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Through phase plane analysis of a class of two-dimensional spiking and bursting neuron models, covering
some of the most popular map-based neuron models, we show that there exists a trade-off between the
sensitivity of the neuron to steady external stimulation and its resonance properties, and how this trade-off may
be tuned by the neutral or asymptotic character of the slow variable. Implications of the results for the
suprathreshold behavior of the neurons, both by themselves and as part of networks, are presented in different
regimes of interest, such as the excitable, regular spiking, and bursting regimes. These results establish a
consistent link between single-neuron parameters and resulting network dynamics, and will hopefully be useful

as a guide for modeling.
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INTRODUCTION

The response of a neuron to its inputs is determined by its
subthreshold behavior. While for most applications the su-
prathreshold action potential can be simplified to a stereo-
typed response, subthreshold properties cannot be disre-
garded without compromising fundamental characteristics of
the neuron such as sensitivity to external stimulation, refrac-
toriness, oscillations, and resonance. Good neuronal model-
ing requires therefore attention to subthreshold dynamics
and, understandably, much effort has been spent on the study
and classification of the ionic currents involved and their
mechanisms. The broad range of choices at the disposal of
the modeler results in a need for general principles to guide
the selection of the most appropriate for each specific pur-
pose. To this end, the analysis of simplified or generic mod-
els has proved extremely useful [1].

The present paper is a contribution to the understanding
of general dynamic constraints in neuron models. We con-
centrate on phenomenological models of the type that has
been called resonate-and-fire [2] or generalized integrate-
and-fire [3]. The subthreshold dynamics of these models is
reduced to the minimum necessary for oscillations, that is,
two variables, while the action potential generation is em-
bodied in a simple threshold mechanism. Additionally, one of
the variables, representing the neuronal membrane potential,
evolves on a faster time scale than the other one. Our aim is
to highlight the influence of one parameter upon neuron dy-
namics, and how it tunes the model between integrator and
resonator behaviors [4].

The observation that triggered our study was the different
behavior of two similar, recently proposed and already
widely used neuron models, one by Rulkov [5] and the other
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by Izhikevich [6]. Phase plane analysis classifies both as
resonators, because, for typical values of their parameters,
they undergo a Neimark-Sacker bifurcation when pulled
from their resting state by external excitation. But while the
bifurcation of the former model is supercritical, and thus
gives rise to self-sustained subthreshold oscillations, in the
latter it is subcritical, and the neuron jumps directly from
quiescence to full-blown spiking. We found that the super-
critical behavior of the Rulkov model was due to the neutral
character of the slow variable, as opposed to its asymptotic
character in the Izhikevich model. But we also found that the
parameter which allows us to tune this character—namely
the slope of the slow nullcline—modified at the same time,
in opposite directions, the sensitivity to external stimulation
and the selectivity to its frequency. Thus our main conclu-
sion, valid for a whole class of two-dimensional, fast-slow,
spiking and bursting neuron models: The more sensitive the
neuron is to external stimulation, the weaker its resonance
properties are. This trade-off highlights the integrator versus
resonator opposition.

Finally, since subthreshold properties are only important
to the extent that they affect suprathreshold dynamics, we
proceed to show the effects of the aforementioned trade-off
on spike rate sensitivity to external currents, regularization of
spike trains, synchronization, and propagation of activity in a
network. We see, for example, that spontaneous synchroni-
zation in a network through electrical coupling is not en-
hanced by subthreshold resonance because of the reduced
sensitivity that it entails.

Most of our discussion turns around map-based models
instead of the more conventional models based on ordinary
differential equations because we have been using them often
in previous research [7,8] due to their computational advan-
tages [9] and, more peculiarly, their chaotic properties. But
nothing in the main results of the present paper is exclusive
of discrete-time models, and in fact our analytical derivations
will also be presented for their continuous-time counterparts.
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NEURON MODEL

We study a class of two-dimensional spiking-bursting
neuron models that is captured by the following equations:

v(t+ 1) =F@(),I, £ u(r),

u(t+1)=u®) ¥ pv(t) — qu(t) +1,. (1)

Variable v stands for transmembrane voltage, while u rep-
resents a depolarizing or hyperpolarizing current [depending
on the sign chosen for the +u(f) term, opposite for the
Fpu(t) term], and is referred to as the recovery variable
because of its role in ending bursts of action potentials. Pa-
rameters I, and [, are external inputs; [, represents an in-
jected current, while /,, modulates the dynamics of the recov-
ery variable. Both p and ¢ are positive and small parameters
(p,g< 1), making u slow. This allows us to treat u as a
parameter of the fast subsystem (variable v), and to predict
its dynamics from average values of v.

The function F(v,I,+u) embodies the nonlinear mecha-
nism for generation and reset of action potentials. It usually
contains a discontinuity [the exception being the chaotic
Rulkov model, Fig. 2(c)] that provides the threshold-and-
reset mechanism that characterizes generalized integrate-
and-fire models [3]. It is important to note that, except for
this discontinuity, the second variable enters simply addi-
tively in F(v,I,+u), that is,

Fv,I,xu)=f(v)+1,+u.

We can thus understand the dynamics of v from the return
map f(v), shifted up or down by the slow variable u. Typi-
cally, low (for the plus sign) or high (for the minus sign)
values of u produce a stable fixed point and the correspond-
ing quiescence in the fast subsystem, while the opposite de-
stroys the fixed point and gives rise to spiking. Cyclic varia-
tions in u allow the model to burst.

