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Preface

The present PhD thesis collects the work done during the past four years on
digital communications based on Chaos Theory. Our main objective was to build
efficient chaos-based communications systems while trying to contribute to the study
and understanding of said systems, so that our work could be a step forward in the
solid foundation of a comprehensive joint digital communications and chaos-based
communications theory. This had been an elusive task almost right after the initial
attempts in the 90s, but our hopes were supported by the recent results on chaos
coded modulations and chaotic maps controlled by small perturbations. According
to this, we studied several possibilities and managed to arrive at the results we
present in the following chapters. Here we proceed guided by the story of our
own research, where one can almost follow the series of partial failures and partial
successes which are the matter of this work.

1. Introduction: In this chapter, we describe the specific problem we try to
address and we provide a general context for the kind of chaos-based commu-
nications we worked with. We also explain our main objectives.

2. Coding and Decoding with Discrete Chaotic Maps: This chapter is
devoted to the examination of the class of chaotic encoding with initial con-
ditions, both for piecewise linear and piecewise nonlinear maps. We describe
the encoding method and a way to design maps, together with a number of
decoding algorithms suitable for such encoding. The comparison between the
systems proposed as a function of the decoding algorithms, though deluding
from a practical point of view, allows us to gain an invaluable insight in this
sort of chaos-based communications and opens the road for our next develop-
ments.

3. Chaos Coded Modulations over Dispersive Channels: Here we attempt
to give an answer to the question whether there exists a communications en-
vironment where chaos-based communications can work reasonably well. We
show by means of a chaotic modulation performing poorly in non-dispersive
channels that it can provide some degree of robustness in two specific kinds of
dispersive ones. Together with the simulation results, we provide some useful
bounds which could help in the analysis and design tasks of such systems in
the dispersive environments considered.
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4. Serially Concatenated Chaos Coded Modulations: The analogy re-
cently developed between chaos coded modulations and other standard coded
and coded modulated systems suggested the work of this and the following
chapters. Here we address specifically the possibility of serially concatenating
channel codes and chaos coded modulations, just as an extension of the well
known serial concatenation of channel encoders and trellis coded modulations.
The concatenated encoder and the iterative decoder are described with the
needed detail. We show that it is possible to look into the performance of
the resulting communications systems using tools borrowed from digital com-
munications theory. We validate the promising results with simulations in
non-dispersive and dispersive channels, and show that the attainable perfor-
mance can be comparable with standard systems.

5. Parallel Concatenated Chaos Coded Modulations: Following the path
suggested in the last chapter, we study here the possibility of parallel concate-
nating two chaos coded modulations, in analogy with the turbo trellis coded
modulated systems. The encoder and decoder are described and we show that,
again, it is possible to draw bounds and make predictions over the final per-
formance by using the suitable tools taken from the digital communications
field. The encouraging results obtained in non-dispersive and dispersive chan-
nels, together with the validation of the predictions, make us foresee good
possibilities for this kind of concatenation.

6. Conclusions: To conclude, we list the conclusions we had achieved thanks
to the experience gained during the hazardous travel made from Chapter 1 to
Chapter 5.
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Chapter 1

Introduction

Since the foundation of Chaos Theory and its subsequent development through-
out the past century [Sprott, 2003], the possibilities of this new science have at-
tracted the attention of many researchers from many different fields. As a matter of
fact, Nonlinear Dynamics and Chaos Theory constitutes a very important topic in
Physics and its development has contributed to give the needed support for many
disciplines in Science and Engineering [Fröhlich et al., 2000; Sprott, 2003]. From
the beginning, Nonlinear Dynamics and Chaos Theory found direct application in
Physics or Chemistry, where they were used to explain a number of phenomena, from
the dynamics of complex systems to diffusion processes or chemical reactions. But
the theory was also quickly spawned to other disciplines, like Engineering, Economy,
or Social Sciences, where it could also provide valid models for a diversity of systems
or for their own interactions.

Nonetheless, apart from the modeling abilities of Nonlinear Dynamics and Chaos
Theory, the signals produced by chaotic systems themselves were thought soon as
specially suitable for some applications thanks to their special characteristics. For
example, the chaotic sequences are attractive candidates in signal analysis, signal
synthesis, practical engineering, and analog and digital communications [Schimming
et al., 1999; Rovatti et al., 2002]. Among the properties of chaotic signals that
make them so interesting, we can name their easy generation, a highly complex and
broadband nature, and a low probability of detection. Therefore, it is not surprising
that they have been considered for a long time in applications for communications
systems [Bollt et al., 1997; Kennedy et al., 2000b; Lau and Tse, 2003; Larson et al.,
2006] or cryptography [Blackledge, 2000].

In this context, the main interest within the communications engineering field
relied in incorporating the chaotic systems as natural alternatives for wideband com-
munications. The leading work that opened the road [Hayes et al., 1993] showed
that there could be ways to control a chaotic system, so that a binary information
could be included in a chaotic signal and accordingly retrieved. This spawned a
lot of work on the field [Kolumban et al., 1997; Kolumban et al., 1998; Kolumban
and Kennedy, 2000], and allowed the design and evaluation of several kinds of com-
munications systems in an attempt to provide practical alternatives. For example,
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2 Chapter 1. Introduction

we can mention chaos-based modulations [Mariño, 1999; Maggio and De Feo, 2000;
Schimming and Hasler, 2000; Kennedy et al., 2000a; Hasler and Schimming, 2002],
channel coding based on chaos [Andersson, 1998; Chen and Wornell, 1998; Mariño
et al., 2002a; Mariño et al., 2002b; López, 2003], or spread spectrum multiple access
communications [Heidari-Bateni and McGillem, 1994; Schweizer and Hasler, 1996;
Rovatti et al., 2001; Maggio et al., 2001; Laney et al., 2002; Argüello et al., 2002;
Argüello et al., 2003; Setti et al., 2004; Tam et al., 2004; Kolumban, 2005]. A ma-
jor event was the establishing of the symbolic dynamics principles [Schweizer, 1998;
Maggio, 2000; Schweizer and Schimming, 2001a; Schweizer and Schimming, 2001b;
Maggio and Galias, 2002; Bollt, 2003], where the chaotic sequence could be replaced
by a corresponding symbolic sequence which admitted quantization and allowed its
treatment at the receiver as a Markov chain decodable with known algorithms in
communications theory [Proakis, 2001].

Nonetheless, the initial expectations were not always fulfilled to the desired ex-
tent once the chaotic sequence was introduced in a distorting communications chan-
nel [Kolumban et al., 2002; Abel and Schwarz, 2002; Dmitriev et al., 2003]. This was
due to the fact many of the systems proposed were based on ad-hoc developments not
very well understood, not easy to analyze or to generalize, or were based on simple
alternatives leading to a very poor performance. These circumstances determined a
relative decay in the interest originally generated. This situation has progressed a
lot in recent times, because, together with a more accurate understanding of the un-
derlying problems, issues and possibilities [Schimming, 2001; Callegari et al., 2002;
Baptista et al., 2003; Hen and Merhav, 2004], a comprehensive work on the topic has
shown that a growing convergence between the Chaos Theory and digital commu-
nications fields can fill in the steady gap that chaotic systems performance seemed
to have with respect to standard communications systems [Schimming, 2002; Kozic,
2006].

This PhD thesis focuses on the mentioned recent developments and tries to push
further the analogy between known digital communications systems and chaos-based
modulators or chaos-based channel encoders. We are convinced that this analogy
can greatly help in establishing practical systems with good performance and which
could take real advantage of the properties of the chaotic signals in the channel.
According to this, our purposes are twofold. By one side, we are interested on
exploring the possibilities of already characterized chaos-based systems that use
one-dimensional discrete maps to encode binary information. On the other hand,
we try to propose new systems that, by combining the philosophy of binary channel
coding and standard modulation techniques with chaos-based modulators, could
produce a successful interaction.

According to our first objective, we will look into the chaos-based systems by
encoding initial conditions which use chaotic one-dimensional discrete maps. We
will try to clarify which is the role played by the invariant density of the chaotic
data with respect to the chaotic dynamics of the underlying discrete chaotic map,
and whether said invariant density can serve as a design criterion for such class of
encoders. At the same time, we will see if piecewise nonlinear chaotic maps can also
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be employed efficiently in this kind of setup [Escribano et al., 2006a]. The relative
failure of the systems examined in point of performance face to the additive white
Gaussian noise (AWGN) channel will lead us to consider which is the kind of channels
where chaotic sequences of this sort can truly show their potential advantages.

