analyze the degree correlations, we carry out three calculations: the joint
degree–degree distribution, the mean degree k̄nn(k) of the nearest neighbors of a
vertex of degree k and the assortativity coefficient.

Figure 2.6. Joint degree–degree distribution of the FP5 network. The X and Y axes
represent the degrees k and k′ and the Z axis gives the corresponding joint degree–degree
probability in per mill. The range is limited from 0 to 200 to illustrate a clearer picture.
The distribution peaks on the line k = k′ which implies that the FP5 shows assortative
mixing.

2.6.1 Joint degree–degree distribution

A first approach to elucidate this issue is by means of the joint degree–degree distri-
bution P (k, k′), which gives us the probability of finding an edge connecting vertices
of degree k and k′.

When we measure P (k, k′) for the FP5 network, it is found that P (k, k′) has
sharp peaks for k = k′, suggesting that the FP5 presents assortative mixing. This
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means that if one chooses at random a vertex of degree k then, with great probability,
it will be connected to vertices of degree k = k′. The result for k < 200 is depicted
in Fig. 2.6, where X and Y axes represent the degrees k and k′, and Z axis gives the
corresponding probability in per mill.

However, this assortative mixing is mainly due to Companies. In effect, we can
see that Companies have sharp peaks at k = k′, meaning that Companies present
assortative mixing (see Fig. 2.7A). In other words, Companies with similar degree
tend to collaborate more frequently than Companies with different degrees.

A B

Figure 2.7. Determination of the mixing through the joint degree–degree distribution.
The X and Y axes represent the degrees k and k′ and the Z axis gives the corresponding
joint degree–degree probability in per mill. The range is limited from 0 to 200 for clarity.
The joint degree–degree distribution of Companies (A) peaks on the line k = k′ which
implies that the mixing is assortative. Since the number of links held by a participant is
related to its size, we infer that Companies with similar sizes tend to collaborate more
frequently than Companies with different sizes. The joint degree–degree distribution of
Universities (B) is distributed throughout the X–Y plane which suggests that Universi-
ties do not have assortative mixing. Hence, we conclude that Universities choose their
collaborators independently of their sizes.

But commonly, when a Company has high degree it is due to being involved in
many projects. Therefore it is reasonable to assume that nodes with high degree
represent large institutions, given that only these can deal with many projects at the
same time. Then, the observed assortativity means that the spread of information
between Companies depends on the institution’s size.

On the contrary, Universities are distributed throughout the plane k − k′ (see
Fig. 2.7B). While there are still peaks along the line k = k′, the presence of many
others for k �= k′ is clear, suggesting that Universities choose their partners inde-
pendently of their sizes.

2.6.2 k̄nn(k) distribution

It is important to remark that the joint degree–degree distribution requires many
points to obtain good statistics. For example, if we focus our analysis in the range
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[0, 200], we need about 200 × 200 points, otherwise fluctuations are important and
the plot is far from smooth [27]. To avoid this problem, it is used the mean degree
k̄nn(k) of the nearest neighbors of a vertex of degree k, which is a coarser but less
fluctuating feature. To compute k̄nn(k) we have only to find all nodes with degree
k, and then, the average degree of all their neighbors is calculated.

The result for the complete FP5 network is shown in Fig. 2.8A. Interestingly,
we find that the picture presents two regions with different behaviors that approx-
imately overlap on k ≈ 200. While for high degrees (k � 200) the mixing is disas-
sortative, for low degrees (k � 200) it is slightly assortative. However, the points
on the right–hand side correspond to degrees where the finite size of the network is
important, thus we cannot conclude that over k = 200 there is disassortative mixing.

To show this fact we have represented as green crosses those points calculated
from only 1 or 2 participants (indicating the proximity to the cutoff) and the rest
of the points as magenta circles. It can be seen that the majority of points over
k = 200 are green crosses, that is, the k̄nn(k) obtained for participants with high
degrees is biased by the presence of the cutoff. This is reasonable since participants
with k ≈ 1000 could only have the value of k̄nn(k) that the tendency imposes, if
they had many neighbors with even higher degrees, but the finite size of the network
impedes this.

Then, if we only consider the points below k � 200 (i.e., the magenta circles),
the mixing is slightly assortative. Nonetheless, another measure of the mixing will
be helpful to determine the assortativity of the FP5.

The results for Universities and Companies support those obtained through the
joint degree–degree distributions (see Fig. 2.8B). To emphasize the presence of the
cut–off due to the finite size of the network, the points obtained from less than
10 observations are plotted as crosses (Universities in red and Companies in blue)
and the rest of the points as red squares (Universities) or blue circles (Companies).
Then, if we only consider the circles and the squares, we confirm that collaborations
between Companies are size–dependent whereas those between Universities are much
less size–dependent.

It is also interesting to analyze how Universities and Companies link each other,
which can be done as follows. We search for all Companies with k links and then
compute the average degree of all their neighboring Universities. Notice that the
former degrees are always calculated in the corresponding network, thus a Company
with degree k has k neighbor Companies, although it may have more links (with
Universities). Analogously, we can look for all Universities with k links to average
the degrees of all neighbor Companies.

If we plot again as squares (Universities) or circles (Companies) the points ob-
tained from more than 10 observations to identify the region where the tendency is
well defined. We find that, while Companies link to Universities independently of
their degrees, Universities with high degree prefer to collaborate with Companies of
large degree (see Fig. 2.9).
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Figure 2.8. Plot of the mean degree of the nearest neighbors k̄nn(k) of a vertex of
degree k. (A) The complete FP5 network. Apparently, the behavior below k ≈ 200 is
slightly assortative and disassortative for higher degrees. However, only the region below
k ≈ 200 must be considered because the region apparently disassortative is where the
finite size of the network is important. If the green crosses are points calculated from only
1 or 2 participants and the rest of the points are magenta circles, it can be seen that the
region with disassortative mixing is essentially made of green crosses. (B) Universities
and Companies. To mark the proximity to the cut–off, the points obtained from less than
10 observations are plotted as crosses (Universities in red and Companies in blue) and
the remaining points as red squares (Universities) or blue circles (Companies). In this
manner, it can be seen that these points are biased downwards because of the finite size
of the network. Then, once we focus our attention on the circles and the squares, we find
that Companies have assortative mixing, while links between Universities are much less
size–dependent.

2.6.3 Assortativity coefficient

Another way to quantify the mixing in the FP5 is by means of the assortativity
coefficient [25]. In this case, we obtain what type of mixing takes place in the
network by means of a single number instead of a distribution.

If ejk is the probability that a randomly chosen edge has vertices with degree j
and k at either end, the assortativity coefficient takes the following form:

r =

∑
jk jk(ejk − qjqk)∑

k k2qk − (
∑

k kqk)
2

where qk =
∑

j ejk and qj =
∑

k ejk. This coefficient verifies that −1 ≤ r ≤ 1, being
positive when the network is assortative and negative when it is disassortative.

The FP5 has assortative mixing since r = 0.25, which is close to the coefficients
obtained for other social networks [26]. Also Universities and Companies have as-
sortative mixing, although it is higher in Companies rc = 0.51 than in Universities
ru = 0.34. Note that the whole FP5 has a smaller coefficient than the networks of
Companies or Universities, indicating that the collaborations between Companies
and Universities reduce the assortativity.
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Figure 2.9. Here we plot the average degree of the nearest Companies of a University
with k links to other Universities (red squares) and the average degree of the nearest
Universities of a Company with k links to other Companies (blue circles). As before, if
we only consider the circles and the squares, we find that Companies link to Universities
independently of their degrees while Universities with high degree collaborate mainly with
Companies that have also high degree.

Therefore, Companies and Universities differ in the way they establish collabo-
rations. Companies are organized hierarchically, where positions in that hierarchy
are related to the size: Large corporations are reluctant to choose as partners small
companies. Between Universities, however, size is not important and it is common
to find a large institution collaborating with a small one.

But if we analyze which partners Universities choose among Companies, we check
that large institutions in Universities prefer working with large Companies. On
the contrary, Companies select their collaborators between Universities regardless
of their sizes. Then, we can conclude that large Companies are indeed the stars
featuring the FP5 but Universities play the role of bridges between participants
who are separated in the hierarchical structure of Companies.

2.7 Conclusions

We have thoroughly analyzed the complex network constituted by the scientific
collaborations of the fifth Framework Programme to study the interplay between
research and industry. This study uses the methods coming from the field of complex
networks to derive several measures that allow us to quantify the features of this
relationship and assess their potential improvements.

The FP5 network is scale–free with an accelerated growth, which means that
new collaborations are created at a faster rate than usual. We have also concluded
that some sort of synergy among the participants exists since new collaborations
appear.

However, the fact that only Universities use the different programmes to create
new collaborations shows that this is not enough to assure the transfer of knowledge.
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While the network of Universities is well integrated and established in accordance to
what is observed for other social networks, the same does not seem to be true for the
Companies network, mainly due to its relatively small largest connected component.
Competition is probably the origin of this effect, which is moderated by the presence
of Universities.

We find that the transmission of information is more efficient between Universi-
ties than among Companies. Furthermore, when Universities are excluded from the
projects, Companies tend to form clusters, turning difficult (if not impossible) the
communication between them. These results point to the central function played
by Universities in the FP5 network to reduce the distance between research and
applications.

We also show that Companies and Universities are organized differently. Large
corporations are reluctant to choose as partners small companies, whereas size is not
important between Universities. But if we analyze how Universities and Companies
cooperate; the result is that large Universities prefer working with large Companies,
while Companies select their collaborators between Universities regardless of their
sizes.

Therefore, while Companies exhibit a hierarchical structure, Universities do not.
Then, although Universities contribute to approach Companies which would be sep-
arated otherwise, small Companies are not well integrated yet. Therefore, we believe
that the industry–industry and industry–research interactions should be particularly
encouraged, while maintaining the investment in the research–research interplay.

These findings have potential implications for future programmes, as well as for
new policies and services aiming at research, development and innovation in general.

Appendix: Classification of participants into Companies and
Universities

The Framework Programme (FP) sets out the priorities for the European Union’s
research and technological development. These priorities are defined following a set
of criteria that pursue an increase of the industrial competitiveness and the quality
of life for European citizens.

A fact that shows the effort made by the European Union to promote this global
policy for knowledge is the budget devoted to these programmes. For example, the
FP5 (1998-2002) was implemented by means of 13 700 million euros and the FP6
(2002-2006) has assigned a budget of 17 883 million euros.

All projects in the FP5 are organized in eight specific programmes which can
be classified as follows. There are five focused Thematic Programmes implementing
research, technological development and demonstration activities:

• QOL: Quality of life and management of living resources (2 524 projects).

• IST: User–friendly information society (2 382 projects).

• GROWTH: Competitive and sustainable growth (2 014 projects).
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• EESD: Energy, environment and sustainable development (1 772 projects).

• NUKE: Research and Training in the field of Nuclear Energy (1 032 projects).

And there are three Horizontal Programmes to cover the common needs across
all research areas:

• INCO: Confirming the international role of Community research (1 034 projects).

• SME: Encouragement of small and medium enterprises participation (142
projects).

• HPOT: Improving human research potential and the socio–economic knowl-
edge base (4 876 projects).

The data to analyze the FP5 as a complex network were obtained from the web
pages of CORDIS [11] with a robot implemented in Perl. The result was a database
with 15 776 records as follows:

Programme | Year | Participant1 - Nation - Dedication | Participant2 - Nation -
Dedication | . . .

The first field refers to the specific programme to which the project belongs
and the second field informs us about the year in which it started. The following
fields are the participants in the project with their corresponding nationality and
dedication (‘research’, ‘education’, ‘industry’...).

Note that we have a bipartite graph [5, 13] since there are two kinds of vertices
(participants and projects) and each edge links a participant with a project. To
obtain the graph with 25 287 participants (nodes) and 329 636 collaborations (edges)
used throughout the text, we have only to project it onto the participants.

The names of the participants were not free of typos since we collected them as
they were in the web. The consequence of this fact was that sometimes the same
participant appeared in two projects with different names and, consequently, it was
recorded twice in the data. For instance, ‘François Company of Something, Ltd.’
and ‘Francois Company of SOMETHING LTD’ would be recorded as different. To
avoid these duplications, we used a parser covering many possibilities that could
lead to false entries. Nevertheless, despite our efforts, not all duplications have been
eliminated. However, after a visual inspection of the data, we estimate that the
error is below 10%.

To split the participants in Universities and Companies, we considered the or-
ganization type reported in the project. This information is encoded in the field
‘Dedication’, in which we found 11 levels: ‘Commission External Service’, ‘Com-
mission Service’, ‘Consultancy’, ‘Education’, ‘Industry’, ‘Non Commercial’, ‘Not
Available’, ‘Other’, ‘Research’, ‘Technology Transfer’ and 〈Void〉.

The level ‘Not available’ means that the FP itself was not able to obtain the
information and it is shown in this manner. In addition, 〈Void〉 means that no
information at all is given, i.e. our robot found nothing (not even ‘Not Available’).
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The first step to define only two groups was to reduce the number of levels in
‘Dedication’. We found that eight levels could be merged to define a new one, called
‘Non Companies’. It was not homogeneous since we found consultancies, universi-
ties, hospitals, institutes, laboratories, observatories, museums, technological parks
even cities. However, they all were participants involved in some type of research for
whom results do not necessarily return income. This new level was, basically, the
union of ‘Research’ and ‘Education’ since the other six levels appeared few times
in the data: ‘Commission External Service’ (4 records), ‘Commission Service’ (8
records), ‘Consultancy’ (49 records), ‘Non Commercial’ (389 records), ‘Technology
Transfer’ (1 record) and 〈Void〉 (1 record). The record with 〈Void〉 was identified as
‘Non Company’ by direct inspection.

Therefore, all records could be classified in one of the following levels: ‘Non Com-
panies’ (41 317), ‘Industry’ (6 447), ‘Other’ (17 588) and ‘Not Available’ (12 346).
The total number of records (77 698) is larger than the number of participants
(25 287) since many of them collaborate in several projects. Then, it was necessary
to verify if repeated records were always classified in the same level of ‘Dedication’.

We found that many participants were classified in different levels, thus we had
to define a set of rules that eliminated this ambiguity. Hence, the following step
was to study each level to understand their composition. For every level, we chose
100 records randomly to check by direct inspection their dedication. The result was
that all selected records in ‘Industry’ were companies, any in ‘Non Companies’, 95
in ‘Other’ and 55 in ‘Not Available’.