It is mainly through different forms of f(v), along with
particular choices of parameters p and ¢, that different varia-
tions of the class of models (1) are produced. Two well-
known ones are those proposed by Rulkov [5,10,11] and
Izhikevich [6,12]. Since we will be using them to show the
implications of our analysis, and since they help understand
the rationale behind the generic model (1), we present them
in the following.

The Rulkov model has at least three variants: A simple
bursting model [11], a bursting model with self-sustained
subthreshold oscillations [5], and a chaotic bursting model
[10]. We choose to present here the second one because sub-
threshold oscillations will be discussed in the following, and
because its fast subsystem is locally equivalent to that of the
Izhikevich model, which will make for a more interesting
comparison between the two. The equations are

v(t+ 1) =F@(),1, + u(1),

u(t+1)=u(t) — ww()+1-o0), (2)

where
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= av+ W+ 1)*+1,+u, if —I—ESUSO,
I+1,+u, if 0<v<l+I[,+u,
k_l’ if v=1+1,+u.

3)

Clearly the model corresponds to Egs. (1) with p=u<1, ¢
=0, and I,,= u(1— o). The function F(v,I,+u), represented in
Fig. 2(a), includes a nonlinear part responsible for spike ini-
tiation, and a reset mechanism for spikes. As explained be-
fore, the slow variable u and the external current /, shift
F(v,I,+u) vertically (except for the fixed reset level), pro-
voking the creation or destruction of a pair of fixed points in
the fast subsystem via a saddle-node bifurcation. The param-
eter a determines the position of these fixed points with re-
spect to the reset level, and thus determines whether or not
bursting is possible.

The interplay between the fast and slow subsystems will
be best understood in terms of the nullcline diagram depicted
in Fig. 1. The fast nullcline is a parabola whose branches,
when the slow variable is treated as a parameter, can be
classified as stable (N,) and unstable (N,), respectively. The
vertex of the parabola is the aforementioned saddle-node bi-
furcation of the fast subsystem. For u values to the left of the
vertex where these branches meet, the fast subsystem has
two fixed points. One of them is stable and corresponds to
the resting state of the neuron. If u goes beyond the vertex,
the fixed points disappear; v then blows up until it reaches
the value 1+17,+u, at which it returns to the reset level v=
—1 and starts again: The neuron is in the spiking regime. For
its part, u increases when v is below the slow nullcline v=
—1+0 and decreases otherwise. Thus if the orbit is below
this nullcline, it will closely follow N, towards the vertex. It
will stop if it meets the point of intersection of N, with the
slow nullcline before passing the vertex. Otherwise, it will
jump above, producing one or several action potentials.

If a>1, the vertex of the fast nullcline is below the reset
value v=-1 and either bursting or tonic spiking, depending
on the value of o, is possible. Bursting will arise when, upon
reset from a first spike, the orbit is above N,; it then may
produce a second spike, and so on. Meanwhile, # will gradu-
ally decrease until the orbit falls below N, and the burst
terminates.

The Rulkov system has only one stationary state O, at the
intersection of the slow and fast nullclines. With =0, this
state is stable if it lies on the stable branch N, of the v
nullcline, and unstable otherwise. The external input o deter-
mines the position of the slow nullcline, and its variations
provoke the gain or loss of stability of the fixed point
through a Neimark-Sacker bifurcation. On the contrary, the
external input I, merely shifts the fast nullcline horizontally,
failing to produce any change in its position relative to the
slow nullcline. Therefore only transient changes in the state
of the system take place in response to steady variations of
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FIG. 1. Phase plane (above) and example of time evolution (be-
low) of the Rulkov (top) and Izhikevich (bottom) models. See text
for detailed explanation. Parameter values for the Rulkov model of
Egs. (2) are @=1.0, ©=0.001, 0=0.1, and 1,=0. Parameter values
for the Izhikevich model of Egs. (4) are a=0.02, b=0.25, ¢=-65,
and 7,=0.9.

I,. This observation is going to be central in the following
discussion, since it helps explain why a horizontal slow
nullcline entails reduced sensitivity to external currents.

The Izhikevich model is originally continuous time [6],
but Euler discretization with a time step of 1 ms, as in [12],
turns it into the map

v(t+1)=F@(),I,— u(r),

u(t+1)=u(t) + a(bv(r) — u()), (4)
where
F(,I,—u)
min(0.04v> + 6v + 140 + I, — u,30) if v < 30,
B {c if v =30.
(5)

Smaller time steps may be required depending on the appli-
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FIG. 2. Functions F(v,I,+u) of (a) the Rulkov model with self-
sustained subthreshold oscillations (a=1.0, I,+u=-0.1), (b) the
Izhikevich model (1,—u=-15), and (c) the chaotic Rulkov model
(@=6.0, I,+u=-3). A value of I,+u has been chosen in each case
that places the map below the saddle-node bifurcation, with stable
(S) and unstable (U) fixed points. Variations in I,+u would shift
these maps up or down, except for the reset branches in (a) and (b).
Maps (a) and (b) are briefly explained in the present section, while
the chaotic Rulkov model will be used later to illustrate chaotic
itinerancy