Moreover, we will introduce the class of chaos coded modulations derived from
chaotic encoders using maps controlled by small perturbations [Schimming et al.,
2002], a generalization of which has shown to provide encoding systems with good
coding gains [Kozic, 2006], and we will analyze the behaviour of the simplest chaos
coded modulator example in two different kinds of dispersive environments, where,
together with AWGN, the chaotic sequence will have to cope with other sources of
impairment. This topic had been only partially addressed, and mainly in the context
of other sorts of chaotic modulations [Kennedy et al., 2000a; Ciftci and Williams,
2001], or in multiuser situations [Lau and Tse, 2003] and the like. Little work exists
so far about the results attainable with chaos coded modulations in channels other
than the AWGN one. The results obtained will stress the fact that the dispersive
environments are the ones where chaotic systems can make their best, even in the
case of using chaotic modulators that perform poorly in AWGN channels.

Our next step will be related to the fact that there is a well established analogy
between the class of chaos coded modulations and other standard coded modula-
tions. Therefore, it is perfectly possible to consider the inclusion of chaos coded
modulators in any communications system which employs any other kind of coded
modulator [Escribano et al., 2005; Escribano et al., 2006c]. According to this, we
will propose both serially and parallel concatenated systems where the inner en-
coder role, the one which sends samples to the channel, will be held by chaos coded
modulators. The main reason to attempt this is, by one side, the fact that concate-
nated systems have proved to give good results both in non-dispersive and dispersive
channels [Schlegel and Pérez, 2004], and, by the other side, the need to increase the
redundancy level in the chaos coded setup in order to enhance the performance over
chaos coded modulations with coding rate one sample per bit. We will see that
concatenation increases the complexity of the overall system, but also provides a
more desirable level of protection while being able to keep the good properties of
chaos in the channel, even when the chaotic sequence is quantized to match symbolic
dynamics.

First we address the possibility of serial concatenation and, once we have veri-
fied it is a valid alternative to increase the attainable performance of chaos coded
modulations, we examine the possibility of parallel concatenation. With the back-
ground of the previous work, we will show that these new developments are pretty
straightforward. The resulting chaos-based systems will also be good performing,
though the case of parallel concatenation will require the design and evaluation of
additional chaos coded modulators. The simulation results in all the cases will be
accompanied, when possible, with bounds and predictions about the behaviour of
the systems drawn with the help of standard tools taken from digital communica-
tions theory. This will be possible again thanks to the mentioned convergence of
chaos-based communications and standard digital communications.
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The objectives mentioned can only be attained if, together with the attention
paid to the encoder side, we are able to adapt or propose decoding systems suitable
for the situations we have enumerated. Many decoding strategies have been designed
and studied in the past years in order to decode or estimate chaotic sequences under
the effects of channel distortion [Papadopoulos and Wornell, 1995; Pantaleón et al.,
2000; Pantaleón et al., 2002; Kisel et al., 2001; Luengo et al., 2002; Pantaleón
et al., 2003; Xiaofeng et al., 2004; Luengo, 2006], but they will not be always the
best possibility for the encoders considered here. While we will adapt and evaluate
a number of known decoders for the kind of systems working on encoding initial
conditions [Escribano et al., 2006a; Escribano et al., 2006b], we will propose scalable
decoder modules able for iterative decoding of concatenated systems [Escribano
et al., 2005]. In any case, we will not forget either that, depending on the kind of
channel considered, such decoding systems could require certain arrangements.

With this background and this itinerary on mind, we will proceed in the next
four chapters to the fulfillment of these objectives, to the extent they can be covered
in one PhD thesis of this kind and size. However, we will prove that chaos-based
communications are nearly to be ripe enough to take part in real world practical
applications on equal grounds with existing systems.



Chapter 2

Coding and Decoding

with Discrete Chaotic

Maps

2.1. Introduction

Chapter 1 has contributed a bit to the history about the topic of chaos-based
communications and has shown the path through which we have arrived at the cur-
rent state of the art. We have mentioned that chaos-based modulations and channel
encoders derived from chaotic systems attracted much attention. This was due, for
example, to the foreseen possibility of employing them in multiuser systems as effi-
cient means of sharing the access to the channel, but the interest dropped somewhat
during a time due to the bad performance of the systems proposed in the additive
white Gaussian noise (AWGN) channel [Abel and Schwarz, 2002; Dmitriev et al.,
2003]. We have nevertheless witnessed the arising of new developments in chaotic
direct modulations [Schimming and Hasler, 2002; Kozic et al., 2003a; Kozic and
Schimming, 2005] that showed that what was lacking was a deeper understanding
of the joint possibilities of digital communications and Chaos Theory, and that a
most promising path lies in finding analogies between standard digital systems and
chaos-based encoders.

The design of channel coding and decoding algorithms based on discrete chaotic
maps is one of the possibilities studied during the last years. It is known in commu-
nications theory that the knowledge of the probability density function (pdf) of the
data produced by an encoder or modulator is potentially useful in evaluating the
performance of the communications systems, and thus the possibility of designing a
map knowing the invariant pdf of the data is not a topic deprived of interest. The
task of designing maps with desired pdf’s had been addressed in the mid 90’s [Bara-
novsky and Daems, 1995]. However, the trouble is still the design of the chaos-based
encoding algorithm itself when the resulting map is piecewise nonlinear and when
it does not match the convolutional encoder equivalence that greatly simplifies the
encoding rules in the recent class of chaos coded modulated systems [Schimming
and Hasler, 2002]. The possibility we have chosen here is to take advantage of an
already known encoding algorithm based on the Bernoulli shift map (BSM) and,
using the properties of conjugacy between maps, expand it to the whole class of
discrete chaotic maps conjugated to the BSM.

5



6 Chapter 2. Coding and Decoding with Discrete Chaotic Maps

The design of a map suitable for this framework will require some restrictions
regarding the form of the invariant pdf and the symmetry properties of the map.
The importance of this design procedure lies in the fact that such a device has been
thoroughly studied for piecewise linear maps (PWL maps, which generate the so-
called piecewise linear Markov maps [Schweizer and Schimming, 2001a; Schweizer
and Schimming, 2001b]), whose pdf can be given exactly and readily thanks to the
piecewise linearity of the systems involved. On the other hand, once we clarify the
way to build a chaos-based modulation using a piecewise nonlinear discrete chaotic
map with known invariant density, there remains the open topic of how the inter-
action between the data pdf and the chaotic trajectory can affect the performance.
The question we want to answer is whether we can expect better behaviour with
this piecewise nonlinear alternative face to the systems derived from piecewise linear
maps.

According to all this, in this chapter we will follow closely the developments of
[Escribano et al., 2006a] and [Escribano et al., 2006b]. The chapter is thus structured
as follows. In Section 2.2 we introduce the encoding process chosen for the kind of
discrete chaotic maps considered, including the method to design a map starting
from its desired invariant probability density function. Section 2.3 is devoted to
a brief description of the AWGN channel. Section 2.4 explains in detail the four
decoding algorithms which will serve us to analyze the possibilities of the proposed
encoding maps. Section 2.5 is devoted to the derivation of bounds for a simple case,
but that will serve us to better understand the chaos-based encoding system. In
Section 2.6, we plot an analyze the simulation results together with the proposed
bounds. Finally, Section 2.7 gathers the conclusions.

2.2. Encoding binary data with discrete chaotic maps

In order to encode a binary sequence of length N containing the information, bn ∈
{0, 1}, n = 1 · · ·N , we make use of one method extensively used [Ciftci and Williams,
2001; Baptista and López, 2002; Kozic et al., 2003a; Kozic et al., 2003b; Kozic and
Schimming, 2005], which employs an effect of truncation which will be explained
in the sequel. This method, based in other one known generally as encoding initial
conditions, has been described for piecewise linear chaotic maps, and we extend it
here for piecewise nonlinear chaotic maps. In all the developments that follow, the
sequence bn is a binary sequence, independently and identically distributed (iid),
with P (bn = 0) = P (bn = 1) = 1/2. The maps we are interested in throughout this
chapter are limited to the interval [0, 1] and leave said interval invariant

f(x) : [0, 1] → [0, 1] . (2.1)

The base for the encoding rule is the Bernoulli shift map (BSM from now on), whose
expression is

xn = f(xn−1) =

{

2xn−1 if xn−1 < 1
2

2xn−1 − 1 if xn−1 ≥ 1
2

. (2.2)
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This map is depicted in Fig. 2.1. The BSM is also usually denoted as f(x) =
2x mod 1.
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Figure 2.1. Diagram of the Bernoulli shift map (BSM), with its two linear
sections with slope +2 and its corresponding antisymmetry with respect to the vertical
line x = 1/2.