With the former information, we proceeded as follows. We first defined for each
participant a vector D={‘Non Companies’, ‘Industry’, ‘Other’, ‘Not Available’},
where the components are the number of times that it is classified in that level.
For instance, D={17, 0, 8, 4} means that the participant appears 17 times as ‘Non
Company’, 8 as ‘Other’ and 4 as ‘Not Available’. Then, we decided that vectors in
the form {a, 0, 0, 0} or {a, 0, 0, d} were Universities and vectors in the form {0, b,
c, d}, {0, b, c, 0}, {0, b, 0, d} and {0, b, 0, 0} were Companies. With only these
sensible rules, we managed to classify 22 001 participants (87%).

In order to confirm this result and to classify the remaining 3 286 entities, we
defined a filter based in keywords relative to the Universities group, such as ‘univer’,
‘schule’, ‘laborato’... When we focused our attention in the group of 22 001 par-
ticipants classified using ‘Dedication’, we found that those classified as Universities
according to the filter were also Universities according to ‘Dedication’. Since the
filter was a completely different manner of splitting the dataset, we could use it for
the rest of the entries. Note that we only believed the result of the filter if it was
University, not if the result was Company. This is reasonable since the filter was
designed to identify terms related to Universities, not to Companies.

By means of the filter we classified all participants but 309. To place these
entities, we paid attention to which value was higher: ‘Non Companies’ or ‘Industry’,
independently of the other two values. If the value ‘Non Companies’ was higher, it
was a University, otherwise it was a Company.
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Chapter 3

Spreading processes in
complex networks

3.1 Introduction

Network analysis is a tool that has been successfully used in different scientific
fields, such as neurobiology [1], Internet [2], or the financial markets [3]. But, one
of the most important, and historically one of the first, reasons to study networks
is to understand the mechanisms by which information, rumors or computer viruses
spread over them.

In this Chapter we follow the methodology explained in Chapter 1, in which
we describe a social group as a complex network whose nodes may be friends or
employees and the links could be the social relations or the information transfer
between them.

We focus our attention on two questions. First, we are interested in the study
and characterization of the information flow between members of a social group
hierarchically organized when the information spreads with degradation (i.e., the
transmission is not perfect).

For this purpose, we analyze different aspects of a generalized hierarchical topol-
ogy that we propose to describe the relationships between them. In this model, we
assume that each person in the group, except for the top leader, is subordinated to
a boss. Additionally, we also consider that all people directed by the same boss are
connected.

The second question, related to the first one, is what happens when the spread
of information is perfect (i.e., no degradation) but the access to this information is
restricted by some physical constraint (e.g., time, storage,...).

It is well known that whenever a common resource is scarce, a set of rules are
needed to share it in a fairly way. However, most control schemes assume that
people will behave in a cooperative way, without taking care of guaranteeing that
they will not act in a selfish manner.

Then, a fundamental issue is to evaluate the impact of cheating. This can be
done from the point of view of game theory and, more precisely, using the concept
of Nash equilibrium. Nash equilibrium implies that nobody can take advantage by
unilaterally deviating from this stable state, even in the presence of selfish people.
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In particular, we are interested in knowing if it is possible to define a control
scheme that does not depend on the previous behavior of the people in the group—
this type of control scheme is called oblivious.

3.2 Information flow in generalized hierarchical networks

Traditionally, the research in graph theory has assumed that information in a graph
travels through edges without degradation. This approach is useful to model some
particular types of phenomena, like disease spread [4] or virus infection in a group
and error propagation in computer networks [5].

Nevertheless, this is not appropriate when trying to model processes that take
place in collaborative social networks. In order to create a model for this particular
situation, we define a quantity that we call the coordination degree, which measures
the ability of the vertices in a graph to interchange information. There are several
manners to model this magnitude, but one of the easiest ways is to consider the
coordination degree to be exponentially related to the distance between the ver-
tices [6]. In this way, we define the coordination degree γij between two vertices i
and j as

γij = e−ξdij ,

where dij is the distance between the two vertices and ξ is a real positive constant,
measuring the strength of the relationship which we call the coordination strength.

Quantities similar to the coordination degree have been already discussed in the
literature. The most remarkable work in this field is the one by Katz [7], in which
the author considers the sum of e−ξdij over all paths to a particular vertex. However,
our model postulates that only the shortest paths are appropriate for this purpose.
We think that our model is more appropriate than the one proposed by Katz for
several reasons.

First, the Katz measure can only be expressed in terms of the adjacency matrix
of the graph, making the analysis and computations much more complex.

Second, the fact that all the paths have the same priority for the spread of
information produces some inconsistencies in the interpretation of the results, mainly
when considering closed loops, since the information can be somehow amplified using
this approach.

Opposite to this, the coordination degree may be easily evaluated and can be
considered as a very good approximation in sparse graphs, just by considering that
the information travelling through secondary routes is negligible.

Accepting these assumptions, we can define the total coordination degree of a
vertex i in a graph as the sum of all the coordination degrees between that particular
vertex and the rest,

Γi =
N∑

j=1

γij,

where N is the order of the graph (the total number of vertices in that particular
graph). The total coordination degree of a vertex is a measure of the amount of
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information that the vertex is able to receive belonging to that particular network.
In the same way, we define the average coordination degree of the graph as

Γ =
1

N

N∑
i=1

Γi,

which can be interpreted as a measure of the efficiency of a particular community or
organization, since it suggests how much an individual contributes to the community.

3.2.1 The law of diminishing marginal returns

When analyzing the efficiency of social networks in terms of the average coordination
degree, an interesting phenomenon appears (see Fig. 3.1). The efficiency of networks
does not vary linearly with the order, but it tends to saturate to a value which
depends on the topology of the network.
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Figure 3.1. The average coordination degree for three different graphs with k = 4 and
ξ = 2 is shown. Whereas the X axis is the order of the graph (i.e., the number of nodes),
the Y axis is the average coordination degree Γ. (A) A two dimensional regular lattice.
(B) Different small–world networks. (C) A random graph.

This result can be seen from the point of view of the well known law of diminish-
ing marginal returns. This law states that when the amount of a variable resource
is increased, while other resources are kept fixed, the resulting change in the output
will eventually diminish.

This is precisely what occurs in the models, more members in the organization
does not produce an increase in the average coordination degree. This means that
the increase in information of each individual diminishes as the number of members
grows. As a consequence, it is reasonable to think that there exist a maximum group
size, since values greater than a certain N imply marginal returns close to zero.

Actually, some scientists propose the existence of this limit in the maximum
number of members of a social group by other means. Probably the most impor-
tant work in this direction is the one carried out by the British anthropologist R.
Dunbar [8], who related the size of the neocortex (a part of the brain related to
social and language capabilities) and the maximum group size for primates. When
applying this relation for the Homo sapiens, the group estimate maximum size is
147.8, or roughly 150.
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Nevertheless, the analysis we have performed shows that the size of an organiza-
tion cannot be only understood in terms of the intrinsic psychological properties of
its members. The relational structure and the properties of the information transfer
on the network may also play a definitive role.

3.2.2 Information in hierarchical networks

Here, we focus on the analysis of social networks having hierarchical topologies [9].
Examples of graphs having this structure are regular trees. A regular tree is a regular
graph (all vertices have the same degree c) that is connected (there is a path joining
any two of its vertices) and that contains no circuits (there is no path going from
one actor to itself that does not visit the same vertex twice). Every regular tree
has a particular vertex, called root node or top of the tree, that is the most central
vertex in the graph.

In order to generalize hierarchical topologies based on regular trees, we work with
a regular tree that each vertex has c − 1 order one–lower neighbors and c − 2 order
1 neighbors in the same level (see Fig. 3.2). The edges that link vertices in different
levels and the edges that link vertices in the same level have different coordination
strength, and hence, there are two different coordination degrees.

β

α

Figure 3.2. Representation of a hierarchical topology with links between members of the
same group. Notice that there are two different coordination degrees α, between members
of the same level in the hierarchy, and β, between members of different levels.

Let ξ and ζ be the coordination strength that measures the strength of the
relationship between vertices in different levels and vertices in the same level, re-
spectively. Then, the coordination degree between two vertices order 1 neighbors in
the same level is α = e−ζ , and the coordination degree between two vertices order 1
neighbors in different levels is β = e−ξ. Our objective is to obtain a formula giving
the information flow, for the former topology representing social networks, in terms
of the coordination degrees α and β.

As it is mentioned in the introduction of this section, we assume that the infor-
mation travels through the shortest path. This implies that α has really an effect on
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the model only when α > β2. In that case, the following formula for the coordination
degree is obtained

Γ̃i(α, β) =

⎧⎪⎪⎨⎪⎪⎩
(c−2)α

1−(c−1)β

[
β−βN−i

1−β
− 1−[(c−1)β2]N−i−1

1−(c−1)β2 (c − 1)i+1βi+2
]

+β−βN−i+1

1−β
+ [1 + (c − 2)α]1−[(c−1)β]i

1−(c−1)β

⎫⎬⎭ i ≤ N − 1

1−[(c−1)β]i

1−(c−1)β
i = N

(3.1)
When α < β2, the shortest path is through the one–order upper neighbor, as in

a traditional hierarchical tree. Consequently, the former equation cannot be used to
compute the coordination degree. However, from Eq. (3.1) it is possible to derive the
coordination degree in a traditional hierarchical tree, by introducing the following
change α → β2. Hence, the coordination degree in our model can be written in the
following terms

Γi(α, β) =

{
Γ̃i(α, β) α > β2

Γ̃i(β
2, β) α ≤ β2

As a basic ingredient of our model, it is important to remark the common percep-
tion that the number of close relationships a person may have within a community
is necessary limited to a quite small number, independently on the type of organiza-
tion. This may be the consequence of the fact that establishing close relationships
with people is normally very time consuming, and time is a limited resource for
every individual.
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Figure 3.3. When the constraint (c − 2)α + cβ = cons. is included in the model, the
coordination degree is a curve depending on α and β whose maximum is at α = 0. This
implies that the maximum information is received when each node only pays attention to
neighbors in upper levels in the hierarchy.

Therefore, we can consider that each member devotes time to his neighbors
proportionally to the information obtained. That is, each actor shares his time
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between neighbors in the same level and neighbors in different levels, proportional
to α and β respectively.

Thus, there is a constraint on α and β given by (c − 2)α + cβ = const, which
is a plane in the space {α, β, Γi}. Hence, the coordination degree is a curve, the
intersection of that plane and the surface defined by Γi (see fig. 3.3). And the result
is that the maximum information is received when each actor devotes all his time
to neighbors in upper levels.

3.3 Congestion Schemes and Nash Equilibrium

The problem of control schemes constitutes a largely studied issue in the past few
years [10, 11, 12, 13, 14, 15, 16]. Many systems nowadays are based on the principle
of sharing a common resource, e.g., a communication link, among different users.
Consequently one of the main objectives of such schemes is to establish a number of
rules guaranteeing that the common resources are shared in a fair way among users.

However, most of these schemes require users to behave in a cooperative way,
so that they respect some “social responsible” rules. Moreover, without forcing end
users to adopt a centralized mandated policy controlling their behavior, it is not
possible to guarantee that they will not act in a selfish manner. Then, it seems a
main issue to evaluate the impact of having users acting this way.

An example that illustrates the above mentioned scenario is the control scheme
used by the TCP/IP protocol, which is currently the dominant protocol in the inter-
net. By using it, users control the injection rate of packets into the communication
network by means of a pair of parameters. When users detect that the network is
overloaded, by means of control messages, they decrease their injection rate by a
half, thus alleviating the network’s load.

However, the adherence to this scheme is voluntarily in nature, and some users
may decide to act in a selfish manner and not to decrease its injection rate. As it
has been evaluated by several authors [17, 18], this may lead to a congestion collapse
that only benefits selfish users. Therefore, it is interesting to know how cooperative
users may “fight back” against unsupportive ones.

Another example can be found in social networks, mainly when they are based
on the traditional hierarchical paradigm. Despite the problems of this topology,
large companies prefer a hierarchical organization because it is the only way to keep
their activities under a strict control (see Section 3.2).

But with the growth of the companies, the number of specialized activities grows
also, and it is a need the introduction of a non–hierarchical communication to main-
tain the efficiency.

However, nobody knows how to control a non–hierarchical organization. The
hope is that some global “self–organizing” order emerges by means of a horizontal
interaction protocol [19]. Consequently, it is important to analyze the features that
such a successful protocol must have.

Game theory constitutes a good mathematical tool for analyzing the interaction
of decision makers with conflicting interests [20, 21]. From a game–theoretic per-
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spective, users are considered as the game players and congestion control schemes
establish the game rules.

We regard players are agents that issue requests for a common resource selfishly
(i.e., they are only concerned about their own good). Hence, the utility function of
each player, which is the parameter to be maximized, is assumed to be equal to the
number of requests that have been served per unit time.

The rules of the game are determined by the management policy of the common
resource. Here, we consider policies that are oblivious, i.e., that do not differentiate
between requests belonging to different agents, and that have a limited storage ca-
pacity for pending requests. Moreover, requests issued after such a limit is reached
are simply discarded. Figure 3.4 shows an illustration of the above mentioned sce-
nario.

Resource

Pending requests Served request

User

User

User

User

Figure 3.4. The requests sent to use the common resource are represented here with
filled rectangles. These requests are stored up to a certain limit until they are chosen
obliviously to be served, one at each time.

Once the players and the rules have been fixed, the next step is the definition
of a utility function. But the problem here is that its concrete form depends on the
assumptions made for the network under analysis.

For example, if we consider N players in a communication network, the request
rate of the ith player (also referred to as load) can be modelled by a Poisson process
with average rate λi and the utility function (also known as the goodput) can be
written as [22]

µi = λi(1 − p(λ)),

where p(λ) is the discarding probability due to an average aggregate load of

λ ≡
N∑

i=1

λi

and an average service time of unity1.

1Note that there is no loss of generality if it is assumed that the service rate of the system is
normalized to 1.
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Although the utility function is different for many other problems, in the rest of
the chapter it is used the goodput given in the former example to ease the reading.
Nonetheless, we will show that the results derived from this particular goodput can
be generalized to a broad set of utility functions.

