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Numerical and experimental exploration of phase control of chaos
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A well-known method to suppress chaos in a periodically forced chaotic system is to add a har-
monic perturbation. The phase control of chaos scheme uses the phase difference between a small
added harmonic perturbation and the main driving to suppress chaos, leading the system to different
periodic orbits. Using the Duffing oscillator as a paradigm, we present here an in-depth study of this
technique. A thorough numerical exploration has been made focused in the important role played by
the phase, from which new interesting patterns in parameter space have appeared. On the other
hand, our novel experimental implementation of phase control in an electronic circuit confirms both
the well-known features of this method and the new ones detected numerically. All this may help in
future implementations of phase control of chaos, which is globally confirmed here to be robust and

easy to implement experimentally. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2161437]

Phase control of chaos is a chaos control method applied
to periodically driven chaotic systems, where the key pa-
rameter is the phase difference between the main driving
and an applied harmonic perturbation. Here we focus on
a paradigmatic system of this type, the Duffing oscillator,
to make a thorough study of this technique. Previous
works on this method [Qu et al., Phys. Rev. Lett. 74, 1736
(1995); Yang et al., Phys. Rev. E 53, 4402 (1996)] show
that a correct choice of the phase allows one to minimize
the amplitude of the applied perturbation necessary to
suppress chaos, and it can lead the system to a variety of
periodic orbits. However, from our numerical exploration
new interesting properties have arisen that should be
taken into account in future implementations of this
chaos control scheme. For example, we have observed
that this method is strongly affected by the symmetries of
the system. We have also noticed that a correct selection
of the phase sometimes allows one to lead our system to a
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periodic orbit just for a very narrow interval of values of
the perturbation amplitude, and that in some cases the
eligible range of values of the phase that assure chaos
suppression decreases as the perturbation amplitude
grows. From our novel implementation of phase control
in an analog circuit, we have obtained an experimental
confirmation of both the known properties of this method
and of the new ones, which strongly suggest that they are
of quite a general nature. Our study contributes then to
having a deeper insight into this technique, as well as to
confirm its robustness and versatility.

I. INTRODUCTION

Chaotic behavior appears in many different contexts in a
broad class of dynamical systems, either natural systems or
man-made devices useful in science and technology. In gen-
eral, chaos is an unwanted feature and as a consequence
several control schemes have been devised in recent years,
referred to in different ways as controlling chaos, suppress-
ing chaos, or taming chaos. In any case, the goal of all these
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methods is to obtain a stable periodic orbit from a chaotic
one by applying a small and accurately chosen perturbation
to the system.1

The methods used to control chaos have been tradition-
ally classified in two main groups: feedback methods and
nonfeedback methods,’ according to the way they interact
with the system. Feedback methods of chaos control, OGY
being the most representative,3 attempt to stabilize the cha-
otic system in any of the unstable periodic orbits that lie in
the chaotic attractor. However, in experimental implementa-
tions, the fast response that these methods require cannot
usually be provided. In such cases, nonfeedback methods
might be more useful.

Nonfeedback methods have been mainly used to sup-
press chaos in periodically driven dynamical systems.
Among them a wide and important class is represented by
those dissipative nonlinear oscillators whose general equa-
tion of motion may be written as

X+ 5x+d—V:Fcos(wt), (1)
dx
where & is the damping coefficient, V(x) is the potential
function responsible for the restoring force acting on the sys-
tem, and F cos(wt) is an external periodic forcing. When
V(x) is the double-well potential, this equation represents the
well-known Duffing oscillator. For this particular case and in
absence of forcing and dissipation (F=0 and 6=0), the phase
space has at least one homoclinic point at (0, 0). Thus, under
a suitable combination of external driving F and dissipation
8, the phase space presents transverse homoclinic points that
may lead the system to a chaotic state.