It is a well known property of the Bernoulli shift map [Chen and Wornell, 1998]
that, if we define the symbolic state of the system r as the real number

r =

N
∑

m=1

bm2−m, (2.3)

and we take as initial condition for the chaotic sequence the value x0 = r, then
the binary sequence is encoded into the chaotic sequence generated by x0. In this
situation, the iterations through the BSM take values

xn = f(xn−1) = fn(x0) =

N
∑

m=n+1

bm2−m+n, (2.4)

where fn(·) is the result of applying the map n times, n = 0, · · · , N − 1. In this
case, the binary information can simply be retrieved following

bn+1 =

⌊

xn +
1

2

⌋

, (2.5)

where ⌊x⌋ represents the maximum integer just bellow x. This method is generally
known as encoding initial conditions [Xiaofeng et al., 2004].
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For a real system, where the length N of the binary message to be transmitted
could reach thousands of bits even when working in packet mode, the proposed
encoding process is not practical, since it would require an almost infinite precision
to process the values of r, x0 and the subsequent map iterations in the form of Eq.
(2.4). However, the same principles can be used to encode blocks of just D ≪ N
bits at a time. If we define the truncated symbolic sequence at time n as

r′n =
n+D
∑

m=n+1

bm2−m+n, (2.6)

then the corresponding truncated value for x′
n in the BSM case is

x′
n = g(r′n) = r′n, (2.7)

where g(r) is a function whose meaning will be seen in the following. This function
is the identity in the case of the BSM, g(r) = r. Eq. (2.5) still holds by replacing
xn by x′

n. The resulting truncated sequence x′
n is close to the original one when D

is large enough, and the process is equivalent to the addition of noise in order to
control the chaotic sequence

x′
n = xn + ηn. (2.8)

The quantity ηn = −∑N

m=n+D+1 bm2−m+n = O(2−D−1) could be seen approximately
as a noisy sequence whose power decreases with D. Note also that this truncation
method is an instance of quantization of xn down to a precision of D bits, so that
there is a only a total of 2D real-valued possible different values for x′

n. Therefore,
the resulting sequence corresponds to what is called a discrete chaotic map [Setti
et al., 2002]. In the following, we will refer to the controlled discrete chaotic sequence
simply as xn and the symbolic state sequence of Eq. (2.6) as rn. Therefore, we have
a pair of encoding functions that we rewrite for clarity

rn =

n+D
∑

m=n+1

bm2−m+n (2.9)

xn = g(rn). (2.10)

They can be used to encode data with the BSM and with other chaotic maps when-
ever we can find a suitable expression for the corresponding g(r) function. The
function x0 = g(r), when it exists for a specific map, makes it possible for the
chaotic sequence generated by such map to carry the information bit sequence and
recover it following Eq. (2.5).

Other map we will consider is the logistic map, defined as well in [0, 1] as

xn = f(xn−1) = 4xn−1(1 − xn−1). (2.11)

However, this map is continuous in the definition interval, convex and symmetric
with respect to xn = 1/2. Here we are interested in antisymmetric maps, because
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Figure 2.2. Diagram of the modified logistic map (MLM), with its two
parabolic sections and its corresponding antisymmetry with respect to the vertical
line x = 1/2.

the symmetric piecewise linear maps are known to offer potentially poor squared Eu-
clidean distance properties between two different encoded sequences xn and x∗

n [Kozic
et al., 2003b], and no better results are to be expected with symmetric piecewise
nonlinear maps1. The squared Euclidean distance between these chaotic sequences
xn and x∗

n is defined as

d2
E =

N
∑

m=1

(xn − x∗
n)2, (2.12)

and it has been shown to tend to 0 for the symmetric counterpart of the BSM, i.e.,
the tent map [Kozic et al., 2003b]. Therefore, we will use the antisymmetric version
of the logistic map, given by

xn = f(xn−1) =

{

4xn−1(1 − xn−1) if xn−1 < 1
2

1 − 4xn−1(1 − xn−1) if xn−1 ≥ 1
2

, (2.13)

and we will accordingly call it the modified logistic map (MLM). It is depicted in Fig.
2.2. The whole class of maps in [0, 1] that accomplish the antisymmetric condition

f(x) = 1 − f

(

x +
1

2

)

, x ∈
[

0,
1

2

]

, (2.14)

1It has been shown that he performance of this kind of chaos-based encoding for high signal to
noise ratios is linked to the minimum squared Euclidean distance between pairs of chaotic encoded
sequences [Kozic, 2006].
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is conjugated to the BSM and, as we will demonstrate in the next subsection, g(r)
can be obtained directly from the conjugating function. In fact, if a map is con-
jugated to the BSM, we will see that the function g(r) exists and is related to the
invariant density p(x) of such map through [Kennedy et al., 2000b] g(r) = F−1(r),
where F (x) =

∫ x

0
p(t)dt, x ∈ [0, 1], is the distribution function of the corresponding

invariant density.
The probability density function (or, more exactly, the invariant density) of the

chaotic data xn without truncation is uniform for the BSM, i.e., p(x) = 1 when
x ∈ [0, 1]. For the MLM the pdf is the same as in the case of the logistic map itself,
namely [Sprott, 2003]

p(x) =
1

π
√

x(1 − x)
x ∈ [0, 1] . (2.15)

This is a consequence of the fact that for a one-dimensional map with two branches
and two possible inverse values, the pdf has to meet the condition [Sprott, 2003]

p(x) =

∣

∣

∣

∣

∣

p
(

f−1
1 (x)

)

f ′
(

f−1
1 (x)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

p
(

f−1
2 (x)

)

f ′
(

f−1
2 (x)

)

∣

∣

∣

∣

∣

, (2.16)

where f−1
1 (x) and f−1

2 (x) are the respective two inverse values and f ′(·) is the first
derivative of the map. The absolute value in the expression gives reason of the equal
invariant densities for both symmetries.

Therefore, the distribution function of the MLM will be F (x) = 1 −
(2/π)acos (

√
x) and it is easy to verify that, in this case

g(r) = F−1(r) = cos2
(π

2
(1 − r)

)

. (2.17)

If we apply Eqs. (2.9) and (2.10) with this definition, the same decoding property
stated in Eq. (2.5) holds and the chaotic sequence xn produced carries the binary
information while following the MLM dynamics. It is worth noting that the same
happens with the BSM itself, since F (x) = x. We will illustrate in the next sub-
section how, following the conjugacy properties between this class of maps, we can
design maps with the mentioned symmetry just by employing the desired pdf shape
as main design criterion.

2.2.1. Map synthesis

Following [Kennedy et al., 2000b], and using the conjugation properties between
maps that leave invariant the interval [0, 1] and comply with some symmetry con-
ditions, we will show how to design new piecewise nonlinear maps. This will allow
us to illustrate one possible method for map synthesis. The map obtained, together
with the BSM and the MLM, will be used in the developments of the subsequent
sections and will serve us to perform comparisons between the final bit error rate
(BER) of the three schemes as a function of the distribution of the data and of the
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map dynamics. For convenience, we choose as final density a pdf that has the same
shape as the pdf of MLM, but with the maximum in the threshold point x = 1/2,
i.e.,

p(x) =
1

π
√

(x + 1
2
)(1

2
− x)

x ∈
[

0,
1

2

]

,

p(x) =
1

π
√

(x − 1
2
)(3

2
− x)

x ∈
(

1

2
, 1

]

. (2.18)

We will see that we can design a map conjugated to the BSM whose chaotic data will
follow this pdf. The map we will obtain through this flipped logistic pdf will be called
flipped logistic pdf map (abbreviated as FLPM). All the probability density functions
(pdf’s) involved are shown in Fig. 2.3. Note that they correspond to three different
cases of interest when transmitting data with chaotic maps using the described
framework. As we can recover directly the binary data with Eq. (2.5), we have a
critical point in the threshold x = 1/2 which serves to discriminate between the cases
bn = 0 and bn = 1. We can see that the BSM distributes the data indifferently in the
complete definition interval, the MLM concentrates less data around the threshold,
and the FLPM concentrates most of the data around it. This will be of consequence
when evaluating the performance of the systems, though it will not give complete
reason of the behaviour of the corresponding encoding systems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

p
(x

)

Bernoulli shift map
Modified logistic map
FLP map

Figure 2.3. Invariant probability density functions for the BSM (continuous
line), MLM (dash-dotted line) and FLPM (dashed line).