cation, merely resulting in a scaling down of 1,,, F(v,I,—u),
u, and b. This would make no difference for our analysis.
The similarity with the Rulkov model is apparent in the
nullcline diagram (Fig. 1) and in the return map of the fast
subsystem (Fig. 2). Parameter a is small. The values of pa-
rameters of the generic model (1) that correspond to the
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Izhikevich model are p=ab<1, g=a<1, and [,=0. The
slow variable u modulates the dynamics of the fast variable
v, which represents transmembrane voltage. The fast
nullcline has again a stable branch N, and an unstable branch
N,, while the slow nullcline is a straight line. However, dif-
fering from the Rulkov model, this straight line is not hori-
zontal, and therefore may cut the fast nullcline in two points.
The nonzero slope means that the slow variable is asymptoti-
cally stable, while in the Rulkov model it is neutrally stable.
Observe that, in this case, because the slow nullcline is
slanted, variations of I,, which shift the fast nullcline hori-
zontally, do affect the relative position of the nullclines and
can induce the Neimark-Sacker bifurcation that determines
stability. Parameter c is the spike reset level and can be used,
very much like the parameter « in the Rulkov model, to
allow or forbid bursting, and to tune the duration of bursts
and interburst intervals. Another parameter, d, used in the
original model [6], will be zero always in this paper and for
simplicity is ignored here.

The features of the models necessary for the validity of
our analysis are the two-dimensionality of the phase space,
the slow-fast dynamics, and the linearity of the slow vari-
able. Their discrete-time nature, on the other hand, is not
essential. We will see how the main results carry over to the
corresponding continuous-time equations, which are

w=fv)-vxu+l,,

Ti=pv ¥ qu+l,. (6)

The discrete-time model (1) can be retrieved from system (6)
by Euler integration with time step 7. In continuous-time the
reset mechanism cannot be subsumed in f(v); it must be
explicitly added as a jump condition, as in integrate-and-fire
models. This is immaterial to the subthreshold analysis of the
following section. The sensitivity versus resonance trade-off,
and its implications for spiking and bursting, hold both in
discrete and continuous time. Only the effects upon the cha-
otic model, presented at the end of the paper, have no
continuous-time counterpart.

ANALYSIS OF SENSITIVITY AND RESONANCE

In this section we use phase plane and bifurcation analysis
to demonstrate the sensitivity versus resonance trade-off in
the family of models presented in the preceding section. The
trade-off stems from the fact that a single parameter, namely
the slope of the slow variable nullcline, controls both fea-
tures. We perform the analysis on the generic model (1) (or
its continuous-time counterpart), where the nullcline slope is
q/p. When a particular choice of f(v) is needed, we illustrate
the results with the Izhikevich model, which allows us to
tune the slope 1/b, or the Rulkov model, which represents
the extreme case of zero slope.

Sensitivity to external currents

By sensitivity in a neuron we understand the magnitude of
its response to external inputs. A typical measure of this is
the gain function [13], defined as the dependence of the fir-
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FIG. 3. Top: Gain function of the Izhikevich model for three
different values of b. Currents /, are referred to the level Iyg of loss
of stability of the fixed point. Bottom: Sensitivity of the Izhikevich
model, measured as the increase in firing rate per external current
unit (regression average for I, between Iyg+0.5 and Iyg+1.5), as a
function of the slope of the slow nullcline (1/b). Frequencies are
given in hertz, considering a time step of 1 millisecond. Current

intensities have no units. Other parameters of the Izhikevich model
in Egs. (4) are @=0.02 and c=-65.

ing rate of the neuron on the level of constant external cur-
rent injected. The gain function of the Izhikevich model for
different values of parameter b is presented in Fig. 3. Sensi-
tivity is expressed as the increase in firing rate per unit of
injected current, i.e., the average slope of the gain function.
Clearly, the lower b is, the more sensitive the neuron.

Phase plane considerations immediately explain this de-
pendence. In the nullcline diagram of Fig. 1, modifications of
the current parameter /, shift the fast nullcline (the parabola)
horizontally. This alters the dynamics most if the slow
nullcline is heavily slanted; if it is rather horizontal, shifting
the fast nullcline has little effect on the phase plane configu-
ration. The extreme case of this is the Rulkov model: The
slope of the slow nullcline is zero, and step changes in I,
produce only transient effects. The gain function of the
Rulkov model is zero.

This intuitive explanation can be confirmed analytically in
the subthreshold regime, where we can make use of the ge-
neric equations (1) or their continuous-time equivalent (6).
Below threshold there is no firing rate to refer sensitivity to,
but we can redefine it as the amount of change in the resting
voltage level when we inject current; this is nothing other
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than the dc impedance of the neuron. If v" is the resting
voltage, i.e., the value of v at the fixed point, it is straight-
forward to derive, either from Egs. (1) or Egs. (6), that

S S
8, 1-f@")+plqg

This value is positive for all meaningful choices of f(v) (in-
jection of current should depolarize the neuron) and therefore
sensitivity will be higher for lower values of p/q. But this is
the inverse of the slope of the slow nullcline in the system of
Eqgs. (1) or Egs. (6). Thus again sensitivity is tuned by this
model feature. In the limiting case of the Rulkov model,
plg= and S ,;p,=0.