An important concept in game theory is the Nash equilibrium. In our context, a
Nash equilibrium is a scenario in which no selfish user has a reason to unilaterally
deviate from its current state, because he is acting in an optimal way. Clearly, being
in a Nash equilibrium means that we are in a stable state in the presence of selfish
users.

In a Nash equilibrium, no player can increase his goodput by either increasing
or decreasing their request rate λi. Then, the following condition must be satisfied

∂µi

∂λi

∣∣∣∣
λ∗

= 0, i = 1, . . . , N,

where λ∗ is the average aggregate request rate at equilibrium. This condition can
be rewritten as

q(λ∗) + λ∗
i q

′(λ∗) = 0,

where q(λ) ≡ 1 − p(λ) for simplicity.
Since we are interested in a symmetric equilibrium, which imposes λ∗

i = λ∗/N ,
the Nash condition becomes

q(λ∗) +
λ∗

N
q′(λ∗) = 0. (3.2)

It is interesting to note that this symmetry condition implies that the goodput at
equilibrium is the same for all players, which is the only way to guarantee that the
obtained policy is fair.

On the other hand, given a solution for the Nash condition, it is also desirable
that such a solution has a good efficiency. A solution is efficient when the aggregate
goodput at equilibrium µ∗, which is defined as

µ∗ ≡
N∑

i=1

µ∗
i =

N∑
i=1

λ∗
i q(λ

∗) = λ∗q(λ∗),

verifies that limN→∞ µ∗ is a positive constant, otherwise it means that no requests
are being processed.

Observing Eq. 3.2 we must remark that λ∗ is, in general, a function of the number
N . Hence, the load of any of the players at equilibrium λ∗

i also depends on N . In
this situation, it is interesting to define a parameter measuring the increase on λ∗

i

when N changes. With this purpose, we use the sensitivity coefficient ∆i(N), which
can be defined as [23]

∆i(N) = λ∗
i (N) − λ∗

i (N − 1).

Note that ∆i(N) is a measurement of how difficult is for player i to reach a new
equilibrium when the number of users increases from N − 1 to N . For practical
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purposes, it will be interesting to obtain oblivious policies having no sensitivity to
N , that is, ∆i(N) = 0.

We say that a policy is reachable in a practical situation if it has no sensitivity to
N . This would guarantee that, once all players have reached the equilibrium, they
will be able to maintain it without the need of passing a transient period of time
searching their new Nash conditions.

3.3.1 Efficient Solutions to the Nash Condition

As it has been stated previously, the average aggregate load at equilibrium λ∗ de-
rived from the Nash condition depends on N , the number of agents involved in the
network. Hence, λ∗ is a discrete function λ∗ : N → R

+, which for every value of N
returns the λ∗ imposed by the Nash condition for N agents.

However, although λ∗ is a discrete function of N , it is always possible to regard
λ∗ as a twice differentiated function f : [1,∞) → R

+ such that f(N) = λ∗(N)
for all positive integer N . Note that the function λ∗ can be geometrically seen as
a set of points in the plane located at (N, λ∗(N)), where N is an integer. Then,
the definition of f simply reflects the fact that we can always draw a curve (twice
differentiated, for technical reasons that will be clear later) passing through them.

Therefore, when this continuum limit is taken, Eq. 3.2 can be seen as the follow-
ing condition, which holds for all v ≥ 1,

q[f(v)] +
f(v)

v
q′[f(v)] = 0,

where, according to the definition of f , the derivative must be understood as ()′ ≡
d
df

().

Consequently, if it is used the notation (̇) ≡ d
dv

() and q(v) ≡ q[f(v)] for simplicity,
the Nash condition in the continuum limit is written as the following first order
ordinary differential equation

q(v) +
f(v)

v

q̇(v)

ḟ(v)
= 0,

whose solution can be written formally as

q(v) = D e−I(v), (3.3)

where D is a constant of integration and I(v) is defined in this manner

I(v) ≡
∫

ḟ(v)

f(v)
v dv.

Although Eq. 3.3 is a formal solution to the Nash condition, it is enough to
demonstrate that any efficient solution has to tend asymptotically to a positive
constant (see Appendix A). Namely, f(v) must verify

0 < lim
v→∞

f(v) < ∞.
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This implies that f(v) can always be written as

f(v) ≡ f∞[1 + f̃(v)], (3.4)

with f∞ a positive constant and f̃(v) a twice differentiated function verifying limv→∞ f̃(v) =
0 and f̃(v) > −1, for all v ≥ 1.

However, not all f(v) verifying Eq. 3.4 is an efficient solution. Hence, we need
more conditions to fix the set of efficient solutions. There are two results that are
useful for this purpose.

The first one is a sufficient condition (see Appendix B) that states that if f̃(v)
is a twice differentiated function behaving asymptotically as

˙̃f(v)v2 ∼ 1

vα
with α > 0,

then, an efficient solution is derived.
The second result is a necessary condition (see Appendix C) that states that if

the Nash condition is efficiently verified, the following equation holds

lim
v→∞

˙̃f(v)v2 = 0.

Notice that because both conditions are similar but not equal, nothing can be
said about some functions. The following function is an example,

f̃(v) =
−1

v ln v
=⇒ ˙̃f(v)v2 =

1 + ln v

(ln v)2
∼ 1

ln v
.

Nevertheless, the set of efficient solutions are functions such that asymptotically
tend to a constant faster than 1/v. Then, in terms of the load, this result tells us
that, at equilibrium, any efficient solution must have a λ∗ that falls with N to a
constant value faster than 1/N .

Then, as our equilibrium is assumed to be symmetric, the load of any of the
players at equilibrium asymptotically changes in the form λ∗

i (N) ∼ 1/N . Hence, the
sensitivity coefficient for any player behaves like ∆i(N) ∼ 1

N
− 1

N−1
∼ 1

N2 in that
limit.

This allows us to conclude that, in situations in which the number of players
rapidly changes, which occurs often, the efficient equilibrium of any oblivious efficient
policy is not easily reachable, because the load of players strongly depends on the
number of current players.

At this point, we have to remark that it is possible to have situations with
an efficient Nash equilibrium. What we prove here is that, in order to remain in
an efficient equilibrium, users must adapt their request rate whenever the number
of users changes. Furthermore, such an adaptation will be very significant and,
consequently, it will likely require some time to be realized.

Therefore, if the number of users rapidly changes, the system will be always
evolving from one equilibrium state to another, without reaching any of them (or
being in equilibrium only during a short time interval). That is, the system would
be always out of equilibrium.
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3.3.2 Real–World Congestion Schemes

Here, we analyze two real–world congestion schemes to show how their behavior can
be greatly affected by the result we have just derived.

The TCP/IP Protocol

As it has been pointed out previously, the TCP/IP protocol is the dominant protocol
in the Internet. Furthermore, most of the current scheduling policies in Internet are
oblivious, e.g., FIFO (First In First Out). Therefore, taking into account that the
adherence to the TCP/IP control scheme is voluntarily in nature, our result shows
that, in the presence of selfish users, TCP/IP control schemes cannot impose a Nash
equilibrium.

To assess the importance of the above mentioned effect in real situation, we note
that there are already protocols, patented and owned by commercial companies [24],
that “exploit” the “weakness” of TCP/IP protocol by means of behaving in a selfish
manner. Such protocols offer goodputs (i.e., number of requests served per unit
time) that are higher than the offered by the TCP/IP protocol, but at a cost of
penalizing the performance of the latter.

Unfortunately, our result implies that it is not possible to obtain an internet
router capable of providing an equilibrium state without maintaining a record of
the requests performed by each user.

A result somehow similar to ours, when focussed in communication systems, has
been reported by other authors. For example, Dutta et al. [23] assume that the
discarding probability must be a non–decreasing and convex function. Furthermore,
they assumed that their sensitivity coefficient depends on the number of flows in an
exponential fashion.

Such assumptions, although simplify the proofs, are arbitrary. On the contrary,
our result is completely general. Surprisingly, we noted that their assumption about
the sensitivity coefficient constitutes a sufficient condition to obtain an efficient
solution.

Altman et al. [25] present a detailed analysis when the utility function of each
user is taken as the ratio of some positive power of the total throughput of that
user to the average delay seen by the user. Also, they consider a routing problem in
networks defined by a directed graph with a polynomial cost function [26]. However,
when all these utility functions are studied for a symmetric equilibrium, they are
functions of only one parameter, being particular instances of our result.

Social Networks

Several papers [14] have appeared in the literature reporting that social networks
and computer networks share similar features in terms of information transfer. Some
recent work [9] remarks that the problem of congestion often arises in social networks,
mainly when these are based on the traditional hierarchical paradigms used by
companies and organizations.
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Illustrative examples are telecommunication or digital cable/satellite TV com-
panies. Usually, installers must communicate with a central site in order to validate
new services, e.g., a home installation. At the central site, requests are queued and
managed in the receiving order, but only up to a certain threshold, above it, the
installer is required to communicate later on (i.e., the request is dropped).

Clearly, the number of requests may have peaks at given moments. If installers
act in a cooperative way, they will communicate again after some time. But some of
them may act unfairly and communicate immediately, trying to reduce their waiting
time, at a cost of increasing the waiting time of the other employees.

The only way to attain a reachable and efficient equilibrium, being fair at the
same time (i.e., giving equal opportunities to any requester) is to track their activities
over time measuring their individual degrees of cooperation, and acting accordingly
to these measurements. Namely, any strategy taking into account only the current
state and not the individual past will fail.

3.4 Conclusions

We have derived the existence of a natural limit in the size of a group due to the
limitation in the amount of information that the group can deal.

Additionally, we have found that hierarchical networks are so spread because
this structure arises when each actor only looks for maximizing his information.
The result is a structure that mainly benefits the higher levels, by providing them
a higher information centrality and improving their dominance of information.

When edges, between vertices with the same upper neighbor, are added to a
hierarchical tree, we show that the information each actor manages decreases. This
means that a hierarchical tree is a stable network against relationships between
members of the same group.

This stability can be seen as another reason that explains why hierarchical trees
are so spread in companies all over the world. A hierarchical tree backs the leader’s
superiority of information despite the strength of the relationship that links the
members of a group.

Nevertheless, it should be noticed that in our model edges between vertices in
the same level with different upper neighbor are not included, or between vertices
in different levels. This study may yield a different result.

When we assume that the transmission of information is perfect, without degra-
dation, but the access to this information is somehow restricted, the problem is how
to fairly share it, if some users act in a selfish manner.

We have shown that, if the policy used to manage the common resource is obliv-
ious (i.e., if it does not differentiate between requests belonging to different users)
then any efficient Nash equilibrium will highly depend on the number of users, in
the sense that they must adapt their request rate in a significant manner.

Taking into account that, in many realistic situations, the number of users
changes rapidly and that the time needed to adapt from one equilibrium to an-
other one can be significant, this means that the system will be most of time out
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of equilibrium. Actually, as illustrative examples, we point out a pair of congestion
schemes in which the above mentioned effect may have a real impact.

Appendix A

Lemma 1: If f(v) is a solution to the Nash condition, it is verified:

lim
v→∞

f(v) > 0.

Proof: Any solution to the Nash condition must be such that the resulting q(v)
of Eq. 3.3 is a well defined probability. Then, we can use Appendix D in which it is
proven that we can write

f(v) = D’ eJ(v), (A1)

with D’> 0 and

J(v) ≡ I+(v)

v
+

∫ v

1

I+(z)

z2
dz,

being I+(v) ≥ 0 for all v ≥ 1.
We have that J(v) ≥ 0 for all v ≥ 1 because it is the sum of two positive terms,

thus f(v) ≥ D’ for all v ≥ 1 and, as a consequence, limv→∞ f(v) > 0 because D′ > 0.
Lemma 2: If f(v) is an efficient solution to the Nash condition, it is verified:

lim
v→∞

f(v) < ∞.

Proof: It is done by reductio ad absurdum.
Since any solution f(v) must result in a well defined probability function q(v), it

is proven in Appendix D that it takes the form given by Eq. A1. Thus if we suppose
that limv→∞ f(v) = ∞, it is because limv→∞ J(v) = ∞.

If such a solution is also efficient, the following condition must hold

0 < lim
v→∞

λ∗(v) q[λ(v)] < ∞,

which in the continuum limit implies that

0 < lim
v→∞

f(v) e−I+(v) < ∞.

Taking into account A1, the former condition can be written as

0 < lim
v→∞

eJ(v) e−I+(v) < ∞
which can only be true if

lim
v→∞

J(v) − I+(v) �= ±∞. (A2)

Since limv→∞ J(v) = ∞, Eq. A2 can only be satisfied if limv→∞ I+(v) = ∞. But,
if it is verified that limv→∞ J(v) − I+(v) = constant, with limv→∞ J(v) = ∞ and
limv→∞ I+(v) = ∞, it is easy to check that

lim
v→∞

J(v)

I+(v)
= 1,
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which implies, by definition of J(v), that

lim
v→∞

1

I+(v)

∫ v

1

I+(z)

z2
dz = 1. (A3)

Let us define the function s(v) as follows:

s(v) ≡ 1

I+(v)

∫ v

1

I+(z)

z2
dz.

We have that Eq. A3 imposes on s(v) the condition limv→∞ s(v) = 1. Since it is
also true that limv→∞ 1/s(v) = 1, there exists some V ≥ 1 such that, for all v > V ,

1

s(v)
< 1 + ε. (A4)

where ε is a positive real number.
On the other hand, by definition of s(v), its derivative with respect to v is the

following
I+

v2
= ṡ(v)I+ + s(v)İ+.

Then, the following ordinary differential equation is obtained

İ+

I+

=
1

s(v)v2
− ṡ(v)

s(v)
,

whose solution can be written formally as

I+(v) =
C

s(v)
exp

[∫
dv

s(v)v2

]
,

where C is a constant of integration.
If Eq. A4 is considered, we have that, for all v > V ,

I+(v) < C (1 + ε) exp

[∫
1 + ε

v2
dv

]
= C (1 + ε) exp

[
C’ − 1 + ε

v

]
,

where C’ is a constant of integration. As a consequence, it is derived that, for all
v > V

I+(v) < C (1 + ε) exp

[
C’ − 1 + ε

V

]
= C”,

where C” is a constant.
Therefore, it is obtained that limv→∞ I+(v) < ∞. However, this contradicts the

result derived from Eq. A2 (i.e., limv→∞ I+(v) = ∞). Then, we conclude that no
efficient solution to the Nash condition can verify that limv→∞ f(v) = ∞.
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Appendix B

Lemma: If f̃(v) is a twice differentiated function that behaves asymptotically as

˙̃f(v)v ∼ 1

v1+α
with α > 0,

it is an efficient solution to the Nash condition.
Proof: By definition of f̃(v), it is easy to check that

lim
v→∞

1

1 + f̃(v)
= 1.