We mentioned before that the function g(r) which relates the initial condition
x0 to the symbolic state r as defined in Eq. (2.3) can be obtained starting from
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the pdf of the map following g(r) = F−1(r). We are going to review the reason for
this. In the case when the map is conjugated to the BSM, if the initial condition
for the Bernoulli map is xB

0 = r and the initial condition for the conjugated map is
xC

0 = g(r), then all the samples are related through [Kennedy et al., 2000b]

fn
C(xC

0 ) = fn
C(g(r)) = g(fn

B(g−1(xC
0 ))) = g(fn

B(r)) = g(fn
B(xB

0 )), (2.19)

where fn
C(x) is the n-th iteration of the conjugated map and fn

B(x) is the n-th
iteration of the Bernoulli shift map. The last expression stems from the definition
of conjugacy between two maps f1 and f2 defined in the interval [0, 1] and leaving
it invariant,

f1(x) = g(f2(g
−1(x))), (2.20)

where g(x) is a monotonous growing function mapping the interval [0, 1] onto itself.
Clearly, the truncated encoding process described in Eq. (2.9) makes use of the
properties of Eq. (2.19). By definition of the distribution function of the conjugated
map FC(x),

FC(x) = P
(

fn
C(xC

0 ) < x
)

= P
(

fn
B(g−1(t)) < g−1(x)

)

=

= P
(

fn
B(xB

0 ) < g−1(x)
)

= FB(g−1(x)) = g−1(x), (2.21)

since the invariant pdf of the BSM data is uniform in [0, 1].
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Figure 2.4. The different conjugating functions g(x) for the BSM (straight
continuous line), the MLM (dotted line) and the FLPM (dash-dotted line).

Therefore, the next task in the design process will be to find the expression for
fC(x) starting from the pdf definition of Eq. (2.18) and using Eq. (2.19). Since
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Figure 2.5. The figure shows the flipped logistic pdf map (FLPM).

g(r) = F−1(r) and the pdf is symmetric with respect to the point 1/2, g(r) has the
following properties

g(0) = 0, g

(

1

2

)

=
1

2
, g(1) = 1 (2.22)

and

g

([

0,
1

2

])

=

[

0,
1

2

]

, g

([

1

2
, 1

])

=

[

1

2
, 1

]

. (2.23)

Besides, we know that g(r) is a monotonously growing function. Taking into account
the Eq. (2.19) and the expression of the BSM, the new map fC(x) will also have
the following property

fC(g(r)) =

{

g(2r) if r < 1
2

g(2r − 1) if r ≥ 1
2

. (2.24)

As g(r) is invertible, taking g(r) = x and r = g−1(x), we arrive at

fC(x) =

{

g(2g−1(x)) if x < 1
2

g(2g−1(x) − 1) if x ≥ 1
2

, (2.25)

which is the general expression for the new map, provided that its pdf lies in the
interval [0, 1] and is symmetric with respect to x = 1/2.
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After some algebra, we can calculate F (x), g(r) and the map for the pdf defined
in Eq. (2.18). The corresponding expressions are

F (x) =







1
2
− 2

π
acos

(√

x + 1
2

)

if x < 1
2

3
2
− 2

π
acos

(√

x − 1
2

)

if x ≥ 1
2

(2.26)

g(r) =

{

cos2
(

π
2

(

1
2
− r
))

− 1
2

if x < 1
2

cos2
(

π
2

(

3
2
− r
))

+ 1
2

if x ≥ 1
2

(2.27)

xn = f(xn−1) =































4xn−1

√

1
4
− x2

n−1 if 0 ≤ xn−1 < 1
2
√

2

1 − 4xn−1

√

1
4
− x2

n−1 if 1
2
√

2
≤ xn−1 < 1

2

4(1 − xn−1)
√

1
4
− (1 − xn−1)2 if 1

2
≤ xn−1 < 1 − 1

2
√

2

1 − 4(1 − xn−1)
√

1
4
− (1 − xn−1)2 if 1 − 1

2
√

2
≤ xn−1 ≤ 1.

(2.28)

The different g(r) functions for the three maps involved are depicted in Fig. 2.4, and
the FLPM can be seen in Fig. 2.5. We could now use these three maps to encode a
binary sequence using the Eqs. (2.9) and (2.10) and see how efficient the resulting
encoding systems are in terms of their BER performance when the chaotic samples
are distorted by the communications channel. Note that, for the encoding process
alone, g(r) is the only function needed, but, as we will see, the resulting map f(x)
is required on the decoder side.

2.3. Channel model

n n n nb x y b

nn

Chaos−
based

encoder decoder
based
Chaos−

Figure 2.6. Block diagram of the described system, consisting on a chaos-
based encoder, an AWGN channel and a chaos-based decoder.

In normal communications systems, one of the most common source of impair-
ment in the channel is the presence of additive white Gaussian noise (AWGN)
[Proakis, 2001]. According to this and as a first approach, we will evaluate the
performance of the proposed systems in a pure AWGN channel. In this case, if we
send the chaotic samples xn without further processing to the channel, the sequence
arriving to the receiver side, yn, will be described as

yn = xn + nn, (2.29)
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where nn are iid samples of AWGN following a Gaussian distribution with zero mean
and power σ2. The pdf of the noise samples will accordingly be

p(n) =
1√
2πσ

e−
n2

σ2 . (2.30)

The complete model of the communications system can be seen in Fig. 2.6, including
the chaos-based encoder, the channel, and the decoder. The possibilities for this
decoding block will be described in the next section.

2.4. Decoding in AWGN

2.4.1. Previous remarks

In order to take advantage of the potential properties of the chaotic sequence in
AWGN, a suitable decoding method has to be proposed. In fact, if we decode in a
symbol-by-symbol basis, by hard and directly deciding over each yn,

yn < 1
2

→ b̂n+1 = 0

yn ≥ 1
2

→ b̂n+1 = 1.
(2.31)

no gain is achieved with respect to the direct transmission of the source message bn

as will be shown next. Since the pdf’s of all the maps are known, it is straightforward
to calculate the expressions for the bit error probability in each case, taking into
account that

Pb = P

(

yn <
1

2
, xn ≥ 1

2

)

+ P

(

yn ≥ 1

2
, xn <

1

2

)

. (2.32)

By symmetry

Pb = 2P

(

yn ≥ 1

2
, xn <

1

2

)

= 2P

(

nn ≥ 1

2
− xn, xn <

1

2

)

=

= 2

∫ 1
2

0

p(x)

∫ ∞

1
2
−x

p(n)dndx =

∫ 1
2

0

p(x)erfc

((

1

2
− x

)

1√
2σ

)

dx, (2.33)

where we have used the known relation [Proakis, 2001]

∫ ∞

x

p(n)dn =
1

2
erfc

(

x√
2σ

)

, (2.34)

and the fact that xn and nn are independent. The resulting bit error probability
can be calculated analytically only for the BSM encoder after some algebra, while
for the other two map encoders it has to be calculated by numerical integration
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[Abramowitz and Stegun, 1965]. The corresponding expressions are

P B
b =

1

2
erfc

(

√

3Eb

N0

)

+
1

√

12π Eb

N0

(

1 − e
−3

Eb
N0

)

(2.35)

P M
b =

∫ 1
2

0

1

π
√

x(1 − x)
erfc

(

(1 − 2x)

√

2
Eb

N0

)

dx (2.36)

P F
b =

∫ 1
2

0

1

π
√

(

x + 1
2

) (

1
2
− x
)

erfc

(

(1 − 2x)

√

2

3 − 8
π

Eb

N0

)

dx, (2.37)

where Eb/N0 is the well known signal-to-noise ratio [Haykin, 2001] in terms of energy
per bit to power spectral density of the noise. It is given by

Eb

N0

=
P

2σ2
, (2.38)

where P is the power of the chaotic sequence and σ2 is the power of the AWGN
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Bernoulli shift map
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Figure 2.7. Bit error probability in the case of direct decoding of the received
sequence yn in the AWGN channel for each of the possible encoders (based on the
BSM, the MLM or the FLPM). The bit error probability of BPSK is shown for
comparison.

process. P corresponds also to the variance of the sequence xn, which in the case of
the BSM, for D high enough to make the quantization noise negligible, is σ2

x = 1/12;
in the case of the MLM, σ2

x = 1/8; and, in the case of the FLPM, σ2
x = 3/8 − 1/π.

The expression P B
b corresponds to the BSM, P M

b to the MLM and P F
b to the FLPM.
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The results are depicted in Fig. 2.7, together with the bit error probability for binary
phase shift keying (BPSK). In this case, the signal in the channel is xn = 2bn+1 − 1,
and the bit error probability is given by [Proakis, 2001]

Pb =
1

2
erfc

(

√

Eb

N0

)

. (2.39)

It is clear that the best is to employ BPSK, since the distance between symbols
is maximized with respect to the chaotic systems proposed. The worst system is
the based on the FLPM, since a large number of samples lie around the threshold
point x = 1/2, whereas the MLM slightly improves the performance of the BSM, as
there is a reduced density of samples around such threshold. The slope of the bit
error probability is so shallow for the chaos-based encoding systems because there
is always a number of samples arbitrarily close to the threshold that can be decoded
on error, no matter how low the noise power.