Ssublh = Z(f: 0) = (7)

Resonance

Resonance refers to the ability of the neuron to respond
selectively to the frequency of external stimulation. In a clas-
sical setting, the external stimulation consists of a small sinu-
soidal input and the response is measured in terms of the
amplitude of the induced oscillations or, in the case of a
neuron model, also in terms of the modulation of the firing
rate. This kind of resonance, that we will call sinusoidal, has
been studied in [3] for the same generalized integrate-and-
fire models we are using; we will briefly present a similar
result in the context of the opposition between sensitivity and
resonance. Nevertheless, sinusoidal stimulation has limited
appeal in neuroscience, because by itself it is not realistic
and because neurons are highly nonlinear systems whose re-
sponse cannot be predicted from spectral decomposition.
More interesting is stimulation by current pulses mimicking
postsynaptic potentials. The selectivity of the neuron to the
rate of incoming pulses is closely related to the presence of
intrinsic subthreshold oscillations [2]: Pulses separated by an
interval close to the subthreshold oscillation period will see
their effect accumulated, while otherwise they will oppose or
cancel each other. We therefore study the presence of
damped and sustained subthreshold oscillations as indicative
of pulse resonance. Pulse and sinusoidal resonance are
linked. For example, intrinsic slow-decaying oscillations,
necessary for pulse resonance, are the hallmark of classical
underdamped resonant oscillators. Also note that spontane-
ous sustained subthreshold oscillations are the extreme form
of sinusoidal resonance, since they correspond to an infinite
gain exclusively at the oscillation frequency. Thus the two
measures of resonance are related to each other and, not
surprisingly, we will find that they show the same trend with
the variation of model parameters.

We begin with sinusoidal resonance. A quiescent neuron
subject to weak sinusoidal current injection will oscillate at
the forcing frequency. Impedance curves |Z(f)|, depicting the
quotient between the amplitude of the voltage response and
that of the injected current for different frequencies, show a
prominent peak for resonant neurons. In [3] a thorough
analysis of these forced subthreshold oscillations is per-
formed for the generalized integrate-and-fire model, which
carries over, with straightforward changes of variables, to
our generic models (1) and (6). An analytical expression for
Z(f) in terms of p, ¢, and f'(v") (where v" is the resting
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FIG. 4. Top: Impedance curves for the Izhikevich model at a
resting potential v*=-62.7 for different values of 1/b, keeping w?
=a(b-a) constant at 0.005. The impedance has been calculated
analytically through linearization (continuous line) and measured
through simulation by injecting a sinusoidal current of amplitude
1,=0.001 (dots, crosses, and circles). Bottom: Q value of the im-
pedance curves as a function of 1/b under the same conditions.

voltage level) can be obtained but is too cumbersome to
derive useful conclusions from it. We show rather, in Fig. 4,
the impedance curves for the particular case of the
Izhikevich model, for different values of the slope of the
slow nullcline, 1/b. For the sake of clarity, along with b we
have modified a so as to keep the Neimark-Sacker frequency
w=\ab-a® constant; this makes the resonant frequency al-
most independent of b and simplifies the visual comparison
between the impedance curves. The standard measure of
resonance, the Q value, is also presented. It is the ratio be-
tween the frequency of maximum impedance and the band-
width at half power, i.e., the difference in frequency between
points at 1/y2 of maximum impedance. Clearly, the Q value,
and thus resonance, decreases with increasing 1/b, showing
a trend opposite to that of sensitivity.

Note also that |Z(0)| is the subthreshold sensitivity Sy
presented in Eq. (7). See in Fig. 4 how the curve with the
sharpest resonance peak has the lowest value of |Z(0)]
=S and vice versa. This is a nice depiction of the sensi-
tivity versus resonance trade-off.

We turn now to pulse resonance. Figure 5 illustrates the
concept. Short low-amplitude pulses similar to excitatory
postsynaptic potentials are delivered at a certain rate to a
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FIG. 5. Pulse resonance in the Rulkov model of Egs. (2). Short,
weak alpha-function shaped pulses are delivered to the neuron pe-
riodically. When their period precisely matches that of subthreshold
oscillations, their effect accumulates and spikes are produced (top,
Tpuises=216). A slight mismatch results in subthreshold beats (bot-
tom, Tpyees=218). Observe that, in the matching case, after each
spike the phase of the oscillations has changed and a phase realign-
ment period follows. Neuron parameters are a=0.95, ©=0.001, and
0=0.024. Pulse parameters are A=0.1, 7=3; see Eq. (11).

quiescent, excitable Rulkov neuron. They induce subthresh-
old oscillations and, if the pulse period is very similar to the
oscillation period, their effect accumulates and spiking en-
sues. A frequency mismatch between pulses and subthresh-
old oscillations will instead produce beats. The point to bear
in mind is that the damping of the oscillations determines the
selectivity to pulse frequency, because if damping is strong,
the oscillation elicited by a pulse will have mostly died out
when the next pulse arrives, and thus the precise time of
arrival will make little difference. For this reason we are
going to study the damping of subthreshold oscillations, and
afterwards measure its effect on pulse resonance.

Stable self-sustained subthreshold oscillations are the ex-
treme case. They can be found, for example, in the Rulkov
model of Egs. (2): As o is increased, the fixed point of the
map loses stability through a supercritical Neimark-Sacker
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bifurcation and small oscillations, in the form of a quasiperi-
odic solution on a small invariant closed curve, appear at a
frequency given by the phase of the eigenvalues crossing the
unit circle. These oscillations blow up into full-fledged spik-
ing when o is increased further. In contrast, in the Izhikevich
model, for typical values of the parameters [6], the Neimark-
Sacker bifurcation is subcritical, and the neuron switches di-
rectly from quiescence to spiking without the intermediate
self-sustained subthreshold oscillation regime. Where does
this difference stem from? Not from the fast subsystem, since
the two models are locally identical in that regard, i.e., qua-
dratic in the fast variable and linear in the slow variable. The
difference lies rather in the slow variable dynamics, and
again we are going to see that a low value of the slope of the
slow nullcline enhances resonance.