Thus, given any ε > 0, there exists some V ≥ 1 such that, for all v > V ,∣∣∣∣ 1

1 + f̃(v)

∣∣∣∣ < 1 + ε.

Then, it is deduced that∣∣∣∣∣
∫ ∞

1

˙̃f(v)

1 + f̃(v)
v dv

∣∣∣∣∣ <
∫ ∞

1

∣∣∣∣∣ ˙̃f(v)

1 + f̃(v)
v

∣∣∣∣∣ dv < B + (1 + ε)

∫ ∞

V

| ˙̃f(v)|v dv,

where B is a real number defined as∫ V

1

∣∣∣∣∣ ˙̃f(v)

1 + f̃(v)
v

∣∣∣∣∣ dv.

If ˙̃f(v)v ∼ v−(1+α) with α > 0, and taking into account that the integration of a
function that asymptotically behaves as v−(1+α) is a function that tends to zero as
v → ∞, it is straightforward to check that∫ ∞

V

| ˙̃f(v)|v dv = B’,

with B’ being a constant.
Therefore, it is deduced that∣∣∣∣∣

∫ ∞

1

˙̃f(v)

1 + f̃(v)
v dv

∣∣∣∣∣ < B + (1 + ε)B’ < ∞,

which implies that there exists an efficient solution (see Appendix E).
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Appendix C

Lemma: If the Nash condition is verified efficiently, the following equation holds:

lim
v→∞

˙̃f(v)v2 = 0.

Proof: Assume that limv→∞
˙̃f(v)v2 = A’ > 0. Then, for every A”∈ (0,A’), it is

always possible to find a V1 ≥ 1 such that ˙̃f(v)v2 ≥A”, for all v > V1. On the other
hand, limt→∞ f̃(v) = 0. Thus for every ε ∈ (0, 1) there exists a V2 ≥ 1 such that

1

1 + f̃
> 1 − ε,

for all v > V2.
Then, we deduce by means of Appendix E that, for all v > V ≡ max{V1, V2},

cons =

∫ ∞

1

˙̃f(v)v2

1 + f̃(v)

dv

v
≥A + A”

∫ ∞

V

1

1 + f̃(v)

dv

v

≥ A + A”(1 − ε)

∫ ∞

V

dv

v
= ∞,

because A is a constant defined as

A ≡
∫ V

1

˙̃f(v)

1 + f̃(v)
v dv.

This contradiction arises because it was supposed that limv→∞
˙̃f(v)v2 > 0.

Similarly, when limt→∞
˙̃f(v)v2 = −A’ < 0, for every A”∈ (0,A’), there exists

some V1 ≥ 1 such that ˙̃f(v)v2 ≤ −A”, for all v > V1. In addition, limv→∞ f̃(v) = 0.
Thus given any ε > 0 there exists some V2 ≥ 1 such that

1

1 + f̃
< 1 + ε,

for all v > V2.
Then, it is derived from Appendix E that, for all v > V ≡ max{V1, V2},

cons =

∫ ∞

1

˙̃f(v)v2

1 + f̃(v)

dv

v
≤A − A”

∫ ∞

V

1

1 + f̃(v)

dv

v

≤ A − A”(1 + ε)

∫ ∞

V

dv

v
= −∞.

Such a contradiction only disappears when the condition limv→∞
˙̃f(v)v2 < 0 is

rejected.
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Notice that it is only possible to find an A”> 0 when A’ is not zero. If A’ is zero
the former reasoning fails because the first case results in cons< ∞ and the second
one derives in cons> −∞ and nothing can be argued.

These results imply that, given an efficient solution to the Nash condition, it is

not feasible that limv→∞
˙̃f(v)v2 �= 0. But, it could be possible that the condition

limv→∞
˙̃f(v)v2 = 0 was also rejected. In that case, it would derive that there is no

efficient solution to the Nash condition.
However, in the Appendix B we demonstrate that the functions f̃(v) that behave

asymptotically as ˙̃f(v)v ∼ v−(1+α), with α > 0, are efficient solutions. But these

functions verify that limv→∞
˙̃f(v)v2 = 0, thus this condition defines a non–empty

set of efficient solutions. Therefore, it can be affirmed that limv→∞
˙̃f(v)v2 = 0 is a

necessary condition to obtain an efficient solution to the Nash condition.

Appendix D

Lemma: The function q(v) is well defined probability if and only if the solution to
the Nash condition can be written as

f(v) = D’ eJ(v), (D1)

with D’> 0 and

J(v) ≡ I+(v)

v
+

∫ v

1

I+(z)

z2
dz,

being I+(v) ≥ 0 for all v ≥ 1.
Proof: Assume that q(v) is a probability that verifies the Nash condition for

all v ≥ 1. Then, from Eq. 3.3 we derive that I(v) �= −∞ for all v ≥ 1 (otherwise,
q(v) > 1 and it would not be a probability). Therefore, we can define a new function
I+(v) such that I(v) ≡ −M + I+(v), with 0 ≤ M < ∞ and I+(v) ≥ 0 for all v ≥ 1.

The definition of I+(v) implies that

İ+(v) =
ḟ(v)

f(v)
v,

which is an ordinary differential equation easily integrable in this manner

ln

[
f(v)

f(1)

]
=

∫ v

1

İ+(z)

z
dz =

I+(v)

v
− I+(1) +

∫ v

1

I+(z)

z2
dz,

where the right hand side of the equation is obtained from the integration by parts.
Therefore, if q(v) is a well defined probability for all v ≥ 1, the function f(v)

can be written as
f(v) = D’ eJ(v),

where the function J(v) is

J(v) ≡ I+(v)

v
+

∫ v

1

I+(z)

z2
dz,
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and D’ ≡ f(1) e−I+(1) is a positive constant because f(1) = λ∗(1) > 0.
Now, assume that the function f(v) is the one described by Eq. D1. It is easy

to verify that

I(v) =

∫
ḟ(v)

f(v)
v dv = I+(v) + D”,

where D” is another constant of integration. Consequently, q(v) can be written as

q(v) = D e−D” e−I+(v).

But we have that I+(v) ≥ 0 for all v ≥ 1, which implies that e−I+(v) ≤ 1 for

all v ≥ 1. Likewise, the constant D e−D” is an arbitrary constant since D is also
arbitrary. Then, D can be defined to keep q(v) in the interval [0, 1] for all v ≥ 1
and, therefore, it is obtained a well defined probability.

Appendix E

Lemma: There exists an efficient solution to the Nash condition if and only if∫ ∞

1

˙̃f(v)

1 + f̃(v)
v dv �= ±∞. (E1)

Proof: The function f must be such that the result of Eq. 3.3 is a well defined
probability (i.e. in the range [0, 1]). Then, f is a solution to the Nash condition if
and only if I(v) �= −∞ for all v ≥ 1.

But from the mean–value theorem for integrals [27], it is derived that I(v) is a
constant for all 1 ≤ v < ∞. Note that it is the integration of a continuous function
in a finite interval (recall that f(v) is defined as twice differentiated). Hence, in
order to obtain a solution to the Nash condition, it is not necessary to verify that
I(v) > −∞ for all v ≥ 1 but to check that limv→∞ I(v) �= −∞.

On the other hand, since limv→∞ f(v) = f∞, the condition of efficiency is ver-
ified when limv→∞ q(v) �= 0. Then, from Eq. 3.3 is deduced that the efficiency is
guaranteed if and only if limv→∞ I(v) �= ∞.

Therefore, the condition limv→∞ I(v) �= ±∞ is satisfied if and only if f(v) is an
efficient solution. Thus writing I(v) in terms of the f̃(v) defined in Eq. 3.4, the
following condition must hold

±∞ �= lim
v→∞

I(v) = cons + lim
v→∞

∫ v

1

˙̃f(z)

1 + f̃(z)
z dz,

which is equivalent to Eq. E1.
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Chapter 4

Classical approach to
dynamical systems

4.1 Introduction

The study of how an ensemble of dynamical systems becomes synchronized is one of
the most active and fruitful fields of research in Physics. Given two or more systems,
which evolve in different attractors when they are disconnected, we say that they are
synchronized when one or more of their variables converge in a common behavior
as a consequence of some type of link between them.

On the other hand, complex networks can also be used to study ensembles of
dynamical systems. Note that, following [1], we distinguish between dynamics of
networks and dynamics in networks. While the first one is focused on how networks
evolve, the later analyzes what happens when each node is a dynamical system.

Both the studies on synchronization and dynamics in networks pursue to under-
stand complex systems better (e.g., neural networks, food–webs or cellular systems).
Then, an interesting question to investigate is synchronization in networks of dynam-
ical systems, in which the interplay between the intrinsic dynamics of each element
in the network and the links among them notably affects the global dynamics.

However, before delving into the importance of the topology in this issue, we
should justify why a new methodology is required to analyze complex systems. To
this purpose, we explain in this chapter the classical approach to dynamical systems
based on the idea of a constant of motion for a differential equation. This viewpoint
will lead us to investigate the essence of integrability, its geometrical relevance and
dynamical consequences.

Integrability is analyzed using the powerful Lie theory for differential equations.
Actually, different techniques developed to solve certain types of equations (e.g.,
separable or exact equations) are regarded in this theory as special cases of a general
integration method.

Lie theory allows determining when the equation is integrable and its symme-
try group. Basically, a symmetry group of a differential equation is a group that
transforms solutions to other solutions of the equation. In the case of an ordinary
differential equation, this is useful to integrate it, since invariance under a symmetry
implies that the order of the equation can be reduced by one. Hence, two symme-

77



78 Chapter 4. Classical approach to dynamical systems

tries are needed to integrate a second order equation and to write the solution in
terms of known functions.

Chaotic aspects of certain dynamical systems are better understood when the
analytical structure is known [2] since it comprises information about the integra-
bility of the model, which is useful to assure whether chaos is possible or not. This
link between integrability and chaotic motion has been analyzed for several models,
for instance, the Lorenz model [3] or the Hénon–Heiles Hamiltonian [4].

4.1.1 Non–linear oscillators

Oscillations and waves are ubiquitous in nature and are easily modelled through
differential equations. The general equation for the one–dimensional oscillatory
motion of a unit mass particle, can be easily understood using a mechanical analogy.
Assume that the particle moves in a force field, which is generated by the potential
V (x), then the general equation of motion may be written as

ẍ +
dV

dx
= 0. (4.1)

Stated the problem this way, different oscillators may be obtained, depending
on the potential V (x) acting on the particle. Assuming V (x) to be a polynomial
function in x, very few cases with analytical solutions have been studied. Among
them the Duffing oscillator, with a nonlinear term of fourth order, and the Helmholtz
oscillator [5] when the cubic term is used. Obviously higher order terms may be con-
sidered, which in general lead to rather complicated mathematical solutions. These
are the nonlinear versions of the oscillator given by Eq. 4.1. If only the quadratic
term is taken into account obviously the harmonic oscillator is derived. Another
simple case with a non–polynomial potential V (x) = − cos x is the pendulum equa-
tion.

In order to be more specific, this chapter will be focused on the Helmholtz
oscillator since it is the simplest non–linear oscillator. The dynamics of this oscillator
mimics the dynamics of certain prestressed structures, the capsize of a ship [6] and
the nonlinear dynamics of a drop in a time–periodic flow [7] or in a time–periodic
electric field [8]. It appears also in relation to the randomization of solitary–like
waves in boundary–layer flows [9] and in the three–wave interaction, also referred
as to resonant triads [10].

If it is included a linear friction and a periodic forcing in Eq. 4.1, it is obtained

ẍ + δẋ +
dV

dx
= γ cos ωt,

where the inclusion of friction and forcing on the system bestows rather different
dynamical behavior as compared with the case without them.

Even though an analysis in absence of friction has been accomplished for the
pendulum equation [11, 12], as well as for the Duffing oscillator [13], no similar
results are known for the Helmholtz oscillator. In spite of that, when friction is
considered, this system has received some attention by different authors [5, 6, 14].
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4.2 Dynamics of the Helmholtz Oscillator

The equation of motion of a particle of unit mass that undergoes a periodic forcing
in a cubic single–well potential with friction, reads

ẍ + δẋ + αx − βx2 = γ cos ωt, (4.2)

where δ, α, β, γ and ω are positive constants.
A Hamiltonian and Lagrangian formalism can be used [15] to derive the equation

of a particle in a potential V (x) with a linear friction and a periodic forcing. The
particular case given by Eq. 4.2 is derived from a time–dependent Hamiltonian and
Lagrangian of the following form

H(p, x, t) =
1

2
p2e−δt + eδtV (x, t), (4.3)

L(ẋ, x, t) = eδt

[
1

2
ẋ2 − V (x, t)

]
,

where V (x, t) is the following generalized potential for the whole system

V (x, t) =
αx2

2
− βx3

3
− γx cos ωt.

In this section, it is considered that δ = 0 (i.e., there is no friction). Hence, the
equation to analyze is

ẍ + αx − βx2 = γ cos ωt,

and therefore, Eq. 4.3 becomes

H(p, x, t) =
1

2
p2 + V (x, t), (4.4)

L(ẋ, x, t) =
1

2
ẋ2 − V (x, t),

which will be particularly useful to compute the so–called separatrix map. This map
yields a lot of information about the effect of a periodic forcing on the Helmholtz
oscillator (in particular, about the possibility of transient chaos as a consequence of
the forcing).

4.2.1 Single–well potential

When γ = 0, the equation of a conservative oscillator is obtained. This oscillator
may be understood as a particle that is situated in a single potential well V (x)
defined as

V (x) =
αx2

2
− βx3

3
.