The key idea of these nonfeedback methods is to apply a
harmonic perturbation either to some of the parameters of the
system or as an additional forcing, and its effectiveness is
shown numerically and experimentally in several papers.4_8
In one of these papers,8 it was observed that the phase dif-
ference ¢ between the main driving and the perturbation had
a certain influence on the global dynamics of the system, but
in general the role of ¢ had been overlooked in the literature.
However, Qu et al.®'® showed that ¢ influences drastically
the global dynamics of the system. They proposed a control
scheme that makes use of this property where ¢ acts as the
control parameter: phase control of chaos.

We shall also point out that some theoretical efforts have
been undertaken in order to understand the role of the har-
monic perturbations, although essentially focused on how
they contribute to frustrating transverse homoclinic orbits
and then suppressing chaos'™" in the context of Melnikov
theory.

Here we present an extensive numerical study and a
novel experimental implementation of the phase control
scheme by using the two-well Duffing oscillator as a para-
digm. Our aim is to provide a more complete characteriza-
tion of this type of chaos control, and to check out its validity
in a real laboratory system: an electronic circuit. Two
possible implementations of phase control of chaos are
sketched in Fig. 1. For convenience we have decided here to
explore the case in which a parametric perturbation is used

[Fig. 1(b)].
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FIG. 1. Two possible implementations of phase control of chaos in a Duf-
fing oscillator, (a) as an additive perturbation and (b) as a parametric per-
turbation. The phase difference ¢ between these perturbations and the main
forcing is the key control parameter. We focus our attention on the case of a
parametric perturbation throughout this paper.

Our numerical explorations confirm the main features of
this method:*'° that an adequate choice of the phase leads
the system from chaos to different periodic states, and how
an accurate choice of ¢ can minimize the amplitude of the
applied perturbation. However a thorough exploration of the
parameter space allows us to find also new patterns on how
phase control acts in this system, that were not previously
observed. We underline the strong dependence of this control
scheme on the symmetries of the system, and we can clearly
visualize how the election of ¢ is strongly affected by the
amplitude and the frequency of the harmonic perturbation.

Both the well-known features of phase control and the
new ones are confirmed in the novel implementation of this
scheme in a circuit that mimics the dynamics of the Duffing
oscillator with a slight asymmetry. These results demonstrate
that ¢ plays a role beyond the ideal symmetric case and
strongly suggest that this type of chaos suppression can be
useful for a wide variety of periodically driven systems.

The paper is organized as follows. In Sec. II we describe
the model where the control method is applied. Numerical
simulations showing the effect of the phase control in the
system are presented in Sec. III. Section IV compares the
numerical results with the experiment performed on the elec-
tronic circuit that mimics the Duffing oscillator. Finally, in
Sec. V the main conclusions of our work are summarized.

Il. DESCRIPTION OF THE MODEL

As we mentioned in Sec. I, a paradigmatic system of the
type described by Eq. (1) is the double-well Duffing oscilla-
tor, whose equation of motion reads

i+ 8 —x+x>=Fcos(r). (2)

Note that we take the value of the frequency of the ex-
ternal perturbation as w=1 throughout the paper. A well-
known mechanical interpretation of this nonlinear oscillator
is the motion of a unit mass particle in a double-well sym-
metric potential V(x)=—x?>/2+x*/4 with dissipation and
driven by an external periodic forcing. Depending on the
values of F and &, Eq. (2) yields a rich variety of dynamical
solutions including stable equilibria, periodic oscillations,
and chaotic solutions. We tailor the parameters F' and & in
such a way that its asymptotic state will be chaotic, and from
then we study how to reach a periodic state under a suitable
perturbation by using the phase control method.

To analyze the dynamics of Eq. (2) we numerically in-
tegrate it by using a fourth-order Runge Kutta algorithm with
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FIG. 2. A chaotic attractor of the nonlinear oscillator ¥+0.15%—x+x
=0.258 cos(t). The value of the largest Lyapunov exponent is approximately
0.14.

