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Abstract

Chaotic scattering in open Hamiltonian systems under weak dissipation is not only of fundamental in-

terest but also important for problems of current concern such as the advection and transport of inertial

particles in fluid flows. Previous work using discrete maps demonstrated that nonhyperbolic chaotic scatter-

ing is structurally unstable in the sense that the algebraic decay of scattering particles immediately becomes

exponential in the presence of weak dissipation. Here we extend the result to continuous-time Hamiltonian

systems by using the H́enon-Heiles system as a prototype model. More importantly, we go beyond to in-

vestigate the basin structure of scattering dynamics. A surprising finding is that, in the common case where

multiple destinations exist for scattering trajectories, Wada basin boundaries are common and they appear

to be structurallystableunder weak dissipation even when other characteristics of the nonhyperbolic scat-

tering dynamics are not. We provide numerical evidence and a geometric theory for the structural stability

of the complex basin topology.
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A fundamental issue in nonlinear dynamics is to understand the robustness of a phe-

nomenon in physical situations where deviations from model assumptions may arise. Take,

for example, scattering in Hamiltonian systems. In an idealized situation where the dynam-

ics is conservative, particles coming from far away into a region of interaction must exit it

in finite times, as no attracting sets are possible. Any dynamical invariant set in the scat-

tering region must then be nonattracting. A regular invariant set, such as an unstable pe-

riodic orbit, gives rise to regular scattering, while chaotic scattering is the consequence of a

nonattracting chaotic invariant set. In a realistic situation, factors such as weak dissipations

and/or noise may be present. It is important to understand what dynamical phenomena

may persist in the presence of various physical perturbations. Chaotic scattering has been

studied for more than two decades because it is relevant to a host of areas in physics such

as astrophysics, optics, fluid mechanics, nanophysics, etc. In most existing works on chaotic

scattering, the underlying dynamical systems are assumed to be purely Hamiltonian. How-

ever, it is possible to conceive physical applications where this assumption may not be strictly

valid. For instance, for chaotic scattering arising in the context of particle advection in hy-

drodynamical flows, the effect of weak dissipation can be important. This is so because the

condition of incompressibility allows the problem to be casted in Hamiltonian dynamics as

the particle velocities can be related to flow’s stream function in a way that is completely

analogous to the Hamilton’s equations in classical mechanics. Real hydrodynamical flows

cannot be perfectly incompressible, and the effects of inertia and finite mass of the particles

advected by the flow are effectively those due to friction, or dissipation. The focus of our

work is on the effect of weak dissipation on chaotic scattering in continuous-time Hamilto-

nian systems. A previous work addressed the topic but from the standpoint of the particle

decay law. In addition, the models used were discrete-time maps. Here we investigate how

the basin structure may be affected by dissipation and how physically measurable fractal

dimensions may change. These issues are particularly relevant to nonhyperbolic scattering,

where chaotic sets and Kol’mogorov-Arnol’d-Moser (KAM) tori coexist and dissipation can

convert some KAM islands into attractors. Our main finding is that the complicated, fractal

basin structures such as Wada basin boundaries typically persist under weak dissipation, de-

spite metamorphic changes in the particle decay law. We expect this result to be useful as the

basin structure associated with scattering dynamics is potentially experimentally accessible.
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I. INTRODUCTION

In this paper we study the phenomenon of chaotic scattering in continuous-time Hamiltonian

systems in the presence ofweak dissipation. Most previous works on classical chaotic scattering

focused on purely conservative systems [1–4]. Note that conservative and dissipative systems

admit a Hamilton function although the energy is not preserved in the dissipative cases [5] . A

commonly studied setting is particle motion in a potential field consisting of a group of potential

hills [2, 3]. In general, there exists a region where interactions between scattering particles and the

potential occur, whereas outside the region, the potential is negligible so that the particle motions

are essentially free. This region is often called thescattering region[1–4]. For many potential