One important feature of this system, easily seen in Fig. 4.1, is that according
to the initial condition and the energy of the particle, the orbits may be bounded or
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Emax = α3

6β2

x = α
β

E

x = − α
2β

Emin = 0

V (x)

a b c

x

Figure 4.1. Potential energy associated to the Helmholtz oscillator, which may be seen
as the simplest potential with an escape. Notice that the potential has been chosen to be
V (x) = α

2 x2 − β
3 x3, because in this way α and β are positive constants. The orbits will

be bounded only when − α
2β < x < α

β and 0 < E < Emax. For instance, the bounded orbit
with energy E is comprised within [a, b]. If x > c then the orbit is unbounded.

unbounded. When the value of the energy Emin = 0 ≤ E ≤ Emax = α3

6β2 , then there
exist possibilities of bounded motions and hence, oscillations, while for E > Emax

the motion of the particle is unbounded, i.e., the particle escapes to infinity.
When the particle has energy E in the range [Emin, Emax], then the cubic equation

E−V (x) = 0 provides three real roots a, b and c, (a < b < c), which represent phys-
ically the turning points, i.e., the points where the velocity of the particle changes
sign.

These roots verify the following relationships that will be important for further
results:

a + b + c =
3α

2β
, ab + bc + ac = 0, abc = −3E

β
, (4.5)

and their general expressions are

a =
α

2β
+ (−1 − m)

λ

3
, b =

α

2β
+ (2m − 1)

λ

3
, c =

α

2β
+ (2 − m)

λ

3
, (4.6)

where to obtain the former results, the following parameters are used

m =
b − a

c − a
, λ = c − a. (4.7)

If it is defined also
∆2 = 1 − m + m2, (4.8)

then, from the Eqs. 4.5, it is derived that

α

2β
=

λ∆

3
;



4.2. Dynamics of the Helmholtz Oscillator 81

a useful expression that allows to express the values of the roots in terms only of
the parameter m

a =
α

2β
− (1 + m)α

2β∆
, b =

α

2β
+

(2m − 1)α

2β∆
, c =

α

2β
+

(2 − m)α

2β∆
. (4.9)

4.2.2 Analytical solution

Now the equation of motion Eq. 4.2 can be solved exactly in the conservative case,
i.e., in the absence of friction and periodic forcing. Hence, the analytical solutions
of the periodic orbits inside the single well will be derived.

The conservation of energy can be used to set the problem in terms of the three
roots of E − V (x) = 0 in the following way

ẋ2

2
=

β

3
(x − a)(x − b)(x − c).

The terms can be rearranged into

dx

dt
=

√
2β

3

√
(x − a)(x − b)(x − c),

and now after a simple integration of the above equation it is achieved the following
result

t − t0 =

√
3

2β

∫ x

a

dx√
(x − a)(x − b)(x − c)

, (4.10)

where it is assumed that the particle lies in x = a for the initial time t0. Now assume
the following change of variable

x = a + (b − a) sin2 θ,

and introducing this result into Eq. 4.10 it is obtained that

t − t0 =

√
6

β(c − a)

∫ φ

0

dθ√
1 − m sin2 θ

.

The solution of the integral in the right–hand side is given by the sine amplitude
of a Jacobian elliptic function [16] from which it is deduced that√

β(c − a)

6
(t − t0) =

∫ φ

0

dθ√
1 − m sin2 θ

= sn−1(sin φ|m),

where φ is the elliptic amplitude and m is the elliptic parameter.
There is a lot of confusion in the literature about the use of the elliptic parameter

m and the elliptic modulus k, which are related by the expression k2 = m. The
notation of [16] is followed here, in which sn(u|k) represents the sine amplitude
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when the elliptic modulus is used, while sn(u|m) when the elliptic parameter is
used. For simplicity, the elliptic parameter is used throughout.

Thus, from the last equation is inferred

sin φ = sn

(√
β(c − a)

6
(t − t0)|m

)
,

and if the change of variable used before is taken into account, the following solution
is obtained

x(t) = a + (b − a) sn2

(√
β(c − a)

6
(t − t0)|m

)
,

which is the general solution for all the periodic orbits lying within the single well.
Note that all orbits are labelled by the elliptic parameter m. This parameter m,

which ranges from 0 ≤ m ≤ 1, is in fact the same previously defined in Eq. 4.7 in
relation to the turning points of motion in the potential well. It labels the energy
of each periodic orbit inside the potential well.

4.2.3 Period of the orbits

It is also interesting to calculate the period of each and everyone of the orbits inside
the potential well. For this purpose the following integral has to be worked out

T (m) = 2

√
3

2β

∫ c

b

dx√
(x − a)(x − b)(x − c)

=

√
6

β(c − a)

∫ π
2

0

dθ√
1 − m sin2 θ

.

The last integral represents exactly the complete elliptic integral of the first kind
K(m) [16], so that

T (m) =

√
24

β(c − a)
K(m).

For orbits whose energy is very small in absolute terms, i.e., m → 0, the complete
elliptic integral of first kind K(m) → π/2 and then the period becomes T → 2π/

√
α.

This is obviously the period for the linear oscillations around the elliptic fixed point
(0, 0).

However for values of the energy close to the separatrix, which means m → 1,
the complete elliptic integral of the first kind diverges logarithmically in this way

K(m) ≈ 1

2
ln

(
16

1 − m

)
,

and this means that the period also diverges logarithmically for values of m close to
unity

T (m) =
2√
α

ln

(
16

1 − m

)
.
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4.2.4 Equation of the separatrix

From the general solution obtained before is rather easy to derive the equation of the
separatrix orbit. In fact the separatrix orbit is the orbit with energy corresponding
to the parameter m = 1 and that possesses a period infinity. The sine amplitude of
the Jacobian elliptic function has two natural limiting functions depending on the
limit values of m. These limiting functions are sn(u|m) → sin u, for m → 0 and
sn(u|m) → tanh u, for m → 1.

Moreover, if m = 1, then ∆ = 1, a = − α
2β

and b = c = α
β

from Eq. 4.8 and
Eqs. 4.9. Hence, the equations in phase space are given by

xsx(t) =
3α

2β

[
2

3
− cosh−2

(√
α

4
(t − t0)

)]
,

ysx(t) =
3

2

√
α3

β2

sinh
(√

α
4

(t − t0)
)

cosh3
(√

α
4

(t − t0)
) ,

which has a fish–shaped form (see Fig. 4.2).

x

ẋ

(0, 0)
(α

β , 0)

E < α3

6β2 E < α3

6β2

E > α3

6β2

Figure 4.2. Phase space of the Helmholtz oscillator. The separatrix, in thick dashed
line, is the stable manifold of an unstable periodic orbit. Therefore, bounded orbits cor-
respond to the close curves around (0, 0), that is, the orbits inside the separatrix, and the
unbounded orbits are the curves outside.

Actually, it is easy to check that ysx(t) and xsx(t) are related this way

y2
sx =

2

3
β

(
xsx − α

β

)2(
xsx +

α

2β

)
.

The bounded motions lie in the interior of the separatrix, while the unbounded
motions lie outside. In this case the separatrix corresponds to a homoclinic orbit,
since the orbit connects the hyperbolic fixed point (α

β
, 0) to itself.
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4.2.5 Stochastic layer

Once the Helmholtz oscillator has been analyzed, it is interesting the study on how
the orbits behave in the proximity of the separatrix when a periodic force is applied.

The time–dependent Hamiltonian in Eq. 4.4 can be used, as was explained in the
introduction of this section, to study the Helmholtz oscillator with a periodic force.
This time–dependent Hamiltonian can be seen as the sum of a time–independent
Hamiltonian

H0(x, p) =
1

2
p2 +

α

2
x2 − β

3
x3

and a time–dependent Hamiltonian

H1(x, t) = −γx cos ωt,

that is, the Hamiltonian H(p, x, t) can be written this way

H(p, x, t) = H0(x, p) + H1(x, t).

The former Hamiltonian allows analyzing the effect of the forcing by means of an
area preserving map, which is called the whisker map or the separatrix map. This
map measures the energy and phase change of a trajectory close to the separatrix
for each period of the motion [17].

In order to construct this map it is needed to evaluate the change of the Hamil-
tonian H0. The total derivative of H0 is the following

dH0

dt
= {H0, H} = {H0, H1} = −∂H0

∂ẋ

∂H1

∂x
= γẋ cos ωt, (4.11)

where { } is the Poisson bracket.
Since our main interest is discussing the motion of the particle when its energy

is close to the separatrix, it is assumed that γ is small enough to consider that H1

is a small perturbation. Then, it is close to the separatrix where big effects in the
dynamics of the particle may be expected. The effect of a small perturbation on the
orbits of small energy is negligible.

The method to obtain the separatrix map, when H1 is consider to be a small
perturbation, is a standard one [17]. The first step is the computation of the energy
∆E. This energy accounts for the amount of the energy that an orbit close to the
separatrix needs to accomplish a complete cycle, and is given through the integration
of Eq. 4.11

∆E = γ

∫
∆t

ẋ cos ωt dt,

where ∆t = T/2 = π/ω. Notice that this integral signals the border of the stochastic
layer.

This energy is usually written in the following way to be evaluated around the
separatrix

∆En = γ

∫ tn+T
2

tn−T
2

ẋ cos ωt dt ≈ γ

∫ +∞

−∞

dxsx

dt
cos(ωt + ωtn) dt.
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From the third equality in Eq. 4.5 and Eqs. 4.6 a relationship between the energy
E and the parameter m is found. Expanding around m = 1 up to second order, it is
obtained the following expression 8E ≈ (1 − m)2. This approximation is used later
to determine the separatrix map and its corresponding stochastic layer.

The change of the phase is given by ∆φ = ωT . The expression for the energy
relationship found before in terms of m, when m is close to 1, suggests that the
period of the orbits close to the separatrix behaves like

T (m) ≈ 1√
α

ln

(
32

E

)
.

In this manner the change of energy E and phase φ from the period n to the
period n + 1 is given by the separatrix mapping [12]

En+1 = En + ∆En, φn+1 = φn + ωTn+1,

where the variables (E, φ) are to be understood as a canonical pair. This map
contains in principle the essential dynamics in the region close to the separatrix.
Thus, the separatrix map is given by

En+1 = En +
6πω2

β

γ sin φn

sinh
(

πω√
α

) , φn+1 = φn +
ω√
α

ln

(
32

En+1

)
.

Another way of measuring the instability is through the calculation of the fol-
lowing parameter K defined as [12]

K =

∣∣∣∣δφn+1

δφn

− 1

∣∣∣∣ ,
from which the stochastic layer width is achieved as a by–product. It supplies the
information about how a small phase interval is stretched. The measure of the local
instability is given by K ≥ 1, because close to the separatrix a small change in
frequency may cause a large effect in phase. The stochastic layer width is given by
the value

E ≈ 6πγω3

√
αβ sinh

(
πω√

α

) ,

which corresponds to the width of the region close to the separatrix where it is likely
to expect chaotic motions.

4.3 Dynamics of the Helmholtz Oscillator with Friction

In this section the Helmholtz oscillator in Eq. 4.2 is analyzed in the absence of the
periodic forcing, i.e., when γ = 0. Then, the equation of motion of a particle of unit
mass reads

ẍ + δẋ + αx − βx2 = 0.
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To investigate the integrability of this equation the Lie theory of differential
equations will be used [18, 19]. However, it should be noticed that the integrability of
a differential equation can be also analyzed by means of the Kowalewski’s asymptotic
method (also called the Painlevé singularity structure analysis) and the same result
is achieved.

For example, in [20, 21] the Duffing oscillator is analyzed in this manner. Nev-
ertheless, the Lie theory is used in this work because this approach, in addition to
give information about when the equation is integrable, allows reducing the problem
to canonical variables which eases integrating the equation in a more general and
natural way.

It can be seen in [18, 19] that in order to find the symmetry group G admitted
by a differential equation with infinitesimal operator

X = η(t, x)
∂

∂x
+ ξ(t, x)

∂

∂t
, (4.12)

it is needed to find an infinitesimal operator X+2 such that

X+2(ẍ + δẋ + αx − βx2) = 0. (4.13)

The operator X+2 is

X+2 = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
+ A(t, x, ẋ)

∂

∂ẋ
+ B(t, x, ẋ, ẍ)

∂

∂ẍ
,

where A(t, x, ẋ) and B(t, x, ẋ, ẍ) are defined as follows

A(t, x, ẋ) = ηt + ẋ(ηx − ξt) − ẋ2ξx, (4.14)

B(t, x, ẋ, ẍ) = ηtt + ẋ(2ηxt − ξtt) + ẋ2(ηxx − 2ξtx) − ẋ3ξxx + ẍ(ηx − 2ξt − 3ẋξx),

with the usual notation ωz ≡ ∂ω
∂z

.
All ξ(t, x) and η(t, x) such that verify Eq. 4.13 generate infinitesimal operators

X as in Eq. 4.12 which comprise the symmetries of the differential equation. Also, it
is known that one symmetry can be used to reduce by one the order of a differential
equation.

Thus, to integrate a second order differential equation two symmetries are needed.
Hence, the Helmholtz oscillator will be integrated only if ξ(t, x) and η(t, x) are such
that they generate two linearly independent infinitesimal operators.

4.3.1 Condition of integrability

Following the procedure to determine the symmetries of a differential equation men-
tioned in the former section, Eq. 4.13 reads

X+2(ẍ + δẋ + αx − βx2) = η (α − 2βx) + δ
(
ηt + ẋ (ηx − ξt) − ẋ2ξx

)
+ ηtt

+ẋ (2ηxt − ξtt) + ẋ2 (ηxx − 2ξxt) − ẋ3ξxx −
(
δẋ + αx − βx2

)
(ηx − 2ξt − 3ẋξx) .
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This is a polynomial of third degree in [ẋ] which is zero if and only if the coeffi-
cients of every monomial is zero

[ẋ3] : ξxx = 0, (4.15)

[ẋ2] : ηxx − 2ξxt + 2δξx = 0, (4.16)

[ẋ] : 2ηxt − ξtt + 3ξx(αx − βx2) + δξt = 0, (4.17)

[1] : η(α − 2βx) + δηt + ηtt − (ηx − 2ξt)(αx − βx2) = 0. (4.18)

From the condition in Eq. 4.15 it is plain that ξ(x, t) = f(t) + k(t)x, and this
result in Eq. 4.16 implies that η(x, t) = (k′(t) − δk(t))x2 + xg(t) + h(t). If both
results are used in Eq. 4.17 it is deduced that

4 (k′′ − δk′) x + 2g′ − (f ′′ + k′′x) + 3k
(
αx − βx2

)
+ δ (f ′ + k′x) = 0.

This is a polynomial of second degree in [x] which is zero if and only if the three
following equations are verified

[x2] : 3βk = 0,

[x] : k′′ + 3δk′ − 3αk = 0,

[1] : 4k′′ − f ′′ + δf ′ + 2g′ = 0.