500 integration steps per cycle, that is, with a time step Ar
=2r/500. Once the trajectories are integrated, Lyapunov ex-
ponents can be calculated using standard techniques. We thus
find that for the choice of parameters F=0.258 and 6=0.15
the system is chaotic and its corresponding largest Lyapunov
exponent is A =0.14. The Poincaré map of a typical trajec-
tory is shown in Fig. 2. We keep these parameter values (F
=0.258 and 6=0.15) all throughout the numerical part of the
paper.

As we have already affirmed, our aim here is to analyze
the effects of the phase ¢ in the chaotic regime, when we add
a harmonic perturbation. For this purpose we choose a har-
monic parametric perturbation of the cubic term of the re-
storing force. Hence the complete equation of motion of our
model is given by

i+ 8% —x+ (1+ecos(rt+ ¢))x> = F cos(r), (3)

where €<<1 is the perturbation amplitude, r is the ratio be-
tween the frequencies of the parametric modulation and the
external forcing, and ¢ is the phase difference between the
perturbation and the forcing. This modulation induces a
slight harmonic variation of the width of the two wells and of
the height of the potential barrier between the two minima of
V(x). Thus, ¢ can be interpreted also as the phase difference
between this geometrical variation and the external forcing.

lll. NUMERICAL EXPLORATION OF PHASE CONTROL
OF CHAOS

The equation that we use for the numerical simulations
reads

F+0.155—x+ (1 + ecos(rt + ¢))x* =0.258 cos(r),  (4)

where €, ¢, and r are free parameters. The main idea is that
for €e=0 the system is chaotic.

In order to better visualize the effect of the phase ¢ and
how it has to be combined with the other parameters (e and
r) in the perturbation, we compute the largest Lyapunov ex-
ponent over every point in a 100 X 100 grid in the region of
parameters 0<<e<0.005 0= ¢ =2, fixing r for each com-
putation.

We have chosen such small € values for our exploration
to underline the effectiveness of phase control and to point
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out that in our system the chaos suppression mechanism con-
sidered cannot be the frustration of transverse homoclinic
orbits (it is quite straightforward to show this by using the
techniques exposed in Ref. 12). Our study is mainly focused
on integer r values as long as it has been shown that r values
of the form r=g+Aq (g integer), with 0 <<Ag<<1, lead to an
intermittency between chaotic and periodic motion referred
to as breather.”'® We consider that by using these criteria we
are covering most of the zones of interest of parameter space.
We shall finally point out that special attention has been paid
to avoid the transient states by waiting for a sufficiently long
time to fix the corresponding stable regime, since we are
searching for areas in the parameter plane where a transition
between chaotic and regular motion takes place.

In Fig. 3 we plot the results for several integer r values.
The color assigned to each point in the (e,¢) parameter
plane indicates whether for those parameter values Eq. (4)
has a chaotic or a periodic solution. Instead of marking with
two colors the points leading either to positive or negative
Lyapunov exponents, we have chosen four different colors in
order to better appreciate the structure of the chaos suppres-
sion regions. The black color denotes A <-0.025, the grey
color —0.025 =<\ <0, the silver color 0 <\ <<0.025, and the
white color A\ >0.025.

Figure 3 shows that there exist wide regions of the (e, ¢)
plane where N\ is smaller than zero, and therefore chaos is
suppressed. The most interesting characteristics of the phase
control that were described in previous papers9’10 are clearly
present in this figure: the key role of the phase ¢ in selecting
the final state of the system and how the use of a correct
phase ¢ contributes to reduce the necessary € value to sup-
press chaos. Consider for example the r=2 case [Fig. 3(b)],
the maximal perturbation amplitude considered €=0.005
would not lead to a regular motion at ¢=0. Instead, at ¢
=3m/2, a small value of the intensity as e=0.0025 is enough
to lead the system to a periodic state. However, there are
other features that arise from the calculations shown in Fig. 3
that need to be emphasized.