The last results are drawn assuming infinite precision in the chaos-based encoding
(i.e., N → ∞ and D → ∞), so that the data follow the invariant theoretical pdf’s.
But, since we will always be in a situation with D < N and N < ∞, we can look
into the effect of a finite D in the system. In fact, for the BSM with a precision of
D bits, the pdf will be

p(x) =
2D−1
∑

i=0

1

2D
δ

(

x − i

2D

)

. (2.40)

This means that each of the 2D possible samples occur with probability 1/2D. For
D high enough, this pdf tends to the uniform pdf within the interval [0, 1]. Taking
into account Eq. (2.32), the exact probability of error in the case of simple decoding
will be

Pb =
1

2D

2D−1−1
∑

i=0

1

2
erfc

((

1

2
− i

2D

)

1

σ
√

2

)

+

+
1

2D

2D−1
∑

i=2D−1

[

1 − 1

2
erfc

((

1

2
− i

2D

)

1

σ
√

2

)]

, (2.41)

where σ2 is again the power of the noise. To put this expression in terms of Eb/N0,
it should be taken into account that the signal power also differs from the infinite
precision case. In fact, for BSM and taking into account its real invariant pdf of Eq.
(2.40), it will be

σ2
x =

1

12

22D + 2D+3 − 3

22D
. (2.42)

In any case, for σ2 → 0 (i.e., Eb/N0 → ∞ for fixed signal power), the only term left
will be the one with i = 2D−1, which makes 1−(1/2)erfc(·) = 1/2 with independence
of the noise power, and therefore the whole Pb will tend to a constant error floor of
1/2D+1.
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This result has to be taken into account when designing the system, since, for
Eb/N0 higher than the limit value where the error floor Pb = 1/2D+1 becomes
dominant, the performance could be substantially different from the predictions
made under the assumption of a continuous and uniformly distributed pdf. In
practice, however, a moderate value of D between D = 15 and D = 20 will be
enough to overcome these possible side effects, as this pushes such error floor Eb/N0

beyond the 40 dB and the difference between the finite precision signal power and
the infinite precision signal power becomes negligible. Though drawn for the BSM,
similar results can be found for the MLM and the FLPM.

2.4.2. Decoding algorithms

We have seen that the direct decoding of the chaotic sequence offers in all the
cases a much poorer behaviour than uncoded transmission, due to the fact that
the squared Euclidean distance between each of the samples and the thresholds can
be almost arbitrarily small. In fact, with direct decoding we neglect the potential
advantage of the system, which is the redundancy present in adjoining symbols,
since each symbol xn as defined in Eqs. (2.9) and (2.10) has D − 1 bits in common
with xn−1 and xn+1, D−2 with xn−2 and xn+2, and so on. According to this, we will
propose in the following a number of decoding methods that, based upon different
principles, will try to exploit this redundancy.

Heuristic decoding

The first decoding method was already employed in [Baptista and López, 2002],
and we call it here heuristic decoding. It takes advantage of the property of the
discrete chaotic systems, where two trajectories starting from points very close could
easily diverge, while, on the contrary, two trajectories iterated backwards through
the map starting from two different points could finally merge [Sprott, 2003].

Therefore, to decode the symbol xn, we look ahead M − 1 received symbols,
yn+1, · · · , yn+M−1, and rebuild the possible trajectories for the corresponding map
that have as ending point yn+M−1. The proposed maps have two possible solutions
for the inverse problem as a function of the branch chosen, f−1

1 (x) and f−1
2 (x), and

therefore, we will have a total of 2M−1 possible trajectories ending in yn+M−1. For
example, for M = 2 and the Bernoulli shift map, we have

z0
n = f−1

1 (yn+1) = yn+1

2

z1
n = f−1

2 (yn+1) = yn+1

2
+ 1

2
.

(2.43)

Previously to this first step, the values of yn+M−1 have to be normalized within
the interval [0, 1] for consistency reason, since the maps are defined in [0, 1]. As
a consequence, any time we write yn+M−1 in the heuristic decoding and related
algorithms, we are implicitly assuming

yn+M−1 > 1 → yn+M−1 = 1
yn+M−1 < 0 → yn+M−1 = 0.

(2.44)
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In the case of the MLM and for M = 2, the inverse possible values are calculated as

z0
n = f−1

1 (yn+1) = 1
2
− 1

2

√
1 − yn+1

z1
n = f−1

2 (yn+1) = 1
2

+ 1
2

√
yn+1.

(2.45)

For the FLPM, and when yn+1 < 1/2

z0
n = f−1

1 (yn+1) = 1
2

√

1
2
− 1

2

√

1 − 4y2
n+1

z1
n = f−1

2 (yn+1) = 1 − 1
2

√

1
2

+ 1
2

√

1 − 4y2
n+1.

(2.46)

For the FLPM, and when yn+1 ≥ 1/2

z0
n = f−1

1 (yn+1) = 1
2

√

1
2

+ 1
2

√

1 − 4(1 − yn+1)2

z1
n = f−1

2 (yn+1) = 1 − 1
2

√

1
2
− 1

2

√

1 − 4(1 − yn+1)2.
(2.47)

We denote the resulting filtered sequences as zsl

k , where k = n, · · · , n + M − 2,
l = 1, · · · , 2M−1 and sl is a vector with length M − 1 defining the l−th trajectory,
starting at time n and ending at time n + M − 1. For example, we can write
sl = (0, 1, 1, 0, 0, · · · , 0, 1), with 0 and 1 in each case identifying the inverse in
the k−th position (with the meaning implicit in the Eqs. (2.43), (2.45), (2.46) and
(2.47)). Then, the vector sl contains the possible symbolic sequences associated with
the corresponding map which end in yn+M−1, since it stores the information about
what branch of the map we take at any time, the one at x < 1/2 (corresponding to
f−1

1 (x)), or the one at x > 1/2 (corresponding to f−1
2 (x)) [Schweizer and Schimming,

2001a; Schweizer and Schimming, 2001b].
We need a criterion to decide which is the best candidate sequence zsl

n over all
possible 2M−1 symbolic trajectories sl. The most natural choice is to take the one
whose trajectory is closest to the received one. That is, take sequence z

sdn
n which

minimizes the squared Euclidean distance with the received one,

n+M−2
∑

k=n

(

z
sdn

k − yk

)2 ≤
n+M−2
∑

k=n

(zsl

k − yk)
2 , (2.48)

over all possible l = 1, · · · , 2M−1 different trajectories, with dn ∈ {1, · · · , 2M−1}.
The received bit b̂n can then be hard decoded following

z
sdn
n < 1

2
→ b̂n+1 = 0

z
sdn
n ≥ 1

2
→ b̂n+1 = 1.

(2.49)

This algorithm takes advantage of the redundancy present between xn and the sub-
sequent M − 1 symbols, but it does not take into account the redundancy present
between xn and the rest of the sequence.
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Recursive heuristic decoding

One possible way to overcome the mentioned problem of not taking into account
all the redundancy encoded in each chaotic sample is applying the heuristic algorithm
recursively. To achieve this, once the sequence of best z

sdn
n has been calculated for

each n = 0, · · · , N − 1 in a first step, the same heuristic decoding algorithm can
be applied by replacing the received values yn by their corresponding filtered best
matching values, z

sdn
n . Now the redundancy present in the whole sequence, from

yn to the end, is propagated backwards and we can expect to get better results.
According to this description, this second algorithm will be called the recursive
heuristic algorithm.

One can expect that these two algorithms will do reasonably well for lim-
ited noise, since, in this case, it is more probable that the received sequence
yn, · · · , yn+M−1 is close to xn, · · · , xn+M−1, and the sequence z

sdn

k , with k =
n · · ·n + M − 2 chosen as the closest to the received one, will remain closest as
well to the sent one. Nevertheless, the simulation results will show that there is an
error floor which depends on the decoding complexity (the length of the decoding
block M and the number of iterations). This phenomenon is related to the fact that,
when the decoding relies basically on the calculation of an initial condition (in this
case, xn as a function of the channel distorted values yn, · · · , yn+M−1), a threshold
effect appears [Hen and Merhav, 2004].