functions of physical interest, the corresponding classical Hamilton’s equations of motion are

nonlinear, rendering possible chaotic dynamics in the scattering region. Since the system is open,

the region necessarily possesses “holes” for particles to enter and to escape. That is, particles from

far away can enter the scattering region through one of the holes, experience chaotic dynamics in

the region due to the interaction with the potential, and then exit the region through the same or

a different hole. Because of the chaotic dynamics in the scattering region, particles with slightly

different initial conditions (e.g., initial positions and momenta) can experience different paths of

motion in the region and, consequently, they can spend drastically different times in the region and

may exit through different holes in completely different directions. It is in this sense of sensitive

dependence of the outcome of the scattering trajectory on the initial condition that the scattering

is termed chaotic. In the past two decades or so, physical situations where chaotic scattering is

relevant were identified, which include celestial mechanics [6], charged particle motions in electric

and magnetic fields [7], hydrodynamical processes [8], atomic and nuclear physics [9], and solid-

state semiconductor structures that are fundamental devices in nanoscience and nanotechnology

[10].

For particles coming into the scattering region from far away, their lifetimes in the region must

be finite. As a result, they exhibit chaotic dynamics but only for a finite amount of time, i.e., tran-

sient chaos [11, 12]. In this sense chaotic scattering can be regarded as a physical manifestation of

transient chaos [1–4]. It is known in nonlinear dynamics that transient chaos is due to the existence

of nonattracting chaotic invariant sets (chaotic saddles) in the phase space [2, 3, 13]. One way to

physically see the presence of a chaotic saddle is through unstable periodic orbits. For instance, in

the configuration of symmetric potential hills used to study various bifurcations to chaotic scatter-
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ing [2, 3], there exist trajectories that bounce back and forth along the line segments connecting

the centers of the hills. Insofar as the particles move exactly along these lines, they remain in the

same paths, resulting in periodic motions which, in the phase space, correspond to periodic orbits.

These orbits are unstable because an arbitrarily small deviation from the periodic paths can cause

the particles to leave the paths and eventually leave the scattering region. To caracterize the scatter-

ing dynamics of the system we define “basin of attraction”, as a set of initial conditions that leads

to an attractor or fixed point. This term is associated with dissipative dynamical systems since an

attractor is needed. Inopenconservative Hamiltonian systems we cannot talk about attractors or

basins of attraction. For this case, we define “exit basin” in the same way that basin of attraction

in dissipative systems, as a set of initial conditions that lead to a certain exit. In chaotic scattering,

the boundaries separating the basins of different destinations are typically fractal sets [2, 14]. The

main goal of this paper is to examine how weak dissipation may affect the basin structures.

In Hamiltonian systems, regular motions, i.e., motions on various Kol’mogorov-Arnol’d-Moser

(KAM) tori [15], are also fundamental. Depending on whether there are KAM tori coexisting with

chaotic saddles in the phase space, chaotic scattering may be characterized as eitherhyperbolicor

nonhyperbolic. In hyperbolic chaotic scattering, all the periodic orbits are unstable and there are

no KAM tori in the phase space. In this case, the particle decay law is exponential. To see this,

consider an ensemble of initial particles randomly distributed in the scattering region. As time

goes particles begin to escape from the region, so the number of particles in the region (or the

survival probability of a particle) decreases with time. When chaotic saddles are the only dynam-

ical invariant sets in the scattering region so that all periodic orbits are unstable, this decrease in

the survival probability is necessarily exponential. In nonhyperbolic chaotic scattering, KAM tori

coexist with chaotic saddles, which typically results in algebraic decay in the survival probability

of a particle in the scattering region. Another goal of this paper is to address the effect of weak

dissipation on particle decay law in nonhyperbolic scattering.