These three equations imply that k = 0, hence ξ(x, t) = f(t) and η(x, t) =
xg(t) + h(t), with the following relation between f(t) and g(t)

δf ′ + 2g′ − f ′′ = 0. (4.19)

According to these results the condition in Eq. 4.18 is reduced to

(gx + h) (α − 2βx) + δ (xg′ + h′) + xg′′ + h′′ +
(
αx − βx2

)
(−g + 2f ′) = 0.

This is a polynomial of second degree in [x] which is zero if and only if the
following three equations are verified

[x2] : g + 2f ′ = 0, (4.20)

[x] : 2αf ′ + δg′ + g′′ − 2βh = 0, (4.21)

[1] : αh + δh′ + h′′ = 0. (4.22)

The conditions in Eq. 4.19 and Eq. 4.20 imply that g = Ae
1
5
δt with A a constant.

When this result is used in Eq. 4.21 it is obtained that h = 1
2β

(
6
25

δ2 − α
)
g. And

finally, this result in Eq. 4.22 means that 1
2β

(
6
25

δ2 + α
) (

6
25

δ2 − α
)
g = 0. But, since

it is supposed that α > 0 and so 6
25

δ2 + α > 0, there are only two options to verify
all conditions.

The first one is when g = 0. In this case h = 0 and f = constant and this
means that η = 0 and ξ = constant. Hence, only one infinitesimal operator is
obtained, namely X = ∂t, and as a consequence, the differential equation is partially
integrable.
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The second option in order to get two symmetries is when

α =
6

25
δ2.

In this case h = 0 and g = Ae
1
5
δt, which implies that f = B − 5

2δ
Ae

1
5
δt and

consequently ξ = B− 5
2δ

Ae
1
5
δt and η = Axe

δ
5
t. Therefore, two infinitesimal generators

are found, namely

X1 =
∂

∂t
X2 = − 5

2δ
e

1
5
δt ∂

∂t
+ xe

1
5
δt ∂

∂x
. (4.23)

In conclusion, only when it is verified that α = 6
25

δ2 the Helmholtz oscillator with
friction is completely integrable. Therefore, there is a lot of information about the
oscillator in this particular case, but there should be noticed that the information
applies just for a two–dimensional (2D) manifold in the parameter space {δ, α, β, γ}.
When α �= 6

25
δ2 the oscillator is only partially integrable and there is no way to write

down the solution in terms of known functions.

4.3.2 Reduction to canonical variables

The infinitesimal generators X1 and X2 defined in Eqs. 4.23 are a two–dimensional
algebra L2 since [X1, X2] = δ

5
X2, where [ , ] is a commutator, called Lie bracket,

defined in the following manner [X1, X2] = X1X2 − X2X1.
This Lie algebra can be classified according to its structural properties [18] as

type III because [X1, X2] = δ
5
X2 �= 0 and X1 ∨ X2 = xe

1
5
δt �= 0, where ∨ is a

pseudoscalar product defined this way X1 ∨X2 = ξ1η2 − ξ2η1, if Xi = ξi∂1 + ηi∂2 for
i = 1, 2. Actually, L2 is the algebra of the homothety transformations of the real
line R, where X1 is a homothety operator and X2 is a translation operator.

Then, it is known that there exists a pair of variables w and z, called canonical
variables, which linearizes the action of the group G on R and reduce the algebra
L2 to X1 = w∂w + z∂z and X2 = ∂z.

Let w and z be
w ≡ Axe

2
5
δt z ≡ Be−

1
5
δt, (4.24)

where A and B are constants, then

X1 =
2δ

5
ω

∂

∂ω
− δ

5
z

∂

∂z
X2 =

B

2

∂

∂z
.

Although it is not the canonical form, there is no need to introduce more changes
because it is simple enough to reduce the Helmholtz oscillator to an easily integrable
equation.

From the definitions stated in Eqs. 4.24 the following result is obtained

w′′ =
d

dz

(
dw

dz

)
=

25A

B2δ2
e

1
5
δt d

dt

((
ẋ +

2

5
δx

)
e

3
5
δt

)
=

25A

B2δ2
e

4
5
δt

(
ẍ + δẋ +

6δ2

25
x

)
=

25β

δ2AB2
w2.
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Therefore, if A and B are chosen such that

AB2 =
25β

6δ2
, (4.25)

then w′′ = 6w2, which is easily integrated yielding

(w′)2 = 4w3 − g3, (4.26)

where g3 is a constant.
The solution of this differential equation is the Weierstrass function ℘(z|0, g3),

since ℘(z|g2, g3) verifies that (℘′)2 = 4℘3 − g2℘ − g3 (see Fig. 4.3). Hence, the
solution of the Helmholtz oscillator with friction is w = ℘(z|0, g3), which is called
the equianharmonic case of the Weierstrass function because g2 = 0 [16].
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Figure 4.3. The equianharmonic case of the Weierstrass function, ℘(z|0, g3), is shown.
This is the solution corresponding to the equation (w′)2 = 4w3 − g3, where g3 is a first
integral of motion. Notice that, once g3 is fixed, the solution is periodic.

It should be noticed that g3 = 4w3 − (w′)2 is a first integral of motion and when
a change of variables from (w, z) to (x, t) is carried out in Eq. 4.26, the first integral
g3 becomes I(t, x, ẋ) in this manner[(

ẋ +
2

5
δx

)2

− 2

3
βx3

]
e

6
5
δt = Λg3 = I (t, x, ẋ) ,

where Λ =
(

6B3δ3

125β

)2

, and consequently is always a positive constant.
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The former result is an explicitly time–dependent first integral which is analogous
to the first integral of the Duffing oscillator obtained in [21]. Also, it can be related
to the Hamiltonian function of the Helmholtz oscillator with friction in the following
way. Define two variables p and q as follows

p =
√

2

(
ẋ +

2

5
δx

)
e

3
5
δt, (4.27)

q =
√

2xe
2
5
δt,

so the first integral I(t, x, ẋ) can be written as

I(p, q) =
1

2
p2 − β

3
√

2
q3.

Define a function H(p, q, t) related to the first integral I(p, q) as

H(p, q, t) = I(p, q)e−
1
5
δt =

(
1

2
p2 − β

3
√

2
q3

)
e−

1
5
δt.

This function verifies the Hamilton equations, namely

∂H

∂p
= pe−

1
5
δt =

√
2

(
ẋ +

2

5
δx

)
e

2
5
δt = q̇, (4.28)

∂H

∂q
= − β√

2
q2e−

1
5
δt = −

√
2βx2e

3
5
δt = −ṗ,

and hence H(p, q, t) is a Hamiltonian function. Moreover, by means of Eqs. 4.28 it
is obtained that

q̈ =

(
ṗ − 1

5
δp

)
e−

1
5
δt =

β√
2
qe−

2
5
δt − 1

5
δpe−

1
5
δt,

which can be written in terms of (x, t) by using Eqs. 4.27 as

√
2e

2
5
δt

(
ẍ + δẋ +

6δ2

25
x − βx2

)
= 0.

Therefore, H(p, q, t) is the Hamiltonian function of the Helmholtz oscillator with
friction for the integrable case since the solutions to ẍ + δẋ + 6δ2

25
x − βx2 = 0 and

the solutions to the Hamilton equations of H(p, q, t) are the same.
Then, two remarks can be made. First, the explicitly time–dependent Hamil-

tonian is not a first integral of motion, which is reasonable since the energy is not
constant in this system because of the friction. Second, the first integral I(p, q) can
be seen as the energy of a particle in a potential V (q) = − β

3
√

2
q3 and, thus, the

Helmholtz oscillator can be regarded as a system with energy I(p, q) at t = 0, which
vanishes exponentially with time.
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4.3.3 Solutions of the integrable case

Case g3 = 0

The equation to solve is (w′)2 = 4w3 whose solution is w = (z − c′)−2 with c′ an
arbitrary constant. The definitions of w and z and the relation in Eq. 4.25 implies
that

x(t) =
6δ2

25β

(
1 + c2e

1
5
δt
)−2

, (4.29)

where c2 is an arbitrary constant because c′ is arbitrary.

Case g3 > 0

The Weierstrass function ℘(z|g2, g3) for g2 = 0 and g3 > 0 can be written in terms
of the Jacobian Elliptic cosine [16] as

w(z) = r + H
1 + cn

(
2
√

Hz + c2|m
)

1 − cn
(
2
√

Hz + c2|m
) , (4.30)

with c2 an arbitrary constant and where m = 2−√
3

4
	 0.067 and H =

√
3r with

r = 3
√

g3

4
. Notice that, as it was explained in section 4.2.2, it is being used the

elliptic parameter m instead of the elliptic modulus k, which are related in this way
k2 = m.

By using the definitions of w and z and the relation in Eq. 4.25 the following
result in terms of t is obtained

x(t) =
6δ2

100β
c2
1

⎡⎣ 1√
3

+
1 + cn

(
c1e

− 1
5
δt + c2|m

)
1 − cn

(
c1e

− 1
5
δt + c2|m

)
⎤⎦ e−

2
5
δt,

where c1 = 2
√

HB and hence c1 is arbitrary because B is arbitrary.

Case g3 < 0

It is known [16] that ℘(z|g2, g3) = −℘(iz|g2,−g3). This relation lets apply the result
in Eq. 4.30 for g3 < 0 this way

w(z) = −r′ − H ′
1 + cn

(
2
√

H ′iz + ic2|m
)

1 − cn
(
2
√

H ′iz + ic2|m
) , (4.31)

where m = 2−√
3

4
and H ′ =

√
3r′ with r′ = 3

√
|g3|
4

. By means of the relation

cn(iu|m)cn(u|m′) = 1 where m + m′ = 1, it is possible to write Eq. 4.31 as follows

w(z) = −r′ + H ′
1 + cn

(
2
√

H ′z + c2|m′
)

1 − cn
(
2
√

H ′z + c2|m′
) ,
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Hence, the solution may be written in terms of t by changing variables and using
Eq. 4.25

x(t) =
6δ2

100β
c2
1

⎡⎣− 1√
3

+
1 + cn

(
c1e

− 1
5
δt + c2|m′

)
1 − cn

(
c1e

− 1
5
δt + c2|m′

)
⎤⎦ e−

2
5
δt,

where m′ = 2+
√

3
4

	 0.933 and c1 = 2
√

H ′B and hence c1 is arbitrary because B is
arbitrary.

Discussion

In Fig. 4.4 the two basins of attraction of the Helmholtz oscillator are depicted in
the phase space. The green region represents the set of initial conditions that end
up in the attractor (0, 0). They correspond to bounded orbits in the phase space
that asymptotically spiral inside the potential well. The white region is the set of
initial conditions that correspond to unbounded orbits, i.e., tending to infinity.

g3 > 0

x(t) → ∞ x(t) → 0

g3 < 0

ẋ

x
g3 = 0

c2 = 0
x → 6δ2

25β

Figure 4.4. Relation between the geometry of the basins of attraction and the analytical
features of the exact solutions when the Helmholtz oscillator is integrable. The green region
is made of the initial conditions that tend to (0, 0) and the white region is made of the
ones tending to infinity. The boundary between both basins corresponds to the set of
initial conditions tending to the local maximum and whose solutions have c2 = 0. Also
the curve g3 = 0 is depicted and represents the initial conditions whose solutions have the
first integral of motion I(t, x, ẋ) = 0. Finally, the region where there are bounded orbits
in absence of friction is shown in red. It is comparatively smaller than the region x → 0
because the integrable case implies a large friction, since α = 6

25δ2 and, hence, dissipation
makes more initial conditions end up inside the potential well.
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The boundary between both sets is formed by the stable manifold of an unstable
periodic orbit. Actually, this orbit is the one that stays forever on the local max-
imum ( 6δ2

25β
, 0) of the potential, which means that all points in the boundary tend

asymptotically to this point.
The basins of attraction are related to the analytical solutions via c2 and to

check this, it is necessary to study the asymptotical behavior of the solutions. To
calculate the limit t → ∞ when g3 > 0 the following change of variable z ≡ c1e

− 1
5
δt

is carried out, so the former limit becomes z → 0. This implies in Eq. 4.30 that

lim
t→∞

x(t) = lim
z→0

6δ2

100β

(
1√
3

+
1 + cn(z + c2|m)

1 − cn(z + c2|m)

)
z2.

The Jacobian Elliptic function cn(z|m) is a periodic function since cn(z+2K|m) =
−cn(z|m), i.e., 2K plays a role similar to π in a circular function. In fact, cn is peri-

odic with period 4K being 2K 	 3.197 because m = 2−√
3

4
, and thus c2 is comprised

within (−2K, 2K). Consequently, if c2 = 4NK with N ∈ Z then

lim
t→∞

x(t) = lim
z→0

6δ2

100β

(
1√
3

+
1 + cn(z|m)

1 − cn(z|m)

)
z2

= lim
z→0

6δ2

100β

(
z2

√
3

+ 4 − z2

)
=

6δ2

25β
,

in which it has been used the following result cn(z|m) = 1 − 1
2
z2 + o(z4) [16].

Therefore, the boundary when g3 > 0 can be defined to as the points in the phase
space whose analytical solutions have c2 = 0.

When g3 < 0 the result x(t → ∞) = 6δ2

25β
when c2 = 0 is equally achieved.

However, cn(z|m′) is now a periodic function with 2K ′ 	 5.535 since m′ = 2+
√

3
4

, and
thus c2 is comprised within (−2K ′, 2K ′). Nevertheless, also in this case the boundary
can be defined to as the points in the phase space whose analytical solutions have
c2 = 0. Also, it is easy to verify from Eq. 4.29 that in the case g3 = 0 the solution
tends to 6δ2

25β
when c2 = 0.

In summary, the condition c2 = 0 on the exact solutions yields the boundary
between the two basins of attraction, which links the geometry of these two regions
in the phase space with an analytical feature in the exact solutions.

Inside the green region in Fig. 4.4, it can be seen in red the region where there
are bounded orbits in absence of friction. It is a small region as compared with the
integrable case because α = 6δ2

25
and then, dissipation is more important than its

potential energy. In other words, many initial conditions, which were unbounded
orbits without friction, dissipate energy quickly in this case and, as they go by the
potential well, are trapped in it.