Maximum likelihood Viterbi decoding

The third algorithm is a sequence decoding algorithm based on the Maximum
likelihood (ML) criterion already proposed in [Kisel et al., 2001], but with a sliding
window framework [Escribano et al., 2006b]. It is an adaptation of the well known
Viterbi algorithm [Viterbi, 1967]. We will briefly review it here. This ML algorithm
work on a symbolic dynamics basis [Schweizer and Schimming, 2001a; Schweizer and
Schimming, 2001b], and therefore a quantization of the phase space [0, 1] is needed.
In the two previous algorithms we saw that we were implicitly applying symbolic
dynamics while rebuilding backwards the trajectories sl of inverse branches chosen,
because taking the f−1

1 (x) branch or the f−1
2 (x) branch implied being placed at the

subinterval
[

0, 1
2

)

(encoded bit b = 0) or
[

1
2
, 1
]

(encoded bit b = 1).
The present and the next algorithm need also an analogous setup with a division

in subintervals, but a higher number of the same will be required to rightly capture
the signal dynamics. According to this, we take the interval [0, 1] and split it into a
series of non-overlapping subintervals Ii with limits i

p
and i+1

p
for i = 0, · · · , p − 1

and centers in ci = i
p

+ 1
2p

. These subintervals are additionally defined by

[0, 1] = ∪p−1
i=0 Ii, (2.50)

Ii ∩ Ij = ∅, i 6= j. (2.51)

The number of subintervals p is taken as an even number, so that the threshold
point x = 1

2
is the upper limit of one subinterval and the lower one of another.
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Thus, with the only knowledge of the subinterval Ii in which a sample lies, we can
say whether this sample has to be decoded as a 1 or a 0. Moreover, if we replace the
original sequence by the sequence of subintervals where the corresponding sample
lies2, we get a symbolic representation of the sequence that can be described as a
first order Markov process, with a corresponding transition matrix T [Kisel et al.,
2001; Papoulis and Pillai, 2002]. The term tij in this matrix means the transition
probability between the subinterval i and the subinterval j. In the case of the BSM
and its linear sections with slope +2, each subinterval is mapped exactly into two
contiguous intervals with equal probability (which is proportional to the length of
the original subinterval mapped to the destination subinterval). For example, in the
case of p = 4, this transition matrix is:

T =
1

2









1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1









.

In the case of the MLM and the FLPM, this is not so straightforward, and the
transition matrix has to be built by considering the quotient between the length of
the intersection between the mapped interval f(Ii) and the destination interval Ij to
the length of the image. This can be readily calculated once we know the expression
for the map f(x) as

tij =
length(f(Ii) ∩ Ij)

length(f(Ii))
, (2.52)

where i = 0, · · · , p−1 and j = 0, · · · , p−1. If the interval Ii is defined by the lower
limit ai

l and by the upper limit ai
u, then length(Ii) = ai

u − ai
l.

In the decoding process, we consider the candidate sequence of subinterval centers
within a window of length L, di

k, k = 0, · · · , L − 1, where di
k = ci if xn+k lies in Ii.

Moreover, we define the state of the Markov process within the window of length
L as sk = i at time k = 0, · · · , L − 1 if xn+k lies in Ii. The starting state s0 is
considered to be initially 0, but, as the sliding window proceeds with the decoding,
the initial state value will be taken from the previously calculated values for each
decoding block of length L, and in this way the redundancy of the whole sequence is
propagated forward. To apply the Viterbi algorithm in the form described in [Kisel
et al., 2001], we take a block of L received symbols, yn, · · · , yn+L−1 and perform the
following operations

Initialize the algorithm:

δi
0 = πibi(yn) 0 ≤ i < p (2.53)

φi
0 = 0 0 ≤ i < p

2In an equivalent way, the chaotic sequence can be replaced by the sequence of centers ci of the
subintervals visited.
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Perform a forward pass:

δj
k = max

0≤i<p

{

δi
k−1tijbj(yn+k)

}

(2.54)

0 < k < L 0 ≤ j < p

φj
k = arg max

0≤i<p

{

δi
k−1tijbj(yn+k)

}

(2.55)

0 < k < L 0 ≤ j < p

Terminate:

ŝn
p−1 = arg max

0≤i<p

{

δi
p−1

}

(2.56)

Perform a backward pass:

ŝn
k = φ

ŝn
k+1

k+1 k = L − 2, · · · , 0 , (2.57)

where tij corresponds to the transition probabilities of the Markov process, bj(yk)
corresponds to the transition probabilities of the channel3

bj(yk) = p(yk|cj) =
1√
2πσ

e−
(yk−cj )2

2σ2 , (2.58)

and πi is the a priori probability of xn belonging to interval Ii. These probabilities
can be readily calculated from the invariant density of the map as

πi = F

(

i + 1

P

)

− F

(

i

P

)

, (2.59)

where F (x) is the distribution function. The sequence d
ŝn
k

k , k = 0, · · · , L − 1,
is the ML quantized sequence corresponding to the block of received symbols

yn, · · · , yn+L−1. To proceed with the algorithm, we store d
ŝn
0

0 , decide over

b̂n+1 =

⌊

d
ŝn
0

0 +
1

2

⌋

, (2.60)

and perform the same algorithm over the following block of L symbols,
yn+1, · · · , yn+L. The main difference with the algorithm in [Kisel et al., 2001] is
the application of this sliding window scheme in order to limit the memory require-
ments of the sequence estimation algorithm [Escribano et al., 2006b]. Note that,
contrary to the heuristic decoding and the recursive heuristic decoding, we do not
force the values of the received sequence yn to belong to the [0, 1] interval. We will
not do it either for the next algorithm.

3Note that the decoder requires the knowledge of the noise variance σ2. This variance is easy to
find in the case of an AWGN channel by standard methods and so its calculation is not addressed
here [Proakis, 2001].
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Maximum a posteriori BCJR decoding

The algorithm previously described performs Maximum Likelihood Sequence Es-
timation (MLSE), which is not optimal for minimizing the bit error probability.
Since we know the pdf’s of the sent and received data, we can also resort to Maxi-
mum A Posteriori (MAP) sequence decoding, since the MAP framework is known to
be better in lowering the final BER in communications systems [Haykin, 2001]. The
possibility of MAP estimation of a chaotic sequence has already been addressed in
its optimal form [Pantaleón et al., 2000; Pantaleón et al., 2002; Luengo et al., 2002;
Pantaleón et al., 2003; Luengo, 2006], but the resulting algorithms are not always
feasible from a practical sequence decoding point of view. We then propose our own
alternative that makes use of the BCJR algorithm4 derived in [Bahl et al., 1974] for
the estimation of the a posteriori probabilities of the states and transitions of a first
order Markov chain. In our case, we can adapt the algorithm in a pretty straight-
forward way, starting from the same definitions previously established for the case
of Viterbi decoding. Therefore, we have a Markov chain with p possible states and
the same transition matrix T of the ML case. We also reproduce the sliding window
scheme and we take a decoding block of L received symbols yn, · · · , yn+L−1. Again,
we say that the state sk at time k = 0, · · · , L − 1 is sk = i when xn+k lies in the
interval Ii. The trellis defined by the Markov chain is not initialized nor ended at a
given state, and this has to be taken into account in the initialization steps of this
MAP algorithm.

To build the algorithm, we have to calculate several probability functions (γ, α,
β and λ) as stated in [Bahl et al., 1974]. γ is defined as the transition probability
at time n between two subsequent states when the received sample is yn and follows
the general expression

γn(i, j) = P (sn = j, yn|sn−1 = i) = (2.61)

=
∑

x

P (sn = j|sn−1 = i) P (xn = x|sn−1 = i, sn = j) p (yn|x) .

As we operate with the quantized symbolic sequence, we replace again the possible
values of xn by the values of the center of the intervals cj . So, in a transition from
sn−1 = i to sn = j, the only possible quantized chaotic output is cj regardless of
sn−1, and P (xn = x|sn−1 = i, sn = j) = 1 when xn ∈ Ij and is 0 in the rest of cases.

P (sn = j|sn−1 = i) is the transition probability tij and p (yn|cj) = 1
σ
√

2π
e−

(yn−cj)2

2σ2 is
the channel output probability. Once we have defined γ, the evaluation of the rest
of probability functions is straightforward following [Bahl et al., 1974]. Taking into
account that we apply the algorithm in a sliding window scheme, it consists in the
following steps

4Named after the initials of the authors, Bahl, Cocke, Jenilek and Raviv.
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Calculate the probability function:

γn
k (i, j) = P (sk = j, yn+k|sk−1 = i) = tij

1

σ
√

2π
e−

(yn+k−cj )2

2σ2 (2.62)

k = 1, · · · , L i, j = 0, · · · , p − 1

Initialize and forward calculate the probability function:

αn
0 (j) = λn−1

1 (j) (2.63)

αn
k(j) = P (sk = j, (yn, · · · , yn+k−1)) =

∑

i

αn
k−1(i)γ

n
k (i, j) (2.64)

k = 1, · · · , L i, j = 0, · · · , p − 1

Initialize and backward calculate the probability function:

βn
L(j) = αn

L(j) (2.65)

βn
k (j) = P ((yn+k · · · yn+L−1) |sk = j) =

∑

i

βn
k+1(i)γ

n
k+1(j, i) (2.66)

k = L − 1, · · · , 0 i, j = 0, · · · , p − 1

Finally compute the a posteriori probabilities:

λn
k(i) = P (sk = i, (yn · · · yn+L−1)) = αn

k(i)βn
k (i) (2.67)

k = 1, · · · , L i = 1, · · · , p

To decode the bit at time n + 1, n = 0, · · · , N − 1, we take the state imax that
maximizes the probability λn

1 (i), and decode according to b̂n+1 = ⌊cimax
+ 1

2
⌋, where

cimax
is the center of the interval Iimax

. Note that, in the initializing step for α, we
take the resulting a posteriori values λ from the preceding decoding block. For y0,
we initialize equiprobably α1

0(i) = 1
P

, i = 0 · · · p − 1, taking into account that no
previous evidence can be used in this case. The algorithm proceeds in the same way
by taking the next block of received symbols yn+1, · · · , yn+L in the sliding window
scheme.