First, we shall point out the key role of the symmetry of
the system in the form of the control zones in the parameter
plane. We can note that the control regions, far from having
a trivial or irregular shape, present a symmetry that depends
on the parity of the r parameter: 77 symmetry for odd r values
[Figs. 3(a) and 3(c)] and the trivial 27 symmetry for even r
values [Figs. 3(b) and 3(d)].

In order to explain this difference related to parity in the
control areas, we note that there exists a wide area of the
phase space which verifies that both the point (x,,%,,%,) and
(=xg,—xXg, o+ ) belong to the same basin of attraction for a
certain selection of the parameters (", ¢*). In this region, the
invariance of Eq. (2) under the transformation x——x, t—1
+, ¢—> ¢p+rar allows us to infer that if the system is con-
trolled for a certain pair of values (€', ¢"), then chaos will
also be controlled for (€",¢"+rm mod (27)), as observed in
Fig. 3.

Thus, the symmetries of the system can lead to two im-
portant advantages. First, they can be used to restrict the
search of control areas to regions of the parameter plane of
the form 0<e< ¢, py< Pp<+rm. Thus, in the r=1 and
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FIG. 3. Largest Lyapunov exponent N\ computed at every point of a 100 X 100 grid of (e, ¢) values in the region 0< <2, 0<e=<0.005 for X+0.15x—x
+(1+ecos(rt+¢))x*=0.258 cos(1), fixing (a) r=1, (b) r=2, (c) r=3, (d) r=4. The black color denotes A <-0.025, the grey color —0.025=<\ <0, the silver
color 0 <\ <0.025, and the white color A >0.025. The control regions have a structure that follows the expected 7 symmetry for r odd and the trivial 27

symmetry for r even.

r=3 cases we could have restricted our exploration to ¢
values in the interval [0, ), as we can see in Figs. 3(a) and
3(c). On the other hand, the presence of these symmetries
guarantee multiplicity of control regions in the (e, ) for
some r values: it is evident that for r=1 and r=3 we have
two control zones instead of one. However there are some
cases where these two advantages are even more evident. For
example, the r=1/3 case. In Fig. 4 we can see the calcula-
tion of \ as a function of (e, ¢) for this r value. Due to the
global symmetry of the system, the control regions must
present a 7r/3 symmetry on ¢. Thus, when the width of each
of the six small control zones becomes sufficiently large (e
=~(0.0035), the six control regions merge and chaos control is
obtained nearly independently of the phase ¢. We shall point
out that for other subharmonic frequencies explored, the re-
quired € values were bigger.

From Fig. 3 other features showing that the phase ¢
must be combined with the other parameters in a nontrivial
way can also be clearly visualized and have to be empha-
sized. We can observe there that a correct choice of ¢ does
not assure chaos control for all € values. That is, an appro-
priate choice of (e, ) is fundamental. For example, in the
odd r cases [r=1 and r=3, Figs. 3(a) and 3(c)], it is clear that
the choice of the ¢ value determines whether the final state
of the system will be chaotic or periodic as in the even r
values. However, in these cases for a fixed ¢ value a con-
tinuous increasing of the perturbation amplitude € can lead

from a chaotic state to a periodic state and then back to
chaos. Thus, contrary to what intuition may say, sometimes
to increase € from a periodic state, instead of rendering this
state more stable, pushes the system toward chaos.

On the other hand, we can observe in Figs. 3(a) and 3(c),
that the eligible ¢ range is reduced as € increases. For ex-

@ 0.0025

0 1 2
o /T

FIG. 4. Largest Lyapunov exponent A computed at every point of a 100
X 100 grid of (e, ) values in the region 0< ¢$p<2, 0<€e=<0.005 for: ¥
+0.15%—x+(1 +ecos(%t+ ¢))x3=0.258 cos(). The black color denotes
A <-0.025, the grey ‘color —0.025<\< 0, the silver color 0 <A <0.025,
and the white color A >0.025. Again, the control regions have a very inter-
esting structure that follows the expected periodicity.
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ample, for r=1 [Fig. 3(a)] two wide ¢ intervals of chaos
suppression can be found for e=~0.0025, but if we increase €
to €=~0.005 we will only find four narrow ones. So another
unintuitive feature arises from our exploration: by using big-
ger values of e, instead of finding wider ¢ intervals where
chaos can be suppressed we may find narrower ones.