The existence of a strong dissipation in the integrable case also explains why
there is no oscillatory behavior in Fig. 4.5. When the orbit tends to the minimum
inside the well the particle is so damped that it goes straight to that minimum.
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x(t)

x → ∞

x → 0

x → 24δ2

100β

t

Figure 4.5. The phase space of the Helmholtz oscillator with friction has two basins of
attraction and hence there are three kinds of orbits. Orbits spiralling inside the potential
well tending to the minimum x → 0, orbits tending to infinity x → ∞ and orbits tending
to the local maximum x → 24δ2

100β which correspond to initial conditions upon the boundary
of both basins. Notice that particles are so damped in the integrable case that inside the
potential well they go straight to zero instead of spiralling and so there are no oscillations
in the curve x → 0.

4.4 Conclusions

The Helmholtz oscillator is a simple model for studying phenomena that under cer-
tain conditions present a stable behavior of oscillatory kind, but for other conditions
the behavior is unstable (i.e., this oscillator presents an escape). Then, a question of
interest is what happens close to the separatrix when a forcing term is introduced.
The effect of forcing is not relevant for an orbit with little energy (i.e., close to the
minimum in the potential well), because essentially its stable behavior is not altered
by the forcing. The width of the stochastic layer by using the separatrix map has
been computed here. This gives the width of the energy band around the separatrix,
where it is likely that an orbit presents transient chaos.

Another important aspect considered in this chapter is the inclusion of friction.
To solve the equation of the Helmholtz oscillator with friction and without forcing
the Lie theory for differential equations is used. We show that the Helmholtz os-
cillator is completely integrable only when certain relation between the parameters
is satisfied. When this relation is not satisfied, the equation is partially integrable.
Also, we calculate that the symmetries for the completely integrable case are a trans-
lation and a homothopy. Moreover, this two symmetries are the two dimensional
algebra of the homothety transformations of the real line, and the symmetry for the
partially integrable case is a translation.

A first integral of motion is obtained when the equation is integrated by using
one symmetry. We prove that this time–dependent integral of motion is related to
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a Hamiltonian function. The second symmetry allows integrating the first integral
of motion to obtain, as a solution, the Weierstrass function. Finally, we write this
solution in terms of Jacobian Elliptic functions to show that there exists a relation
with the basins of attraction of the oscillator.

However, the condition required to completely integrate the equation is just a
two–dimensional (2D) manifold in the parameter space. Then, in most of cases, we
cannot write down the function that solves the equation. No matter the effort we
make.

Then, as Poincaré advocated after his discovery of chaotic behavior in the three–
body problem [22], we should analyze this type of problems from a global viewpoint
since it is nonsensical to study individual trajectories. To understand the motions
that surround us, mainly due to non–linear laws and interactions, requires the de-
velopment of new techniques.
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Chapter 5

Dynamics in complex
networks

5.1 Introduction

After the seminal papers by Watts and Strogatz [1] and by Barabási and Albert [2],
complex systems started to be described within the framework of complex networks.
First, attention was focused on their structural and functional properties, being the
most studied the small–world [3] and scale–free [4, 5] networks since many natural
(neural, genetic, chemical) and man–made (power grids, Internet, social networks)
systems have been characterized with a similar underlying connectivity structure.

The interest was then shifted to the implications on the global dynamical be-
havior of ensembles of non–linear active units when they are coupled through a
non–trivial scheme [6] instead of being organized in a lattice. Among the dynamical
processes that can take place on a network [7], such as pattern formation [8, 9],
spreading processes or synchronization, the latter is the one capturing more pages
in the bibliography.

Synchronous behavior is considered one of the mechanisms to transmit and code
information in complex systems, ranging from neuronal assemblies [10], to networks
of chemical oscillators of the Belousov–Zhabotinsky reaction [11, 12], or social com-
munities [13]. The interplay between the network structure and the local dynamics
of the interacting subsystems can provide stronger synchronizability or faster prop-
agation of information [6]. This enhancement is mainly due to a smaller average
distance between the dynamical units.

Theoretically, the network propensity for synchronization has been first tackled
in [14]. Since then, several strategies have been developed with the aim of finding
the best way to achieve synchronization in complex networks. These approaches
have mainly focused on the role that weighted links play in networks with a hetero-
geneous degree distribution [15, 16, 17], the importance of the shortest paths and
clustering between nodes in small–world networks [10], and the effect of the input
degree received by each node regardless of the global structure [18]. Another recent
approach, a kind of reverse engineering, consists in defining a recursive algorithm
to build up a network with N nodes and a mean degree k that minimizes some
synchronizability parameter [19].
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Most of this research has been devoted to attractively coupled dynamical ele-
ments. However, it is known that biological networks combine different types of
connections to improve synchronization and transmission performance, as in the
case of the coexistence of excitatory and inhibitory synapses in the brain [20].

In [21] it is studied pattern formation in a two–dimensional array of oscillators
with phase–shifted coupling, in particular for phase shift π which corresponds to
a repulsive coupling, while in [22] a chain of negatively coupled chaotic oscillators
is compared to an experimental laser system with negative feedback and delay.
Obviously, two attractively coupled oscillators tend to oscillate in phase whereas
they do it in anti–phase if they are repulsively coupled.

Nevertheless, little attention has been paid to the effect of repulsive coupling
or to the interaction between different types of coupling in complex networks. The
scarce literature addressing synchronization in repulsively coupled oscillators refers
mainly to phase oscillators and considers either a lattice [23] or a fully connected
topology [24], but the influence of the network structure is still an open question.

In addition, almost all the published work on synchronization in complex net-
works basically deals with arrays of identical dynamical units. However, hetero-
geneity is an inherent feature that natural systems exhibit, which can be especially
relevant in the dynamics of biological networks.

In this chapter, we explore the influence of the network topology on the dynamics
of non–identical coupled units, when a small fraction of the links is phase–repulsive.
We first consider a chain of excitable and oscillatory units and show that sparse
repulsive links in a small–world structure can induce a coherent oscillatory state
when the equivalent small–world composed of only attractive connections is unable
to synchronize or even to activate the heterogeneous ensemble. In Sec. 5.4, the effect
of sparse repulsive couplings is also shown for a much simpler network of spin–like
dynamical units. Then, just by means of an analysis focused on the eigenvalues of
the connectivity matrix (i.e., its spectra), we link the emerging dynamical behavior
to the structural properties of the sparsely coupled repulsive network in Sec. 5.5.

5.2 A network of excitable and oscillatory elements

In our study, we consider that the dynamical elements to be placed on each of the
N nodes of our network are non–identical Hodgkin–Huxley (HH) units [25]. Then,
our model is described by the following equations,

CV̇i = Ii − I ion
i (Vi, xi) +

d

ki

∑
j

cij(Vj − Vi), (5.1)

I ion
i = gNam

3
i hi(Vi − VNa) + gKn4

i (Vi − VK) + gl(Vi − Vl),

ṁi =
0.1(Vi + 40)

1 − exp(−Vi+40
10

)
(1 − mi) − 4

exp(Vi+65
18

)
mi,

ṅi =
0.01(Vi + 55)

1 − exp(−Vi+55
10

)
(1 − ni) − 0.125

exp(Vi+65
80

)
ni,
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ḣi =
0.07

exp(Vi+65
20

)
(1 − hi) − 1

1 + exp(−Vi+35
10

)
hi,

where

• Vi is the voltage across the membrane of neuron i of capacitance C.

• I ion
i is the ionic current of neuron i, mainly carried by Na+ and K+ ions and

other ionic currents (known as leakage current) through voltage–dependent
channels. These currents are driven by the voltage difference with respect to
the equilibrium potentials VNa, VK and Vl and the maximal ionic conductances
gNa, gK and gl.

• ṁ, ṅ and ḣ describe the gating of the ion channels.

• Parameter values and functions are the standards in the literature [25].

– C=1 µF/cm2,

– gNa = 120 mS/cm2, gK = 36 mS/cm2, gl = 0.3 mS/cm2,

– VNa = 50 mV, VK = −77 mV, Vl = −54.4 mV.

• Ii controls the dynamics of an isolated unit and it is chosen as the control
parameter to introduce heterogeneity in the population. We set Ii uniformly
distributed within the interval I0 ±∆I to obtain an ensemble of excitable and
oscillatory units. The value I0 = 9 µA/cm2 is fixed close to the point where an
inverse Hopf bifurcation occurs. This way, for the chosen ∆I = 0.2 µA/cm2,
we observe that about 90% of the elements stay around the silent state, while
the rest oscillate.

• The coupling structure in Eq. 5.1 is given by the connectivity matrix C = (cij),
defined by cii = 0, cij = ±1 if nodes i and j are connected, and cij=0 otherwise.
ki normalizes the connection strength by the number of incoming links to node
i, and the coefficient d stands for the global coupling strength. The positive
sign in C stands for an attractive coupling whereas the negative sign does for
a repulsive one. The coupling term in Eq. 5.1 can be written as d

∑
j �ijVj,

being L = (�ij) the Laplacian of the graph [7],

�ii = − 1

ki

N∑
j=1

cij , �ij =
cij

ki

. (5.2)

5.3 Numerical results

5.3.1 Local coupling

Initially we consider the dynamics of an ensemble of N elements locally linked
on a one–dimensional array, being all couplings either phase–attractive or phase–
repulsive. The resulting connectivity matrix becomes ci,i±1 = +1 for the locally
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attractive coupling scheme, ci,i±1 = −1 in case of purely repulsive coupling, and cij =
0 otherwise. The system given by Eq. 5.1 is numerically integrated using a fourth
order Runge–Kutta method with time step ∆t = 0.05 ms and open boundaries.

Figure 5.1 shows the global mean frequency of oscillation (MF) and the standard
deviation σMF as a function of the coupling strength d ranging from negative to
positive values. The negative sign of d corresponds to the phase–repulsive case. It
can be seen that while the system is frequency entrained to a phase synchronization
state for a d > 0 large enough, the system reaches an anti–phase synchronization
state for a sufficient d < 0.

Precisely, a small σMF means that all elements are oscillating at the same rate,
which is about 70 Hz (see Fig. 5.1A), and a large standard deviation reflects that
many elements are silent, resulting in a MF much lower than the 70 Hz that the
oscillating elements have.

It can be noted from Fig. 5.1 that the entrainment with negative couplings is
achieved for smaller absolute values of d compared to the case with positive ones.
This indicates that a phase–repulsive coupling is more effective to activate and
entrain the whole network.
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Figure 5.1. The effect of local couplings. (A) Mean frequency of oscillation (MF) and
(B) its standard deviation σMF for an array of N = 400 locally coupled HH units as a
function of the coupling strength d. Each point is the average of 100 realizations. Notice
that the negative sign of d corresponds to the phase–repulsive case.

Many biological systems exhibit this kind of repulsive coupling when their dy-
namical units are in competition with each other. Known examples are the in-
hibitory coupling present in neuronal circuits associated to a synchronized behavior
in central pattern generators [26] or calcium oscillations in epileptic human astrocyte
cultures [27].
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5.3.2 Non–local random coupling

Now, our main interest is to explore the influence of a small–world connection topol-
ogy in the activation and synchronization of the network as the repulsive couplings
are varied. From the results obtained in the previous section, we know that a small
positive coupling strength is less efficient than a negative one to activate and syn-
chronize the whole array when the units are locally coupled.

Taking this into account, we consider now the possibility of both attractive and
repulsive non–local links. The global coupling strength is fixed to d = 0.1, i.e.,
within the unsynchronized regime for local positive coupling as shown in Fig. 5.1.

The coupling matrix C is modelled now by keeping the local connections positive,
ci,i±1 = +1, and by randomly adding (rather than rewiring) a fraction p of the
(N −1)(N −2)/2 possible long–range links, being negative with probability q. That
is, the probability of having a long–range connection, cij �= 0 with j �= i ± 1, is
given by p ∈ [0, 1]. Then, we have cij = −1 with probability pq, and cij = +1 with
probability p(1 − q).

Figure 5.2 shows space–time plots of the voltage variable through the whole
array for different values of p and q. As expected, in the absence of long–range
connections (p = 0), few more than the initial 10% of the units is oscillating for the
chosen coupling strength d, i.e., the array is not even activated (see Fig. 5.2A).
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Figure 5.2. Raster plots. Space–time plots of the voltage variable for a N = 800
HH units network with d = 0.1 (i.e., within the unsynchronized regime for local positive
coupling) and different coupling connectivities. (A) Attractive local coupling, p = 0.
(B)-(E) Network with long–range couplings: (B) fully attractive p = 0.0055 and q = 0,
(C)-(E) partially repulsive: (C) p = 0.0055 and q = 0.3, (D) p = 0.0055 and q = 0.45, (E)
p = 0.015 and q = 0.3.

When long–range links are included, the first observation is that for any p, a
minimum fraction of the new added links needs to be repulsive (q �= 0) in order to
increase the activity of the network. This becomes evident when comparing Fig. 5.2B
with Figs. 5.2C-D-E.
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In Fig. 5.2B the activity generated by the 10% of initially active units is re-
duced, or even annihilated, when all long–range connections are attractive (q = 0).
However, the scenario completely changes when some of the shortcuts are repulsive
(q > 0) as Figs. 5.2C-D-E depict, where self–sustained electrical activity emerges
for nonzero q.

In addition, we observe the existence of optimal probabilities p and q for which
the collective oscillation becomes maximally phase–coherent. This fact can be ob-
served by comparing Fig. 5.2C, where p and q are optimal, with Fig. 5.2D, in which
p is the same but q is higher, and with Fig. 5.2E, in which q is the same but p is
slightly different.

To study quantitatively how the dynamics is affected by p and q, we measure
the MF of the network and the standard deviation of the global electrical voltage,

V (t) =
N∑

i=1

Vi(t),

obtained as

σV =

√
V 2 − V

2
, (5.3)

being V = 〈V (t)〉t and V 2 = 〈V 2(t)〉t where 〈. . .〉t denotes temporal average.
While the MF gives us an estimation of how much the network is activated, the

σV defines how coherent is the activity of the entire network. If the network is fully
activated, the MF approaches to a rate of around 70 Hz, whereas σV is maximal if
this activity is synchronized.
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Figure 5.3. The effect of non–local couplings. MF (left) and network coherence σV

(right) as a function of p for several q in a N = 800 network. Each point is averaged over
100 simulations, 1 s long (transients avoided), for different network and initial conditions
realizations. Note that the legend applies to both figures.