A recent work based on a class of two-dimensional, idealized discrete-time Hamiltonian maps

examined the effect of dissipation on chaotic scattering in terms of the particle decay law and the

fractal dimension of the chaotic saddle [17]. The finding was that for hyperbolic chaotic scatter-

ing, the exponential decay law remains unchanged in the presence of weak dissipation but, for

nonhyperbolic chaotic scattering, the algebraic decay law is structurally unstable in the sense that

it immediately becomes exponential in the presence of some amount of dissipation, no matter how

small. This result is consistent with the fact that hyperbolic dynamics in Hamiltonian systems are
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typically structurally stable while nonhyperbolic dynamics are not. Here, we shall use a paradig-

matic continuous-time model for chaotic scattering, the Hénon-Heiles system, and demonstrate

that a similar result for the particle decay law and for the fractal dimension holds. More impor-

tantly, we will go beyond Ref. [17] to address the effect of weak dissipation on the basin topology

of chaotic scattering. The surprising finding that we will report in this paper is that the Wada basin

topology isstructurally stablewith respect to weak dissipations, even when the original Hamilto-

nian system exhibits nonhyperbolic chaotic scattering. To provide a solid basis for this result, we

shall apply the mathematical conditions for Wada basins to our weakly dissipative Hénon-Heiles

system.

In Sec. II, we describe the H́enon-Heiles system and discuss the basic scattering dynamics.

In Sec. III, we estimate the fractal dimension for the conservative and dissipative cases. Sec-

tion IV presents numerical results with the Wada basin topology and a mathematical argument.

Conclusions and discussions are presented in Sec. V.

II. MODEL DESCRIPTION

The H́enon-Heiles system is described by the Hamiltonian

H =
1

2
(ẋ2 + ẏ2) +

1

2
(x2 + y2) + x2y − 1

3
y3, (1)

which defines the motion of a particle with unit mass in the two-dimensional potential

V (x, y) =
1

2
(x2 + y2) + x2y − 1

3
y3. (2)

The system was originally proposed in 1964 to address the question of whether there exist more

than two constants of motion in the dynamics of a galaxy model [23]. Since then it has become a

paradigmatic model for studying nonlinear and chaotic dynamics incontinuous-timeHamiltonian

systems. For this potential we can distinguish two main types of motions, which correspond to

bounded and unbounded orbits. According with the value of the energy we can say when the orbit

is trapped in a region or escape from it. Specifically, this threshold value of the energy for which

the particle can escape to the infinity is calledescape energy, Ee. To calculate the escape energy

Ee, it is necessary to find the value of the energy in the maxima of the potential, and this value is

Ee = 1/6 = 0.1666. For values of energy above the threshold value the escapes are possible and

the motions are unbounded, presenting the system three different exits.
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FIG. 1: Representative contours of the Hénon-Heiles potential. Closed curves correspond to energyE <

Ee = 1/6. There are three symmetric destinations for scattering particles.

Figure 1 shows several contours of the potential as Eq. 2. There is a 2π/3 rotational symmetry,

with the center of the potential at the origin. For particles initiated from near the center with energy

E < Ee = 1/6, they will be confined in the neighborhood of the center and thus generate bounded

orbits in the phase space. Entering from outside into and escaping from the central region of the

potential are possible only when the particle energy exceedsEe. Since our interest is in scattering,

we will focus on theE > Ee regime. The triangular-like region around the center in Fig. 1 is

thus the scattering region, the size of which depends on the particle energy. As indicated in Fig.

1, there are three symmetric channels for particles to exit the scattering region, giving rise to three

qualitatively distinct scattering destinations. This allows Wada basin boundaries to occur.