Up to this point, we have not said a word to characterize
the stable state that is reached by our system when chaos is
controlled. The numerical calculations shown in Fig. 3 do
not allow us to identify the orbits to which the system is led
for each choice of parameters (e,¢), but only to predict
whether the system is chaotic or periodic. To distinguish the
periodicity of the orbits, we compute bifurcation diagrams.
We evaluate bifurcation diagrams fixing two particular val-
ues of r and € (r=2, €=0.005) and varying ¢. The results are
shown in Fig. 5, where for the sake of clarity we plot just the
local negative maxima of x versus ¢. We note how the sys-
tem can be driven to periodic orbits of different periods by
suitably adjusting ¢, as was previously noticed in Refs. 9
and 10. Thus, varying ¢ is like “tuning” the system toward a
desired periodic orbit. However we shall point out that, con-
sidering that the distance between the successive bifurcations
decreases very fast and that the periodic windows are quite
narrow, severe limitations may occur in experimental devices
affected by noise. In this case only a few periodic orbits will
be accessible.

IV. EXPERIMENTAL EVIDENCE OF PHASE CONTROL
OF CHAOS

Our goal here is to test the phase control method in a
laboratory system, as well as to confirm the features that we
have observed numerically. To this purpose, we build the
electronic circuit sketched in Fig. 6. It consists of an elec-
tronic analog simulator implemented using commercial
semiconductor devices. The variable V, is the output of I,
while V is the output of ;. V, is the driving voltage ampli-
tude applied by means of the generator G, while V. is the
control voltage amplitude applied by G,. The parameters w,
and w, are the driving and control angular frequency, respec-
tively. The integrators /, and I, have been implemented using
Linear Technology LT1114CN four quadrant operational am-
plifiers, while the multipliers are Analog Devices MLT04.
The acquisition of the experimental data has been performed
by means of a LeCroy digital oscilloscope and by means of a
real time acquisition board connected to a personal computer
provided with LABVIEW software. G, is a digital-to-analog
arbitrary wave form generator SONY TEKTRONIX
AWG420. It can provide two wave forms of whatever shape.
The generator can also control the phase difference ¢. Under
a suitable normalization of the time scale the dynamics of
this circuit is governed by Eq. (3), with a slight change in the
values of the parameters 6=0.1471, F=0.262, w=1.257. In
this way, the variables Vi, V, can be associated to x, X,
respectively.

However, by observing the dynamics of the system with
the aid of the oscilloscope we realize that the unperturbed
(e=0) system does not follow exactly the expected chaotic

Chaos 16, 013111 (2006)

1.05 1.065
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FIG. 5. Successive zooms of a bifurcation diagram showing the local
maxima of the negative x values vs ¢, for the equation ¥+0.15%—x+(1
+0.005 cos(2+ ¢))x*=0.258 cos(r). The dependence of the periodic orbit on
the ¢ value can be noted. The higher the period of the orbit, the narrower the
¢ interval where it can be reached. Periodic windows are also present inside
the chaotic sea.

dynamics described by Eq. (3). We observe that a typical
trajectory spends more time in the region of negative values
of the x variable than in the region of the positive values, that
is, it spends more time in the left well than in the right well,
as shown in Fig. 7. This is equivalent to an asymmetrical
double-well potential.