Indeed, let (v*,u”) be a fixed point in the generic system
(I). The necessary condition for loss of stability via a
Neimark-Sacker bifurcation is

ﬁ

fw)= . @=p-q°>0. (8)

—_

S

Note that with p~¢g<1, the condition p—g*>>0 is always
satisfied. The criticality of this bifurcation depends on the
first Lyapunov coefficient, /;, which can be easily calculated
for a two-dimensional system [14] as follows:

—l;q[f”(v*)—<l— 1 )(l—q)D”’(v*)P} )
8p rlg—q

If [,>0 the bifurcation is subcritical, while, if 7, <0, it is
supercritical. Therefore, for the existence of subthreshold os-
cillations the term in [f”"(v™)]* must be as large as possible.
Since p/q—qg >0 according to the condition in Eq. (8), this is
equivalent to requiring that p/q, the inverse of the slope of
the slow nullcline, be as large as possible. Therefore, the
flatter the nullcline, the more likely it is that the model pre-
sents self-sustained subthreshold oscillations.

The result is the same in the continuous-time case of Egs.
(6). The necessary condition for the Hopf bifurcation of the
equilibrium point (v*,u") is

fw)=q, o

and the first Lyapunov coefficient turns out to be

=p-q°>0,

WHP|.

1 ", *
=§f’(v)+

In contrast with the discrete-time model, /; cannot be nega-
tive unless f”(v*) is also negative; but, when this is the case,
it is also necessary for the supercriticality of the bifurcation
that p/q be as large as possible, i.e., that the slow nullcline
be close to flat in the u-v diagram. It is worth noting that the
Hopf bifurcation of the original, continuous-time form of the
Izhikevich model, where f'(v*)=0, is inevitably subcritical,
while in its discrete-time counterpart it can be made super-
critical for a sufficiently horizontal slow nullcline, as will be
shown in Fig. 6.

Damped oscillations appear before the loss of stability of
the fixed point. Indeed, before going through either a sub-
critical or a supercritical Neimark-Sacker bifurcation, a
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l/bé 4 5

FIG. 6. Bifurcation diagram of the discrete-time Izhikevich
model for parameters 7, and 1/b, with a=0.02. The thick and thin
continuous lines represent supercritical and subcritical Hopf bifur-
cations, respectively. The circle denoted by B is the Bautin point
where criticality changes. The dashed line has constant logarithmic
damping In K=-10. Inset: Difference in currents between the
Neimark-Sacker bifurcation curve and the constant logarithmic
damping line as a function of 1/b.

stable fixed point, with two complex eigenvalues, is a spiral
sink around which the orbit turns while falling into it. Al-
though the resulting oscillations are not sustained, they may
take a large number of turns to die, and endow the neuron
with the same selectivity properties as sustained oscillations
do. The amount of damping can be quantified by the damp-
ing factor K, which is the ratio between the amplitude of two
consecutive free small oscillations. Its value is readily ob-
tained from the eigenvalues of the fixed point as follows:

K = 7 RO/ iy continuous-time systems,

K = |\*7lre®lin discrete-time systems,

where \ is any of the two conjugate eigenvalues. The closer
K is to 1, the less damped the oscillations are, and the more
pronounced the resonance effects can be expected to be.
For any choice of parameters p and ¢ in the generic mod-
els (1) and (6), K covers all the values up to 1 as the external
input /, drives the neuron towards the Neimark-Sacker or
Hopf bifurcation; we cannot use the value of K by itself to
discriminate more or less resonant models. But in some cases
K remains very close to unity through a wide range of values
of I,, while in others I, must be very finely tuned below
threshold to observe a significantly slow damping. Thus, an
interesting measure of the ability to produce long-lasting
subthreshold oscillations is the range of I, between a certain
fixed value of K<1 and K=1, the bifurcation point. In ad-
dition, this highlights the trade-off between oscillations and
sensitivity to external inputs. The bifurcation diagram in Fig.
6 presents such a measure for the discrete-time Izhikevich
model (4). In this diagram, 1/b, that is, the slope of the slow
nullcline, and 7, are the free parameters. The continuous line
represents the Neimark-Sacker bifurcation of the fixed point.
It changes from supercritical to subcritical at the Bautin point
B, where the first Lyapunov coefficient /,, as given in Eq. (9),
is zero. The dashed line is not a bifurcation curve but a set of
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parameter values corresponding to a constant value of damp-
ing K. As 1/b is increased and correspondingly the slow
nullcline becomes more slanted, the interval of the current
AJ, between the two curves decays, as shown in the inset;
consequently, the external input must be more finely tuned to
produce subthreshold oscillations. At the same time, the need
of ever-smaller increases of current to jump from damped
oscillations to spiking reveals the growing sensitivity to ex-
ternal excitation, as we discussed previously. The trade-off
becomes apparent: Increased sensitivity reduces the aptitude
for resonance. It can also be observed that the supercritical
Neimark-Sacker bifurcation corresponds to the lower values
of 1/b and vice versa: Self-sustained intrinsic oscillations are
present for the parameter values that make damped oscilla-
tions longer lasting.