For simulation convenience, we launch scattering particles from within the scattering region

and examine their escaping trajectories. Specifically, the particles are distributed on a vertical line

segment centered at(x, y) = (0, 0) and they start their motions in different directions. That is,

the subspace in the phase space from which scattering particles are initiated can be denoted by

(y, θ), whereθ is the angle of the initial velocity with respect to thex-axis. Figure 2 shows a

typical trajectory withE = 0.2, where the particle spends a finite amount of time in the scattering

region bouncing back and forth among the three potential peaks, before exiting through one of

the escaping channels. A basic property of the Hénon-Heiles system is the existence of a class

of highly unstable periodic orbits forE > Ee, called theLyapunov orbits, which live near the
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FIG. 2: A typical scattering trajectory in the Hénon-Heiles system withE = 0.2, where the particle escapes

through exit 2 in Fig. 1.
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FIG. 3: Average delay time versus the energy. The time diverges as the particle energy approaches the

threshold valueEe from above. (a) Dotted curve is for non-dissipative case. (b) Solid curve is for dissipative

case withα = β = 10−3.

boundary of the scattering region. When a particle crosses a Lyapunov orbit in the outer direction,

then it escapes to infinity and it never comes back. The Lyapunov orbits thus provide a meaningful

criterion for measuring the delay times of particles in the scattering region even when the system

is dissipative [24]. Apparently, the closer the particle energy is toEe, the longer the delay time,

and the time diverges asE → Ee. This behavior is shown in Fig. 3 (dotted curve).

A physically meaningful way to introduce the dissipation is to add terms that are proportional
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FIG. 4: (a) In the presence of dissipation (α = 0.1 andβ = 0.1), a particle permanently trapped in the

scattering region. The corresponding trajectory approaches the fixed-point attractor in the phase space. (b)

Exponential decay to zero of the particle energy when it approaches the attractor.

to the particle velocity in the Hamilton’s equations of motion [25]. This results in the following

model ofdissipativeHénon-Heiles system:

ẍ + x + 2xy + αẋ = 0, (3)

ÿ + y + x2 − y2 + βẏ = 0,

whereα andβ are dissipation parameters. Due to dissipation, relatively larger energies are re-

quired for scattering dynamics, as shown by the solid curve in Fig. 3 forα = β = 10−3. We see

that, as the energy is decreased, the delay time tends to diverge at a larger value of the energy than

that in the conservative case (dotted curve).

In the presence of dissipation, attractors can arise in the scattering region. For thedissipative

Hénon-Heiles system, there is at least one such attractor located at the origin(x, y) = (0, 0)

with velocity (ẋ, ẏ) = (0, 0), which clearly corresponds to a fixed-point attractor in the phase

space. In this case, even forE > Ee, there is a probability that a particle can be trapped in the

scattering region forever. Figure 4(a) shows such a trapped trajectory forE = 0.2, α = 0.1, and

β = 0.1, where it approaches asymptotically to the fixed-point attractor. During this process the

particle energy decreases exponentially to zero, which is typical in dissipative dynamical systems,

as shown in Fig. 4(b).
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III. FRACTAL DIMENSION

An important result in nonhyperbolic chaotic scattering concerns the fractal dimension of the

set of singularities in the scattering function. Lauet al. [26] argue, with numerical support, that the

dimension isD = 1. This unity of the fractal dimension is a direct consequence of the algebraic-

decay law associated with nonhyperbolic chaotic scattering, which can be seen intuitively by con-

sidering a zero-Lebesgue-measure Cantor set that hasD = 1, through the construction explained

in Ref. [26].

The scattering dynamics in the Hénon-Heiles system is typically nonhyperbolic, as KAM tori

and chaotic saddles coexist in the phase space. Such a mixed phase-space structure will be shown

in Sec. IV, but here we shall focus on the effect of dissipation on the fractal dimension. For nonhy-

perbolic chaotic scattering in the presence of dissipation, marginally stable periodic orbits in KAM

islands can become stable attractors, turning their nearby phase-space regions into the correspond-

ing basins of attraction [27]. This means that, part of the previous chaotic saddle now becomes

part of the basins of the attractors. Most importantly, for the scattering dynamics, the converted

subset supports orbits of the previous invariant set that are in the neighborhood of the KAM is-