2.5. Performance analysis

Finding out possible performance bounds for the bit error probability in the cases
of the four decoding methods proposed could be a very difficult task. Nevertheless,
the simple analysis of the heuristic decoding when M = 2 symbols will allow us to
gain some insight on the encoding and decoding processes. For higher values of M ,
the theoretical analysis becomes quickly unfeasible. When M = 2, we can consider
basically three cases
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yn+1 < 0

Recall that this value is normalized as yn+1 = 0. In this case, z0
n = 0 and

z1
n = 1/2, and we get

Pb1 = P

(

yn+1 < 0,
(

z1
n − yn

)2
<
(

z0
n − yn

)2
, xn <

1

2

)

+

+ P

(

yn+1 < 0,
(

z0
n − yn

)2
<
(

z1
n − yn

)2
, xn ≥ 1

2

)

(2.68)

yn+1 > 1

Recall that this value is normalized as yn+1 = 1. Therefore, z0
n = 1/2 and

z1
n = 1 and the decoded symbol will always be bn+1 = 1, so

Pb2 = P

(

yn+1 > 1, xn <
1

2

)

(2.69)

0 ≤ yn+1 ≤ 1

Now, no restriction or normalization is applied, and

Pb3 = P

(

0 ≤ yn+1 ≤ 1,
(

z1
n − yn

)2
<
(

z0
n − yn

)2
, xn <

1

2

)

+

+ P

(

0 ≤ yn+1 ≤ 1,
(

z0
n − yn

)2
<
(

z1
n − yn

)2
, xn ≥ 1

2

)

(2.70)

Knowing that, in the BSM case, yn+1 = xn+1 + nn+1 = f(xn) + nn+1, z0
n = yn+1/2,

z1
n = yn+1/2 + 1/2, yn = xn + nn, and that nn and nn+1 are independent and

identically distributed, we arrive at the following result after some algebra

yn+1 < 0

P B
b1 =

1

4

∫ 1
2

0

erfc

(

2x

√

12
Eb

N0

)

erfc

(

(

1

4
− x

)
√

12
Eb

N0

)

dx + (2.71)

+
1

2

∫ 1

1
2

erfc

(

2x

√

12
Eb

N0

)[

1 − 1

2
erfc

(

(

1

4
− x

)
√

12
Eb

N0

)]

dx

yn+1 > 1

P B
b2 =

1

4
erfc

(

√

12
Eb

N0

)

+
1

2
√

48π Eb

N0

(

1 − e
−12

Eb
N0

)

(2.72)
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0 ≤ yn+1 ≤ 1

P B
b3 =

1
√

48π Eb

N0

∫ 1

0

(

1

2
− x

2

)

[

erfc

(

(

1

4
− x

2

)
√

12
Eb

N0

)

+

+ erfc

(

(

1

4
+

x

2

)
√

12
Eb

N0

)]

dx (2.73)

The total bit error error probability will be P B
b = P B

b1 + P B
b2 + P B

b3 .
We have also addressed this problem with the MLM system. Taking into account

its own p(x) and the corresponding expressions for z0
n and z1

n, we arrive at

yn+1 < 0

P M
b1 =

1

2

∫ 1
2

0

1

π
√

x(1 − x)
erfc

(

2

(

1

4
− x

)
√

2
Eb

N0

)

·

·
[

1 − 1

2
erfc

(

2 (−4x(1 − x))

√

2
Eb

N0

)]

dx +

+

∫ 1

1
2

1

π
√

x(1 − x)

[

1 − 1

2
erfc

(

2

(

1

4
− x

)
√

2
Eb

N0

)]

·

·
[

1 − 1

2
erfc

(

2 (−4x(1 − x))

√

2
Eb

N0

)]

dx (2.74)

yn+1 > 1

P M
b2 =

1

2

∫ 1
2

0

1

π
√

x(1 − x)
erfc

(

2(1 − 4x(1 − x))

√

2
Eb

N0

)

dx (2.75)

0 ≤ yn+1 ≤ 1
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P M
b3 =

∫ 1
2

0

p(x)

∫ 1−h(x)

−h(x)

√

2

π

Eb

N0

e
8

Eb
N0

z2 · (2.76)

· erfc
(

(

1 +
1

2

√

h(x) + z − 1

2

√

1 − h(x) − z − x

)
√

2
Eb

N0

)

dzdx +

+

∫ 1

1
2

p(x)

∫ h(x)

−1+h(x)

√

2

π

Eb

N0

e
8

Eb
N0

z2 ·

·
[

2 − erfc

(

(

1 +
1

2

√

h(x) + z − 1

2

√

1 − h(x) − z − x

)
√

2
Eb

N0

)]

dzdx

p(x) =
1

π
√

x(1 − x)
h(x) = 4x(1 − x) (2.77)

Again, the total bit error probability is P M
b = P M

b1 + P M
b2 + P M

b3 . All the equations
drawn for the BSM and MLM cases, with the exception of Eq. (2.69), require
numerical integration [Abramowitz and Stegun, 1965].

On the other hand, in the case of the ML decoding algorithm, an MLSE estima-
tion of the bit error probability based on the minimum squared Euclidean distance
between all the possible encoded sequences could be given as a good approxima-
tion when Eb/N0 → ∞. This was done for the BSM and the tent map in [Kozic
et al., 2003b]. However, it was also shown there that finding this minimum squared
Euclidean distance is not an easy task, either for the finite precision or the infinite
precision chaos-based encoding systems. Therefore, we recall here only that a tight
upper bound for the bit error probability of the BSM encoding system under the
assumption of MLSE decoding is

P B
b ≤ erfc

(

√

Eb

N0

)

. (2.78)

Together with BPSK, we will plot for comparison purposes the bit error probability
of the well known differential chaos shift keying (DCSK) system, whose expression
is [Abel and Schwarz, 2002]

PDCSK
b =

1

2
erfc







√

√

√

√

(

4

(

Eb

N0

)−1

+ 4L

(

Eb

N0

)−2
)−1






, (2.79)

where L, called spreading factor, is the number of chaotic samples sent to the channel
for each input information bit.

2.6. Simulation results

In all cases, except for Fig. 2.18, we have chosen D = 20 bits per symbol.
This guarantees that 2−D is small enough to make the difference between xn and
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Figure 2.8. Theoretical bit error probability and simulation results for the
BSM encoder when performing heuristic decoding with M = 2.
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Figure 2.9. Theoretical bit error probability and simulation results for the
MLM encoder when performing heuristic decoding with M = 2.

x′
n negligible in practice, while making it possible to use the encoding scheme with

an arbitrary block size N , as a value D ≈ N would make the truncation process
useless. In any case, this condition is always met, since we have performed all the
simulations with a data block size of N = 100000. For comparison, we plot in several
of the following diagrams the bit error probability of BPSK [Proakis, 2001], and of
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DCSK with L = 20 [Abel and Schwarz, 2002; Lau and Tse, 2003]. This means that
20 chaotic symbols are produced for each information bit bn. We will verify that, in
most of the cases, the performance of the chaotic systems proposed remains between
the bit error probability curves of BPSK and DCSK.

In Figs. 2.8 and 2.9, we have depicted the simulation results for the BSM and
MLM systems when decoding with the heuristic algorithm with M = 2, together
with the bounds drawn in the preceding section. We also show the individual contri-
butions to the bit error probability, Pb1, Pb2 and Pb3. As it may be seen, Eqs. (2.72)
and (2.75) give reason of the behaviour of the system as Eb/N0 → ∞, and, due to
their polynomial dependence on Eb/N0, they are responsible of the residual BER
that remains for large signal to noise ratios. The reason for this is that yn+1 > 1
leads to inverse values 1/2 and 1 as stated, both values decoded as b̂n+1 = 1 and this
will always lead to an error if xn < 1/2 was sent. The other terms of Eqs. (2.71)
and (2.74) affect the performance only in the region of lower Eb/N0. For example,
in the BSM system, yn+1 < 0 leads to the inverse values 1/2 and 0, and so, for
limited noise, if xn < 1/2 and yn+1

∼= 2xn + nn+1 < 0, it is most probable that xn

is near 0, (z0
n − yn)

2
is also near 0 and the symbol is decoded successfully with high

probability. The terms of Eqs. (2.73) and (2.76) are dominant in the range of middle
Eb/N0, and also drop fast as the Eb/N0 grows, implying that, for a decreasing noise
power, the decoding process is able to decode the symbol properly.
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Figure 2.10. BER for the BSM encoder in the case of heuristic decoding,
with D = 20 bits and different M . ’x’: M = 1. ’△’: M = 2. ’▽’: M = 3.
’+’: M = 4. ’*’: M = 8. The performance of BPSK (continuous line) and DCSK
(dash-dotted line) with L = 20 are shown for comparison.