An explanation of this phenomenon is given considering
how multipliers work. Real multipliers differ from ideal ones
because operations such as x> are done as (x—A;)(x—A,)(x
—A;)+C, where A;,C<1. Thus, instead of doing x> our cir-

cuit made the following operation: x*— x> +ax>+bx+c. We
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Mult3

Mult1 Mult2

FIG. 6. Sketch of the electronic circuit. /: integrators; R: resistors; C: capacitors, Mult: multipliers; G,: sinusoidal wave generator; G arbitrary wave form
generator. Under a suitable time normalization, the dynamics of the circuit is given by ¥+0.1471%—x+(1+ecos(r1.257t+ ¢p) x3=0.263 cos(1.257¢), where
xocV, and ko V.. The €, ,r values can be fixed with the arbitrary wave form generator.

have made experimental measurements of the x> term pro-
vided for the multipliers, and furthermore we obtain the val-
ues: a=—0.014, »=0.014, ¢=-0.12 for the coefficients by
using a polynomial fitting of the results.

15
-1, |
0.5} |
<
2 |
>
-0.5 |
1t B
-1:5 -1 0 1 2
V, (V)
2
(b)
1
=
Z o
-3
1t
0 0.15 0.3
t(s)

FIG. 7. (a) Experimental reconstruction of the chaotic attractor observed for
the analog circuit. (b) Example of the experimental times series, where the
asymmetry of the trajectory is observed.

Hence, the addition of these lower order terms besides x°
in the restoring force makes the two-well potential V(x) no
longer symmetric, and consequently the left well becomes
deeper than the right one. Thus, for the system it is more
difficult to escape from the left well at x <0, where it spends
more time. This is confirmed by Fig. 7(b), where an example
of the experimental time series is shown.

Although in Sec. III we emphasized the advantages of
global symmetries for control purposes, instead of consider-
ing this asymmetry as a problem we thought that this could
be a good way to test the versatility and robustness of phase
control of chaos. Following this strategy we repeat the nu-
merical simulations considering the asymmetry in the poten-
tial. The new equation of the motion is

i+ 0t —x+ (1 +ecos(rot+ ¢)(x* +ax* +bx + C')
=F cos(wr). (5)

In order to have a previous idea of the likely control
areas, we test a wider region in the (e, ¢) plane than in the
ideal case. Thus, we explore the range of values O<e€
=<0.03 and 0= ¢p=<27r. We compute Lyapunov exponents for
Eq. (5) on each point (€, @) in a 100X 100 grid in the con-
sidered region for different values of r=1, r=2, and r=3.
The results are shown in Fig. 8.

Our numerical results confirm that the critical depen-
dence on the phase ¢ to control chaos is preserved and that
some of the previously observed features also apply to the
asymmetric case. However, in the considered region, control
islands of chaos suppression coexist with narrow control ar-
eas, and their structure is much more intricate and irregular
than in the symmetric case. Due to the fact that the system
does not present the invariance under the transformations
described in the previous section for the symmetric case, the
rar symmetry of the control regions is no longer present as
expected. Chaos is suppressed for a wide range of values of
€, even for values below €<0.005.
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FIG. 8. Largest Lyapunov exponent A computed at every point of a 100X 100 grid of (€, ¢) values in the region 0< ¢$<2m, 0<€e=<0.03 considering the
effective potential asymmetry: ¥+0.147x—x+(1+€cos(1.257rt+ ¢))(=0.12+0.014x—0.014x>+x*)=0.262 cos(t). The calculations have been made for (a) r
=1, (b) r=2, (c) r=3. The black color denotes A <-0.025, the grey —0.025 <\ <0, the silver 0 <<\ <0.025, and the white A >0.025. The control regions lack
the symmetry of the former case, but wide zones of chaos suppression do still appear.

Once we have a qualitative idea of the distortion induced
by the potential asymmetry we can come back to the experi-
ment. In our experiments we search for the control areas in
the parameter space in an analogous way to what we did
numerically. We detect and reconstruct these control areas by
doing bifurcation diagrams fixing r, € (for different € values)
and varying the phase value ¢. Such bifurcation diagrams
are performed by searching for the maxima of the time series
of the system obtained when the phase ¢ is slowly varied to
the characteristic time scale of our system, that is, we make
¢=put with u<<1.