lands. These orbits are solely responsible for the nonhyperbolic character of the scattering, orbits

which otherwise are scattered after a long, algebraic time. Due to the existence of dense orbits

in the original chaotic saddle, the non-captured part of the invariant set remains in the boundaries

of basins of the periodic attractors. Therefore the new invariant set is the asymptotic limit of the

boundaries between scattered andcapturedorbits, rather than those between scattered andscat-

teredorbits as in the conservative case. Chaos thus occurs on the nonattracting invariant set whose

stable manifold becomes the boundary separating the basins of the attractors and of the scatter-

ing trajectories. Through this simple reasoning, we can see that the structure and the meaning

of the Cantor set is fundamentally altered: in successive steps, aconstantinstead of a decreasing

fraction in the middle of each interval is removed. As a result, the scattering dynamics becomes

hyperbolic with exponential decay. The dimension of the Cantor set immediately decreases from

unity as a dissipation parameter is turned on. This observation was verified numerically using a

two-dimensional map [17]. We shall demonstrate here that the result holds for continuous-time

systems as well.

Figures 5(a) and 5(b) show, forE = 0.19 in the conservative and the dissipative (α = 10−4 and

β = 10−4) case, respectively, the delay-time function for scattering trajectories. To generate these
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FIG. 5: Typical delay-time function for the conservative (a) and the weakly dissipative (b) Hénon-Heiles

system with chaotic scattering (E = 0.19, α = 10−4, andβ = 10−4).
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(b) Dissipative case

FIG. 6: ForE = 0.19 in the H́enon-Heiles system so that there is chaotic scattering, algebraic scaling of

f(ε)/ε with ε. The absolute value of the slope from a linear fit gives the a good estimate for the fractal

dimension of the set of singularities in the delay-time function. We obtainD = 0.97 ± 0.01 for the

conservative case andD = 0.71± 0.02 for the weakly dissipative case.

figures,n = 250 particles are chosen aty = 0 with initial directionθ varying systematically from

0 to 0.05. We observe typical features of chaotic scattering in both cases: the functions contain

both smooth parts and discontinuities and, in fact, they are singular on a fractal set. However, the

fractal dimensions of the set of singularities in the two functions are markedly different, with the

dimension value close to and less than unity in the conservative and dissipative case, respectively.

To demonstrate this, we use the uncertainty algorithm [28] to numerically calculate the fractal

dimension. In particular, for a fixed value of the “uncertainty”ε, we randomly choose an initial
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conditionθ0 and compute| T (θ0) − T (θ0 + ε) |. If | T (θ0) − T (θ0 + ε) |> h, whereT is the

delay time andh is a positive number, we say thatθ0 is uncertain with respect toε. Otherwiseθ0

is certain. Many random initial conditions can be chosen, which yieldsf(ε), the fraction of the

uncertain initial conditions. The quantityf(ε)/ε typically scales withε as

f(ε)/ε ∼ ε−D,

whereD is the uncertainty dimension that is believed to have the same value as the box-counting

dimension for typical dynamical systems [29]. Figures 6(a) and 6(b) show, for the Hénon-Heiles

system in the conservative and the dissipative (α = 10−4 andβ = 10−4) case, respectively,f(ε)/ε

versusε on a logarithmic scale, where the constanth is chosen (arbitrarily) to beh = 0.01. For Fig.

6(a), the estimated slope from a least-squares linear fit isD = 0.97±0.01 ≈ 1. While for Fig. 6(b),

the estimated slope isD = 0.71± 0.02 < 1. Thus, the result that the fractal dimension decreases

immediately from unity in the presence of weak dissipation, established previously exclusively

for discrete-time maps, holds true for continuous-time Hamiltonian chaotic scattering systems as

well. The variation of the fractal dimensionD with the dissipation parameterµ = α = β is shown

in Fig. 7 forE = 0.19. We see that the dimension decreases rapidly from unity asµ is increased

from zero. In fact, we expect theD-versus-µ curve to exhibit a cusp-like behavior forµ >∼ 0, due

to the metamorphic transition from algebraic to exponential decay in the survival probability of

scattering particles caused by weak dissipation.