The damping analysis performed above on the Izhikevich
model (4) can be generalized to both generic models (1) and
(6) under mild assumptions on f(v). For example, in the
continuous case (6), since the eigenvalues of the equilibrium
point satisfy (\;+\,)=f"(v")—g and PN\ \,=p—gf'(v"), it
is easy to find the conditions for the Hopf bifurcation and for
a damping value K=e™2™:

f@)

Hopf = 4>

# [r—
f' )|K=e—2w=— \2p - g

On the other hand, from Egs. (6), we obtain the variation of
f'(v") with respect to the external current I, as follows:

W) f'®)

sl, p-qf @)

We can invert and integrate the preceding expression to ob-

tain the current interval AJ, between damping K=e 2" and
the Hopf bifurcation:
q —af' (v" .
Al = k| KCRATHS
—\““2[)—(/ Qf (U )
JR—
_p02p-¢+q) p-q (10)
af"(&) 1(&)

where &; and &, are values of the voltage intermediate be-
tween the value v” at the Hopf bifurcation and the value that
corresponds to the damping K=¢2". As long as f"(v) does
not vary too sharply in the intervals considered [in the case
of the quadratic Rulkov and Izhikevich models, f”(v) is con-
stant], and taking into account that p—g>>0, both terms in
the right-hand side of Eq. (10) are increasing with p/q, the
inverse of the slope of the slow nullcline. Therefore a wider
margin of /, for long-lasting damped oscillations results from
a flatter nullcline, which at the same time entails reduced
sensitivity to external excitation.

We are now in a position to directly test pulse resonance
as a function of parameters. We stimulate a quiescent neuron
with very short current pulses at different frequencies and
measure the minimum amplitude of the pulses necessary to
elicit a spike. The inverse of this amplitude we call the pulse
impedance, Z, . A high pulse impedance is found at reso-
nant frequencies, and it means that very weak pulses are able
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FIG. 7. Top: Pulse impedance curves (see text for definition) in
the Izhikevich model for different values of 1/b, keeping w?>=a(b
—a) constant at 0.005. Impedance has been measured at a resting
potential v"=-62.7 in all cases. Pulses used are alpha functions
with 7=3 ms; see Eq. (11). Bottom: Q value of the pulse impedance
curves as a function of 1/b under the same conditions.

to induce an action potential by accumulation along several
periods. Figure 7 represents pulse impedance as a function of
pulse frequency in the discrete Izhikevich model, Egs. (4),
for different values of the slope of the slow nullcline. The
figure is the pulse analogue to the sinusoidal resonance
curves of Fig. 4, and, as we did there, for ease of compari-
son, we have modified a along with b to keep the resonant
frequency constant around 10 Hz. As with sinusoidal reso-
nance, the impedance peaks are sharper for the smaller val-
ues of the slope 1/b. Observe the secondary resonant peaks
at half, one-third, etc. frequency of the main peak, where the
difference in sharpness is even more noticeable. This is to be
expected because damping controls pulse resonance, and its
effect is stronger for pulses delivered every two, three, etc.
oscillations. The less expected secondary peak at double fre-
quency of the main peak is due to entrainment, and indeed
our pulse impedance curves can be seen as (inverted) Arnold
tongues [15]. Finally, at high frequencies Zpuise Values be-
come noisy due to sampling limitations.

To quantify the sharpness of the resonant peaks we have
calculated the Q value at 1 dB of the peak. It is also pre-
sented in Fig. 7. The same trend of higher Q value for the
flatter slopes results, as expected.
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IMPLICATIONS FOR NEURON FUNCTIONALITY

The preceding discussion leads to the following conclu-
sion: There is a trade-off between the sensitivity to external
currents (integrator behavior) and the selectivity with respect
to the frequency of stimulation (resonator behavior) in two-
dimensional spiking-bursting models with fast and slow time
scales. If the slow variable is strongly stable, the model will
be very sensitive to external inputs, but unable to sustain
subthreshold oscillations. If, on the other hand, the slow vari-
able is close to neutrality, stable or long lasting oscillations
will be observable, frequency selectivity will be sharper, but
the response to changes in external currents will be damp-
ened.

We have derived this result from the analysis of the sub-
threshold dynamics of an isolated neuron, and illustrated it
with mathematically simple stimuli such as step, sinusoidal,
and periodic pulsed currents. But we still have to show that it
is relevant for the functionality of the neuron, in its response
to complex stimuli and its interaction with other neurons. In
this section, we show the implications of the aforementioned
trade-off, evaluating them through simulations in the excit-
able, spiking, and bursting regimes.

Excitable regime

Neurons are said to be in the excitable regime if they are
silent but close enough to loss of stability as to produce
single action potentials when pushed slightly away from
equilibrium. In this regime, neurons are most sensitive to
external input, but this sensitivity is strongly dependent on
the stability of the slow variable of the model, as we shall
presently show through simulations.

We use the discrete-time Izhikevich model of Egs. (4)
with different values of the slow nullcline slope 1/b. A sta-
tionary current /,(b) is injected such that the resting voltage
of the system is stable at v"=-62.7 for all values of b, i.e.,
the intersection between both nullclines is in all cases at the
same point of the parabolic fast nullcline. This equilibrium
being stable, the neuron is silent but close to losing stability,
i.e., excitable. We have used this setting before to measure
resonance curves. But in this case we will add to I, a small
Gaussian white noise and synaptic stimulation consisting of
a zero-mean Poissonian train of alpha functions

a(r) = %te"/f. (11)

Zero mean is obtained by combining excitatory and inhibi-
tory currents, i.e., positive and negative values of amplitude
A. The decay time of the alpha functions is 7=5 ms and the
mean period of the Poisson process is 30 ms. Subject to this
noisy input, the neuron fires irregularly. This corresponds to
the high noise regime described in [3], where the autono-
mous resonance frequency of the neuron is dominant. We
measure two quantities: The coefficient of variation of the
interspike intervals T, i.e., Cy=04/(T), and the sensitivity
measured from the gain in spiking rate relative to increases
in the Poissonian stimulation amplitude. Figure 8 shows the
result.
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FIG. 8. Coefficient of variation Cy (top) and sensitivity of the
spiking frequency S, (bottom) for different values of 1/b in the
Izhikevich model (4) stimulated by a Poissonian input and Gaussian
white noise. In the Cy, figure, each point corresponds to the average
of 100 realizations of noise. In the S, figure, values have been
calculated from linear regression of the average firing rate of the
neuron against alpha function amplitudes between 1 and 2.5. Other
parameters are a=0.02 and ¢=-62.5.