The experimental control zones for r=1, r=2, and r=3
are observed in Figs. 9(a)-9(c). The main well-known char-
acteristics of phase control of chaos are confirmed in our
circuit: the crucial role of the phase ¢ on the final state and
the smallness of € needed to suppress chaos if ¢ is properly
chosen. The new features analyzed previously are also
present here. The lack of symmetry of the control regions
due to the asymmetry of the potential is evident, so we can
appreciate how the advantageous features observed from the
symmetric case no longer apply here, as expected. On the
other hand, the bifurcation in the control zone that appears in
the r=1 case [Fig. 9(a)] confirms that the interesting patterns
relating ¢ with the rest of the parameters of the harmonic
perturbation do not only apply for the ideal symmetric case.
We can also notice that the ¢ intervals where chaos is sup-
pressed do roughly coincide with those predicted from nu-
merical calculations. This is quite remarkable, as long as in

our numerical simulations we did not consider any source of
noise or instability.

V. CONCLUSIONS

In this work we have performed a detailed analysis of a
chaos control method, phase control of chaos, consisting of
applying a small parametric harmonic perturbation to a peri-
odically driven chaotic system and use the phase difference
¢ to vary the dynamical state of the system. We have focused
our work in a paradigmatic system of this type: the Duffing
oscillator.

We have performed numerical simulations confirming
the most important properties of this method: that only a
correct choice of ¢ can lead the system to a periodic orbit
(once we fix the amplitude of the perturbation) and that, by
adequately selecting the phase, the necessary amplitude to
suppress chaos can be minimized. In practical applications,
sometimes the range of accessible parameters within which
the system can be perturbed is very narrow. Then, the phase
represents an additional degree of freedom that becomes cru-
cial to reach control.

With our numerical analysis we have also pointed out
some features that were not observed in previous works on
phase control of chaos. By using an extensive exploration of
parameter space in search of zones of chaos suppression for
different values of the perturbation amplitude €, resonance
condition r, and phase ¢, we have detected some interesting
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FIG. 9. Experimental control regions for the circuit of Fig. 5, reconstructed from experimental bifurcation diagrams, when (a) r=1, (b) r=2, (c) r=3. In spite
of the experimental errors, there are still wide control zones that roughly coincide with those predicted by the numerical simulations.

patterns. The implementation of phase control in our system
is a clear example of how the symmetries play a key role for
this chaos control method, and of how they may be of great
help in some cases. We have also observed how the phase ¢
sometimes has to be combined with the other parameters in a
way that may be unintuitive and that is strongly affected by
the values of the rest of the parameters of the perturbation
applied. For example, we have seen that by increasing the
perturbation amplitude € sometimes we can lead the system
from chaos to a periodic state and then back to chaos, and
that sometimes the eligible range of ¢ values that stabilize
the system in a periodic orbit becomes narrower as € be-
comes bigger.

Most of the interesting patterns found numerically have
been recovered in an experiment with an electronic circuit
that mimics the dynamics of a Duffing oscillator with a slight
potential asymmetry, even in the presence of noise. To our
knowledge, no other verification of the validity of phase con-
trol of chaos in a real laboratory system had been performed
before. This fact suggests that phase control of chaos is ro-
bust even in the presence of distortions of the potential sym-
metry and that all the properties observed in this work are of
a quite general nature, so they must be taken into account
when applying this control method to the most diverse dy-
namical systems.

The above-summarized characteristics and the observed
robustness of this scheme in its implementation in the elec-
tronic circuit, together with the advantages derived from the
nonfeedback nature of this method, make us think that phase
control of chaos can be useful in many experimental situa-

tions where periodically driven chaotic systems appear, such
as lasers or superconductor junctions.
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