IV. WADA BASINS AND ITS PERSISTENCE UNDER WEAK DISSIPATION

In conservative Hamiltonian systems, like the Hénon-Heiles system, we cannot talk about at-

tractors or basins of attraction. In this case, as we mentioned in the introduction, we talk about

exit basins. The exit basins in the phase space have been obtained in Ref. [13], showing that

the phase space has a very rich fractal structure as we can see in Fig. 8(a). As we have already

mentioned in section II, if we introduce a small amount of dissipation in the system an attractor

appears at the point of coordinates(0, 0). As a consequence, now we can talk about basins of at-

traction. In particular, we have three exits and an attractor. Our phase space has now four different

regions, three of them correspond to the three different exits and another one corresponds to the

attractor. The boundaries of every region for a value of the energy close to the threshold value

are fractals and it is very difficult to predict for close points the evolution of the system as it was
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FIG. 7: The uncertainty dimensionD versus the dissipation parameterµ = α = β. The rapid decrease in

D for µ >∼ 0 is characteristic of a cusp.

discussed in Ref. [13]. In Fig. 8(b) we can see the basins of attraction for a value of the energy

above the threshold valueE > Ee and a value of dissipative parametersα = β = 10−4 where the

system becomes hyperbolic, as a consequence to introduce dissipation, and the KAM islands are

destroyed. We have seen from the preceding section that some aspects of nonhyperbolic chaotic

scattering, e.g., the particle decay law and consequently the fractal-dimension characteristic, are

structurally unstable with respect to weak dissipation. However, a surprising phenomenon is that

the complex basin topology associated with chaotic scattering turns out to be persistent for both

the Hamiltonian and the corresponding weakly dissipative system. To demonstrate this property

numerically, we choose a two-dimensional plane in the three-dimensional phase space and launch

a large number of scattering particles from this plane. The locations of the initial particles can

be distinguished by examining through which escaping channels they leave the scattering region.

Figure 8(a) shows, for the H́enon-Heiles system in the absence of dissipation, such distinct sets of

initial conditions in the plane(y, ẏ), where the particle energy is set to beE = 0.19 and the initial

x-coordinate of the particles isx(0) = 0. To generate Fig. 8(a), a uniform grid of500× 500 initial

conditions was chosen in the region(−1 ≤ y ≤ 2,−1 ≤ ẏ ≤ 1). In Fig. 8(a), the set of blue, red

and yellow dots denote initial conditions resulting in trajectories that escape through channel 1,

2 and 3 (Fig. 1), respectively, and the white regions inside the plotted structure denote the KAM
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(a) (b)

FIG. 8: ForE = 0.19 in the H́enon-Heiles system, (a) the basins of scattering particles in the conservative

case. In this case, there are three destinations, and initial conditions going to the destinations are distin-

guished by three colors and the white regions inside the plotted structure denote the KAM islands. (b) The

basin structure in the presence of a small amount of dissipation (α = 10−4 andβ = 10−4). Due to the dis-

sipation, an additional destination arises: the fixed-point at the center of the scattering region. Four colors

are then needed to distinguish the initial conditions. See text for simulation details.

islands. We see a complex, fractal-like basin structure. In fact, it can be shown that the basins are

not only fractals, but are also Wada (to be precisely defined below) [13]. Figure 8(b) shows, for

the same simulation setting but with weak dissipation (α = 10−4 andβ = 10−4), the exit basins.