We have plotted in Fig. 5.3 both the MF and the σV as a function of the proba-
bility p for different values of q. The signature of a network resonance both in p and
q is clear in this figure since the frequency entrainment increases and the phase syn-
chronization is maximally enhanced for the optimal values p = pc = 0.0055 (value
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of p at which the maximum of σV occurs) and q ≈ 0.3 (see also Fig. 5.2C). Note
that the probability pc depends slightly on q, shifting to higher p as q increases, but
remaining very small.

The interplay between topology and dynamics becomes evident when we observe
that the optimal link probability depends on the size ensemble as pc ∝ ln(N)/N
(see Fig. 5.4). This means that the probability at which the global dynamics is
more coherent coincides with the birth of the giant connected component (GCC) of
a Poisson random graph with N elements, which is precisely the network we have
when only the randomly added long–range connections are considered (i.e., when
we neglect the local couplings).
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Figure 5.4. Dependence of pc on N . This figure shows that the emergence of coherent
oscillations coincides with the birth of the GCC of a random network, i.e., pc ∝ lnN/N .
Here, we fix q = 0.25.

5.4 Ising network

To analyze if the previous small–world connectivity structure with long–range sparse
repulsive links affects other dynamics imposed on it, we consider a discrete spin–like
dynamics in which each node i has only two possible states si = ±1. This could
model a social system with N agents choosing from two different opinions or in a
biological context it could represent the firing state of a neuron.

We prepare the system by setting rN of the spins at the state −1 and the rest at
the opposite, being r the initial probability of finding a spin at −1. Consequently,
with the same Laplacian matrix L defined in Eq. 5.2, node i receives an input

hi =
∑

j

�ijsj ∈ [−2, 2].

Hence, as other authors have pointed out [3, 28], these spin–like networks can be
regarded as a pattern of the internal states and their evolution represent the global
dynamics.
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Notice that the neighbor vertices linked repulsively contribute to the input with
the opposite state. Then, in this model it is implicit that nodes linked with an
attractive connection tend to follow the same evolution, whereas repulsive connection
leads them to evolve differently.

We can prove analytically that the distribution of hi presents two peaks (see
Fig. 5.5):

µ1 = −2r
√

1 − 4q(1 − q)

µ2 = 2(1 − r)
√

1 − 4q(1 − q).

Note that the position of these two peaks does not depend on the node degree k,
thus neither does on the link probability p.
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Figure 5.5. Probability distribution (in percentage) of the input hi received by a node
for several node degrees k when q = 0.3, r = 0.25. Notice the presence of two peaks in the
distribution whose positions do not depend on the degree of the node, thus neither does
on the link probability p.

Then, we choose to evolve the network according to a local majority rule in which
the new state of node i is updated to si(n + 1) as follows

si(n + 1) =

⎧⎨⎩
+1 if hi(n) > µ2

si(n) if hi(n) ∈ [µ1, µ2]
−1 if hi(n) < µ1

Using the quantity σm defined as in Eq. (5.3) to estimate the coherence of the
output, we find that the system changes its behavior at p ≈ pc. Now, σm measures
the deviation of the global average state of the spin network after a transient.

It can be seen in Fig. 5.6 that the maximum of σm is reached again when the
GCC associated to the long–range links spans the whole network with a minimal
number of links. Interestingly, a similar resonant trend with q is observed. This
shows how p and q contribute to improve the synchronization even for this discrete
dynamics.
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Figure 5.6. Deviation σm

√
N of the mean state vs. p for different q values in a log–linear

scale, with N = 800. Each point averages 1000 runs after a transient of 100 iterations and
fixed r = 0.1.

5.5 Spectral analysis

Recently [17, 29], the method of the master stability function [30] has been suc-
cessfully used to analyze whether the network structure has some bearing on the
dynamics evolving on it. However, this approach requires the dynamical units to
be identical (which is not our case) and the results are model–dependent since the
master stability function is calculated for a given model.

Hence, in order to understand the influence of a complex connectivity, we use a
purely structural analysis based on the properties of L. This is done by ignoring the
intrinsic dynamics of the units in Eq. (5.1), that is, we just consider

V̇ = dLV,

where V = (V1, . . . , VN).
Then, there is a basis in which

Vi ≈ exp(dλit),

where λi are the eigenvalues of L.
It is well known that all the eigenvalues of the Laplacian associated to a network

with only attractive couplings are negative. However, when we add some repulsive
connections, L has positive and negative eigenvalues. We find that any set of initial
states rapidly evolves into the subspace S+ associated to the positive eigenvalues
within a time smaller than the characteristic temporal scale of the system dynamics
(τ ≈ 15 ms).

To quantify the effect of S+, we note that, for a given positive λi, edλi is a measure
of how much the system spreads into the subspace defined by the corresponding
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eigenvector. Then, the ratio

edλit

edλmaxt
= ed(λi−λmax)t

measures how different is the evolution in that subspace with respect to the one
where the system develops faster. By defining the geometric average

g(t) = N

√√√√ N∏
i=1

ed(λi−λmax)t = e
∑N

i=1 d(λi−λmax)t/N = ed(〈λ〉−λmax)t,

we can estimate the homogeneity of the evolution in S+ with a number in (0, 1]. A
value close to 1 means the system evolves similarly in all dimensions of S+, whereas
a low g implies that its behavior is determined by those vectors with the largest
associated eigenvalues.

We are interested in the behavior of g(t) as a function of p and q. As the shape
of g(t) with p is not very sensitive to time, we fix t = d−1 ∼ τ to focus our study
within the time scale of our dynamical unit. In Fig. 5.7 we observe that g ≡ g(τ)
presents a minimum at pc which is lower for higher values of q, and whose position
shifts to higher p as q increases, as observed both in the numerical simulations of
the network with excitable and oscillatory elements (see the right panel on Fig. 5.3)
and in the Ising network (see Fig. 5.6).
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Figure 5.7. Dependence of g with the adding probability p, in a log–linear scale, for
different probabilities q. Each point is an average over 100 different realizations of a
N = 800 network.

This means that, for values of p far from pc, i.e. where g ≈ 1, the global dynamics
is basically determined by only one positive eigenvalue,

V(t) = V0 exp(λt).
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On the contrary, for values of p close to pc, we need to consider not just one but
several eigenvalues (the largest ones) to account for the global dynamics. Therefore,
the intrinsic dynamics of the system is minimally constrained by the structure that
arises around pc due to the repulsive shortcuts.

5.6 Conclusions

In summary, we have shown how a small fraction of phase–repulsive links can en-
hance synchronization in a complex network of dynamical units. A structural analy-
sis allows us to obtain information about how the topology influences the dynamics.
Surprisingly, around a probability pc, the versatility arising from the network struc-
ture due to q drives the system to a more ordered state, while far from pc the stiffness
of the structure freezes the initial disorder.

Precisely, we find that the effect of topology can be seen through two quantities:
the number of eigenvalues λi > 0 (i.e., those in S+) and their dispersion σV . We
relate the number of positive eigenvalues with the activity and the dispersion with
synchronization. While the activation is enhanced as the number of λi increases,
the synchronization improves with the dispersion.

If we have few positive eigenvalues (i.e., when p ≈ 0, which essentially corre-
sponds to a lattice), the initial oscillating units are unable to spread the activity
throughout. However, when there are many λi, the problem is not the activation of
the system but its coherence.

Namely, if the dispersion in the positive eigenvalues is small (i.e., when p ≈ 1,
which is a fully connected network), there are many λi contributing to activate the
whole system but, since all dimensions in S+ contribute similarly to the dynamics,
nodes are indistinguishable from the viewpoint of the topology and the dynamical
units are constrained to evolve alike when they have different intrinsic dynamics.
Consequently, they remain unsynchronized.

On the contrary, if the dispersion is large, there is a balance between the intrinsic
dynamics and the structure of the network. The topology close to pc, due to the
presence of phase–repulsive links is such that, not only the activity is enhanced,
but also the connectivity of the network is compatible with the heterogeneity of the
system.
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Chapter 6

Conclusions

In this work, we have studied in detail the topology and the dynamics in complex
networks. A summary of the main results are the following:

Empirical approach to complex networks

We have thoroughly analyzed the complex network constituted by the scientific
collaborations of the fifth Framework Programme to study the interplay between
research and industry. This study uses the methods coming from the field of complex
networks to derive several measures that allow us to quantify the features of this
relationship and assess their potential improvements.

The FP5 network is scale–free with an accelerated growth, meaning that new
collaborations are created at a faster rate than usual. We have also concluded that
some sort of synergy among the participants exists since new collaborations appear.

However, the fact that only Universities use the different programmes to create
new collaborations shows that this is not enough to assure the transfer of knowledge.
While the network of Universities is well integrated and established in accordance to
what is observed for other social networks, the same does not seem to be true for the
Companies network, mainly due to its relatively small largest connected component.
Competition is probably the origin of this effect, which is moderated by the presence
of Universities.

We find that the transmission of information is more efficient between Universi-
ties than among Companies. Furthermore, when Universities are excluded from the
projects, Companies tend to form clusters, turning difficult (if not impossible) the
communication between them. These results point to the central function played
by Universities in the FP5 network to reduce the distance between research and
applications.

We also show that Companies and Universities are organized differently. Large
corporations are reluctant to choose as partners small companies, whereas size is not
important between Universities. But if we analyze how Universities and Companies
cooperate; the result is that large Universities prefer working with large Companies,
while Companies select their partners between Universities regardless of their sizes.
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Therefore, while Companies exhibit a hierarchical structure, Universities do not.
Then, although Universities contribute to approach Companies which would be sep-
arated otherwise, small Companies are not well integrated yet. Therefore, we believe
that the industry–industry and industry–research interactions should be particularly
encouraged, while maintaining the investment in the research–research interplay.

Spreading processes in complex networks

We have found that hierarchical networks are so spread because this structure arises
when each actor only looks for maximizing his information. The result is a struc-
ture that mainly benefits the higher levels, by providing them a higher information
centrality and improving their dominance of information.

When edges, between vertices with the same upper neighbor, are added to a
hierarchical tree, we show that the information each actor manages decreases. This
means that a hierarchical tree is a stable network against relationships between
members of the same group.

This stability can be seen as another reason that explains why hierarchical trees
are so spread in companies all over the world. A hierarchical tree backs the leader’s
superiority of information despite the strength of the relationship that links the
members of a group.

Nevertheless, it should be noticed that in our model edges between vertices in
the same level with different upper neighbor are not included, or between vertices
in different levels. This study may yield a different result.

When we assume that the transmission of information is perfect, without degra-
dation, but the access to this information is somehow restricted, the problem is how
to fairly share it, if some users act in a selfish manner.

We have shown that, if the policy used to manage the common resource is oblivi-
ous (that is, if it does not differentiate between requests belonging to different users)
then any efficient Nash equilibrium will highly depend on the number of users, in
the sense that they must adapt their request rate in a significant manner.

Taking into account that, in many realistic situations, the number of users
changes rapidly and that the time needed to adapt from one equilibrium to an-
other one can be significant, this means that the system will be most of time out
of equilibrium. Actually, as illustrative examples, we point out a pair of congestion
schemes in which the above mentioned effect may have a real impact.

Dynamics in networks

We have first analyzed the Helmholtz oscillator to justify why a new methodology is
required to analyze complex systems. This oscillator is a simple model for studying
phenomena that under certain conditions present a stable behavior of oscillatory
kind, but for other conditions the behavior is unstable.

We find that the width of the stochastic layer by using the separatrix map. This
gives the width of the energy band around the separatrix, where it is likely that an
orbit presents transient chaos.
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Next, we have considered the effect of friction. To solve the equation of the
Helmholtz oscillator with friction and without forcing the Lie theory for differential
equations is used. We show that the Helmholtz oscillator is completely integrable
only when certain relation between the parameters is satisfied. When this relation
is not satisfied, the equation is partially integrable. Also, we calculate that the
symmetries for the completely integrable case are a translation and a homothopy.

A first integral of motion is obtained when the equation is integrated by using
one symmetry. We prove that this time–dependent integral of motion is related to
a Hamiltonian function. The second symmetry allows integrating the first integral
of motion to obtain the Weierstrass function as a solution. Finally, we write this
solution in terms of Jacobian Elliptic functions to show that there exists a relation
with the basins of attraction of the oscillator.

Since the condition required to completely integrate the equation is just a two–
dimensional manifold in the parameter space, we cannot write down the function
that solves the equation in general. Then, we should analyze this type of prob-
lems from a global viewpoint since it is nonsensical to study individual trajectories.
To understand the motions that surround us, mainly due to non–linear laws and
interactions, requires the development of new techniques.

As an example of the utility of complex network in this issue, we have shown
how a small fraction of phase–repulsive links can enhance synchronization in an
ensemble of dynamical units. A structural analysis allows us to obtain information
about how the topology influences the dynamics. Surprisingly, around a probability
pc, the versatility arising from the network structure due to q drives the system to a
more ordered state, while far from pc the stiffness of the structure freezes the initial
disorder.

Precisely, we find that the effect of topology can be seen through two quantities:
the number of eigenvalues λi > 0 (i.e., those in S+) and their dispersion σV . We
relate the number of positive eigenvalues with the activity and the dispersion with
synchronization. While the activation is enhanced as the number of λi increases,
the synchronization improves with the dispersion.

If we have few positive eigenvalues (i.e., when p ≈ 0, which essentially corre-
sponds to a lattice), the initial oscillating units are unable to spread the activity
throughout. However, when there are many λi, the problem is not the activation of
the system but its coherence.

Namely, if the dispersion in the positive eigenvalues is small (i.e., when p ≈ 1,
which is a fully connected network), there are many λi contributing to activate the
whole system but, since all dimensions in S+ contribute similarly to the dynamics,
nodes are indistinguishable from the viewpoint of the topology and the dynamical
units are constrained to evolve alike when they have different intrinsic dynamics.
Consequently, they remain unsynchronized.

On the contrary, if the dispersion is large, there is a balance between the intrinsic
dynamics and the structure of the network. The topology close to pc, due to the
presence of phase–repulsive links is such that, not only the activity is enhanced, but
also the connectivity is compatible with the heterogeneity of the system.
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2. Juan A. Almendral, Luis López, Jose F. F. Mendes, Miguel A. F. Sanjuán

Complex Networks and Socioeconomic Applications

7th Granada Seminar 2002. Granada. 2002.
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