First it can be observed that the coefficient of variation is
less than unity, which is the Cy, of the stimulation. Therefore,
the neuron regularizes the input stimulus. This is to be ex-
pected simply as a result of refractoriness [13]. The interest-
ing point is that the degree of regularization decreases (Cy
increases) with increasing 1/b. This is due to the loss of
resonance described in the previous section. Indeed, the
Poisson input is to pulse stimulation as white noise is to
sinusoidal stimulation, and Cy is a measure of how effective
the neuron is as a pulse filter (the lower Cy, the more effec-
tive). On the other hand, along with the increase in Cy, sen-
sitivity also increases. The reason is, as explained before,
that a steeper slope of the slow nullcline ensures that the
fixed point is more easily modified by external excitation of
the fast variable. The trade-off between resonator and inte-
grator capabilities becomes apparent.

Regular spiking regime—synchronizability

When the external current is strong enough, neurons enter
the regular spiking regime, where action potentials are gen-
erated with a constant period. A network of identical neurons
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subjected to the same constant external current will fire with
a uniform period, though, under random initial conditions,
they will not fire synchronously. If the neurons are diffu-
sively coupled through electrical synapses, and the coupling
is strong enough, dephasing will disappear and perfect syn-
chronization will be achieved. Electrical synapses are known
to play a fundamental role in synchronizing neurons in mam-
malian central nervous system structures such as the brain
stem, the inferior olive, and the hippocampus, and are also
ubiquitous between interneurons in the neocortex, although
their role there remains still unclear. Studying the interplay
between intrinsic currents and gap junction connections is
necessary to understand why electrical synapses are present
in certain types of neurons and how they help to achieve
synchronization [16].

Therefore we set out to measure how synchronizability
between electrically coupled neurons is affected by changes
in the slope of the slow nullcline of our neuron models.
Synchronizability can be measured by the minimum cou-
pling strength required to obtain complete synchronization of
the network: The stronger the necessary coupling, the
smaller the synchronizability. In order to make this measure
independent of network topology, we resort to the master
stability function of the model to separate the network modes
[17]. With this technique, the following coupled generic sys-
tem of N neurons

N
U1+ 1) = f0,(0) = (1) + Iy + 25 gn(0,(1) = 0,(1)),

m=1

n=1,2,...,N,
(12)

w,(t+ 1) =u,(t) + pv,(t) — qu,(t) + I,,,

can be linearized around the synchronized trajectory and di-
agonalized to obtain N independent, two-dimensional sub-
systems:

Fv,n<r+1>]_({f'<v<z)> -1 }+)\{1 ODFU,M]
gu,n(t'i'l) - P l_q " 00 gu,n(t) ’
(13)

where N;=0>\,>--->\y are the eigenvalues of the matrix
of diffusive connections g,,,. Stability in the total system is
ensured if all modes are stable except, possibly, the first one,
which is parallel to the synchronization manifold. Since all
eigenvalues, except =0, of the diffusive connectivity ma-
trix are negative, their effect on each subsystem is stabiliz-
ing. We can now give a precise, network-independent mea-
sure of synchronizability: The maximum value A, which,
when substituted for A, in Eq. (13), makes the maximum
Lyapunov exponent of the mode along the synchronized pe-
riodic trajectory negative. When this happens, trajectories
near the synchronized orbit shrink towards it at an exponen-
tial rate and thus the synchronized orbit is stable. The diffu-
sive characteristic of the coupling guarantees that the same
synchronized trajectory is a solution of the system for all
values of coupling.

We perform such measure of synchronizability on the
Izhikevich model (4) with diffusive coupling, for different
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FIG. 9. Synchronizability \,,, of the Izhikevich model for dif-
ferent values of the slow nullcline slope, 1/b. The external current

I, is such that the fixed point is at v*=-62 in all cases. The other
parameters are a=0.02 and c=-62.5.

values of the slope of the slow nullcline 1/b. The result is
shown in Fig. 9. Synchronization is easier for higher values
of 1/b, where sensitivity to external currents is higher. It is
worth noting that subthreshold oscillations, which are pro-
duced for lower values of 1/b, do not enhance synchroniz-
ability. This is because synchronization through diffusive
coupling is achieved more easily when neurons are respon-
sive to each other’s voltage, rather than follow their own
internal oscillatory dynamics.

Bursting regime—chaotic itinerancy

Finally we point out another consequence of the sub-
threshold behaviors of the models, i.e., the modulation of
chaotic itinerancy [18,19]. Chaotic itinerancy is a dynamic
regime in which a system switches back and forth between
ordered motions around so-called “attractor ruins” and cha-
otic transients linking these ordered motions. In a network of
neurons this phenomenon can manifest itself as the chaotic
alternation of regular activity patterns such as standing and
rotating waves [7].