Due to the appearance of the fixed-point attractor at the center of the scattering region, now four

colors are needed to distinguish the initial conditions according to the four possible destinations:

exits 1-3 and the attractor. In particular, the colorsblue, red, andyellow, denote initial conditions

that escape through exits 1-3, respectively, and white regions inside the structure plotted denote

the basin of the fixed-point attractor. Qualitatively, we observe a similar mixture of basins as in

the conservative case, suggesting that the Wada property persists under weak dissipation. Figures

9(a-d) show, forE = 0.19, the basins forµ = 5 × 10−4, 10−3, 10−2, and10−1, respectively, the

basin structures. Apparently, as the dissipation parameter is increased, the structures appear “less

fractal”, as suggested by Fig. 7.

We now argue that the basins seen in Fig. 8(b) possess the Wada property. In a nonlinear

dynamical system, situation can arise where the set of boundary points common to more than

two basins of attraction is fractal. Mathematically, a basin is Wada if any boundary point also

belongs to the boundaries of at least two other basins [18–20], i.e., every open neighborhood

13



(a) (b)

(c) (d)

FIG. 9: (a-d) Basins of scattering destinations and of the fixed-point attractor at the center of the scattering

region forE = 0.19 and forµ = 5× 10−4, 10−3, 10−2, and10−1, respectively.

of a point belonging to a Wada basin boundary has a nonempty intersection with at least three

different basins. If a dynamical system possesses Wada basins, the degree of unpredictability of

destinations can be more severe than the case where there are fractal basin boundaries with only

two destinations [13, 14, 21]. Wada basin boundaries in chaotic scattering have been recently

observed experimentally with a simple optical system [22]. The common occurrence of Wada

basin boundaries in nonlinear dynamical systems was first pointed out by Kennedy and Yorke in

1991 [18].

For two-dimensional invertible maps or equivalently, three-dimensional flows, the mechanism

for Wada basin boundaries is well understood, thanks to the rigorous mathematical work by

Kennedy, Nusse, and Yorke [18, 20]. In particular, Kennedy and Yorke proved a theorem [18]

which states that, ifp is a periodic point on the basin boundary, if the following two conditions

are satisfied: (1) its unstable manifold intersects every basin (Main Condition ), and (2a) its stable
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manifold is dense in each of the basin boundaries or (2b) this is the only periodic point accesible

from the basin of interest, then the basins have the Wada property. The secondary condition (2a)

can be intuitively understood by referring to Fig. 10, where there are a number ofK coexisting

basins denoted byB1, B2, . . ., BK . Supposep is a periodic point on the boundary ofB1, which

is accessible toB1. Let W s(p) andW u(p) be the stable and the unstable manifold ofp (note that

W s(p) is the basin boundary ofB1). Now arbitrarily choose a pointx ∈ W s(p) and imagine a

circle Cε(x) of radiusε centered atx. SinceW u(p) intersects every basin,Cε(x) must contain

points of every basin, which can be seen by considering a one-dimensional curve segmentDk in

the basinBk, which intersectsW u(p), for k = 1, . . . , K. Under inverse iterations of the map,

the images of the curves will be arbitrarily close to the stable manifold ofp and therefore be in

Cε(x). In fact, this is guaranteed mathematically by theλ-lemma due to Palis [31] which states

that there exists a positive integern such that(F−1)(n)(Dk)∩Cε(x) is nonempty. We thus see that

the boundary ofB1 must be the boundaries of all other basins. SinceW s(p) is dense in each of the

basin boundaries, all boundaries must be common to all basins and hence the Wada property. For

our especific case, the Hénon-Heiles, the secondary condition (2b) has been shown in Ref. [13].

W (p)
u

s 
W (p)

B

B

k

Dk

1

p
x

C ( )ε x

F   
(−n)

(D )k

FIG. 10: Schematic illustration of the Kennedy-Yorke theorem establishing the Wada property. See text for

details.

Computationally, to verify condition (1), one can plot a piece of the unstable manifold, trace it

under the dynamics, and determine whether it intersects all basins. This is feasible for our weakly
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(a) Hamiltonian case (b) Dissipative case

FIG. 11: ForE = 0.25 in the H́enon-Heiles system, a segment of the unstable manifold of one of the three

Lyapunov orbits, an unstable periodic orbit accessible to at least one basin. That the segment intersects all

four basins suggests the Wada property of the basins, (a) in the Hamiltonian case, (b) in the dissipative case

with α = 10−4, andβ = 10−4.

dissipative H́enon-Heiles system, because all destinations for scattering trajectories are known.

(In situations where one cannot be certain if all basins have been found, the technique of basin

cells [20] can be used to determinerigorously whether the basins are Wada.) To do so, we first

locate one of the Lyapunov orbits, an unstable periodic orbit [13] accessible to at least one basin of

attraction [32], and compute its unstable manifold by evolving a large number of initial conditions

chosen in a small neighborhood of the orbit forward in time. Note that , as we mentioned in

section II, the Lyapunov orbits exit for the dissipative case. Moreover, if they are periodic orbits

for the conservative case then they will continue being periodic when dissipation is introduced in

the system[24]. Figure 11 shows, forE = 0.25, α = 10−4, andβ = 10−4, a segment of the

unstable manifold of a Lyapunov orbit. We observe that, indeed, the unstable manifold intersects

all four basins, suggesting the Wada property.

V. CONCLUSIONS AND DISCUSSIONS

While chaotic scattering has been studied for more than two decades [1–4], almost all works

focused exclusively on conservative Hamiltonian systems with no dissipation. Indeed, strictly

Hamiltonian systems are fundamental to a great many physical problems, especially those in ce-

lestial mechanics, atomic and nuclear physics. This being true, there are also physical situations

where dissipation exists, such as particle advection in fluids. It is thus important to address how
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weak dissipation affects the many known characteristics of chaotic scattering. In this regard, a

recent work [17] based on a class of two-dimensional maps established that weak dissipation can

affect nonhyperbolic chaotic scattering in a drastic way: the associated properties of algebraic-

decay law and unity of the fractal dimension are immediately destroyed by weak dissipation.

Interestingly, we discovered that the Wada basin topology remains qualitatively unchanged for

nonhyperbolic chaotic scattering when weak dissipation is present. Thus, one can expect the Wada

basin topology to be more common than, say, the algebraic decay of particles in nonhyperbolic

chaotic scattering.

That dissipation can be important for Hamiltonian systems can be seen through the following

example in fluid mechanics. It is known that the advective dynamics of idealized particles in two-

dimensional, incompressible flows can be described as Hamiltonian [33]. For instance, consider

such a flow characterized by a stream functionΨ(x, y, t). For a particle with zero inertia and

zero size, its trajectory in the flow obeys the following equations:dx/dt = ∂Ψ(x, y, t)/∂y and

dy/dt = −∂Ψ(x, y, t)/∂x, which are the standard Hamilton’s equations of motion generated by

the HamiltonianH(x, y, t) = Ψ(x, y, t). That is, the particle velocityv(x, y, t) = (dx/dt, dy/dt)

follows exactly the flow velocityu(x, y, t), as given by the right-hand side of the equations. This

idealized picture changes completely when particles have finite inertia and size. In this realistic

case, the particle velocity is generally not the same as the flow velocity and the equations of motion

are no longer Hamilton’s equations. The resulting dynamical system is no longer Hamiltonian but

dissipative instead [34]. Considering that in an open Hamiltonian flow, ideal particles coming

from the upper stream must necessarily go out of the region of interest in finite time, the formation

of attractors of inertial particles is remarkable. Suppose these physical particles are biologically

or chemically active. That they can be trapped permanently in some region in the physical space

is of great interest or concern. Our work suggests that Wada basin boundaries may be a common

feature when inertial particles can go to several distinct destinations.
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by (y, ẏ) = (yL, 0). For a given energy, the coordinateyL can be computed using a standard root-

searching method with high precision. The orbit is accessible by construction, since if we takeyL + ε
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