In order to observe chaotic itinerancy we take the variant
of the Rulkov model designed specifically for chaotic burst-
ing [10], whose equations are as follows:

v(E+1)= +u(t)+1,,

_x
1+v(r)?

u(t+ 1) =u(r) — w(o(t) + au(t) — o). (14)

Again this is our generic model of Egs. (1), with p=u, ¢
=pa, and I,=po. The return map F(v,I,+u), depicted in
Fig. 2(c), replaces the hard reset mechanism of other models
by a smooth unimodal function. This is the source of the
chaotic bursts. Observe that the slope of the slow nullcline is
q/p=a. Parameter a is zero in the original model, which, as
all the variants of the Rulkov model, has a horizontal slow
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nullcline. With ¢ >0 we modify the slope and, according to
the analysis performed on the generic model (1), tune the
sensitivity versus resonance trade-off.

In a previous paper [7], we have shown that a regular
network composed of this type of model exhibits chaotic
itinerancy for certain values of coupling parameters. We in-
vestigate now its dependence on the slope of the slow
nullcline. To this end we couple the neurons through inhibi-
tory connections as in Ref. [7]. The resulting system is

v,(t+1)= Tn(l)z + u,(1)
N
~ 82 YOO = VH(,, (1) = v),
m=1
u,(t+1) = u,(1) — (v, (1) + au,(1) — 0), (15)

where H(v) is the Heaviside step function, g.>0 represents
the strength of inhibitory coupling, the v,,,, valued O or 1,
determine the topology of the network, and v is the presyn-
aptic threshold of synaptic interaction. In Ref. [7] we used
master stability functions to show, for the case a=0, that
bursting is emergent in this setting. Emergent bursting means
that the minimum excitation o needed to produce bursts in
the coupled system is smaller when neurons are coupled than
when they are isolated [20]. When o is well above the
threshold for bursting, activity is completely chaotic, while if
o is barely above the threshold, a chaotic alternation of or-
dered modes of activity appears instead. All this carries over
for positive values of a, but, as can be seen in Fig. 10, higher
values of a produce less orderly patterns of activity.

We quantify this loss of order by measuring the depen-
dence of autocorrelation on the value of a. One of the most
salient features that characterize chaotic itinerancy is the
slow decay of correlations in the activity of neurons, which
corresponds to the order in each of the modes that alternate
along the itinerant orbit. Figure 11 shows, on the left, the
average autocovariance of the voltages of the 32 neurons in
the ring for two different values of a. Clearly, correlations
are stronger for lower a. On the right we present, as a func-
tion of a, the signal-to-noise ratio (SNR) of the network cal-
culated from the power spectrum as the ratio between the
peak around the mean bursting period and the noise level at
high frequencies. The SNR measures the amount of period-
icity in the autocorrelations, and thus the temporal regularity
of the network activity. We see that when a is small the SNR
is high, and thus correlation is stronger, but it decreases with
increasing a, corresponding to weaker and faster-decaying
correlations. This is in agreement with the intuitive apprecia-
tion of Fig. 10.

We try to interpret this result in the light of our previous
discussion. A higher value of @ means loss of neutral stability
of the slow variables of the neurons, which is accompanied
by loss of subthreshold resonance and increased current sen-
sitivity. The neutrality of slow variables means that the sys-
tem has many near-zero Lyapunov exponents, which is a
necessary trait of chaotic itinerancy [18]. This allows for the
appearance of the characteristic low-dimensional attractor ru-
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FIG. 10. (Color online) Chaotic activity in a ring of N=32
Rulkov neurons following Egs. (15) with a=0.5 (top) and a=4.5
(bottom). Excitation o is such that mean activity is roughly the
same in both cases, with bursts every 600-700 time units. Other
parameters are a=4.3, ©=0.001, v=-2.5, and g.=0.01.

ins corresponding to the ordered modes. When a is in-
creased, near-zero Lyapunov exponents shift away from zero
and low-dimensional modes merge into complex chaotic pat-
terns. Nevertheless, this explanation is tentative until we per-
form a detailed analysis of the chaotic attractors of this sys-
tem.

CONCLUSION

The choice of an appropriate model, with the right set of
parameters, to investigate the behavior of networks of neu-
rons is one of the most important steps in neuroscientific
modeling. Our purpose in the present work has been to gain
insight into the consequences of an important property of
simple phenomenological models: The neutral or asymptotic
character of the slow variables. We have shown how phase
plane and bifurcation analysis explains the influence of this
feature on the dynamics of the model. A neutral slow vari-
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FIG. 11. Top: Average autocovariance C(z) of the fast variable

of the 32 neurons in the simulation of Fig. 10 corresponding to a
=0.5. Middle: The same for a=4.5. Bottom: Signal-to-noise ratio,
plotted against a, of the average activity of the Rulkov neurons,
measured as the ratio between the power spectrum peak around the
average bursting frequency and the power spectrum level at high

frequencies. All the parameters other than a are the same as in
Fig. 10.

able is the best choice for resonance, although it entails a loss
of sensitivity to external steady currents. This trade-off has a
wide range of consequences including the negative effect of
resonance upon synchronizability. Also interesting are its ef-
fects on chaotic dynamics, the elucidation of which, how-
ever, needs further elaboration. We will address this problem
in our future research.

When higher dimensional, more realistic models are em-
ployed, our analysis can be directly applied only after an
appropriate reduction of dimension is carried out [21]. For
example, the three-dimensional Hindmarsh-Rose model [22]
is amenable to dimension reduction by averaging its fast gat-
ing variable to obtain a nonspiking model under the form of
our generic model (6). In many other cases, however, such
reduction is not possible without loss of significant sub-
threshold characteristics. For example, two-variable models
cannot reproduce the bimodal frequency response found in
some hippocampal interneurons [3,23]. Characterization of
the features and trade-offs of higher dimensional models still
offers a wide field of research.
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