If we look into Figs. 2.10, 2.11 and 2.12, where we show the results for the heuris-
tic decoding with different M , we appreciate two different regions in the resulting
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Figure 2.11. BER for the MLM encoder in the case of heuristic decoding,
with D = 20 bits and different M . ’x’: M = 1. ’△’: M = 2. ’▽’: M = 3.
’+’: M = 4. ’*’: M = 8. The performance of BPSK (continuous line) and DCSK
(dash-dotted line) with L = 20 are shown for comparison.
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Figure 2.12. BER for the FLPM encoder in the case of heuristic decoding,
with D = 20 bits and different M . ’x’: M = 1. ’△’: M = 2. ’▽’: M = 3.
’+’: M = 4. ’*’: M = 8. The performance of BPSK (continuous line) and DCSK
(dash-dotted line) with L = 20 are shown for comparison.
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BER graphs for the three encoding maps: one waterfall region, tending to a curve
some dB away from the BPSK case, and one floor region, whose value becomes lower
with increasing M , thus establishing a tradeoff between decoding complexity and
desired BER. The main reason for this improvement is that the samples can be cor-
rectly decoded with higher probability as the number of consecutive samples taken
into account grows, so that there is more information available to decide over the
symbol and the redundancy is employed more efficiently. Going back again to Figs.
2.8 and 2.9, we verify that it is the term Pb2 the most affected by the increasing of
M . Extrapolating from the M = 2 case, we can think that the reason for this error
floor is associated with the reference samples yn+M−1 lying outside the interval [0, 1].
We can deduce thus that the increase in decoding complexity by increasing M and
the using of a higher quantity of redundancy to decode each symbol can compensate
for the errors induced when the reference symbol lies outside the interval [0, 1]. As
a consequence of this, the value of the error floor decreases. On the other hand, the
performance in the waterfall region does not improve with increasing M , but tends
to a curve very close to Pb3 for the M = 2 case, which is related to the samples lying
inside [0, 1]. Therefore, the errors induced by samples with reference within [0, 1]
seem to be unaffected by the availability of extra redundancy when M > 2.
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Figure 2.13. BER for the BSM encoder in the case of recursive heuristic
decoding, with D = 20 bits, M = 4 symbols and different number of iterations. ’x’:
1 iteration. ’△’: 2 iterations. ’▽’: 3 iterations. ’*’: 7 iterations. The performance
of BPSK (continuous line) and DCSK (dash-dotted line) with L = 20 are shown for
comparison.

In Figs. 2.13, 2.14 and 2.15, we can see the results obtained when using the
recursive heuristic scheme. In this case, with a fixed complexity (D = 20, M = 4),
we obtain better results than in the former case: the floor region falls down very
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Figure 2.14. BER for the MLM encoder in the case of recursive heuristic
decoding, with D = 20 bits, M = 4 symbols and different number of iterations. ’x’:
1 iteration. ’△’: 2 iterations. ’▽’: 3 iterations. ’*’: 7 iterations. The performance
of BPSK (continuous line) and DCSK (dash-dotted line) with L = 20 are shown for
comparison.
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Figure 2.15. BER for the FLPM encoder in the case of recursive heuristic
decoding, with D = 20 bits, M = 4 symbols and different number of iterations. ’x’:
1 iteration. ’△’: 2 iterations. ’▽’: 3 iterations. ’*’: 7 iterations. The performance
of BPSK (continuous line) and DCSK (dash-dotted line) with L = 20 are shown for
comparison.
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fast with each iteration, achieving the bounding curve some dB away from the
BPSK BER in 7 iterations, at least to a simulated BER of 10−5. This is a great
improvement, since the complexity of the decoder changes from O(2M) to O(q2M),
with q meaning the number of iterations, and the recursive algorithm performs well
with moderate values of M . Therefore, we can reach the same performance as in the
heuristic decoding case, but at a lower complexity, just by performing a number of
iterations that only increase the processing time linearly, instead of exponentially.
The recursive alternative is then the only way to make heuristic decoding potentially
applicable in a real system.

0 2 4 6 8 10 12 14

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

Figure 2.16. BER in the case of ML Viterbi decoding, with p = 32 states and
L = 10 symbols. ’+’: BSM encoder. ’*’: MLM encoder. ’o’: FLPM encoder. The
performance of BPSK (continuous line) and DCSK (dash-dotted line) with L = 20
are shown for comparison.

In the case of Viterbi decoding (Fig. 2.16), we can see that, for p = 32, L = 10,
the results are practically the same as those obtained in the recursive heuristic de-
coding case with 7 iterations and M = 4 (i.e., without error floor region down to
10−5). With the heuristic algorithms, we saw that we can achieve the performance
given by the waterfall curve at the expense of a higher M or a higher number of iter-
ations, and the results will be always affected by the error floor, even when it could
be low enough. However, the Viterbi decoding converges to the limit performance of
the waterfall curve from the start. The BCJR decoding results shown in Fig. 2.17
lead to an even closer performance to the BPSK BER, practically coinciding with
the expected limit performance calculated through the minimum squared Euclidean
distance analysis in the BSM case [Kozic et al., 2003a; Kozic et al., 2003b]. This
bound was given in Eq. (2.78) and it is two times the expected bit error probability
of BPSK. In fact, the MAP algorithm proposed is near to the optimum for the type
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Figure 2.17. BER in the case of MAP BCJR decoding, with p = 32 states
and L = 10 symbols. ’+’: BSM encoder. ’*’: MLM encoder. ’o’: FLPM encoder.
The performance of BPSK (continuous line) and DCSK (dash-dotted line) with L =
20 are shown for comparison.

of encoding used here and sheds light on how to improve the decoding systems for
the more efficient encoding schemes recently proposed [Kozic et al., 2003a; Kozic
et al., 2003b; Kozic, 2006]. The complexity of the Viterbi and BCJR algorithms
grows as O(Lp), with p being a power of 2, and it exhibits the same behaviour as
the recursive heuristic algorithm, with a linear and an exponential term. Neverthe-
less, the ML method is more complex than the heuristic alternatives, and the MAP
one is even more complex than the ML, in the sense of the number of operations
(sums and multiplications) needed for a comparable set of parameters.

After examining all the results, we see that the best performance is obtained
with the BSM system, and not by the MLM, even though with simple decoding it
was the opposite. The FLPM system, as expected, is the worst of the three. This
means that the pdf as design factor for piecewise nonlinear encoding maps is not a
good choice, and that the dynamics of the map is the most important factor for the
final performance, regardless of the distribution of the data. The results also point
to the better suitability of the piecewise linear maps in the AWGN channel.

In Fig. 2.18 we explore further the behaviour of the ML Viterbi decoding and
the MAP BCJR decoding algorithms [Escribano et al., 2006b]. We illustrate only
the case of the BSM system with different combinations of D, L and p, and even
the case of decoding a whole block of data without the sliding window framework.
We can see that the improvement achieved by increasing p or L is in general not
very high. The results show almost a constant gap between the Viterbi and the
BCJR alternatives in all the cases, though the MAP algorithm is more affected by
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Figure 2.18. Case study of BER with MAP BCJR decoding vs ML Viterbi
decoding for the BSM encoder.

changes in the parameters. We see also that the MAP algorithm can be efficient
in approaching the limit performance of BSM, at the expense only of increasing L
with p fixed or viceversa. Both for the Viterbi and the BCJR algorithms, the non-
sliding window results are the same and keep closest to the limit of the performance
attainable, so that in this case the gap between the MAP and the ML results is
filled and we can conclude that the sliding window device imposes an almost fixed
penalty to the performance of the ML decoding. Note finally how the case when
the quantization in the encoding process matches the symbolic representation in
the decoding process5 does not offer better results than the case where the chaotic
sequence is closer to the real one (D = 20), specially with MAP decoding.

2.7. Concluding remarks

We have described a communications system that uses chaos-based encoding and
decoding blocks, and we have shown a method to design, under some constraints,
an encoding chaotic map starting with the desired invariant density. We have also
reviewed four possible decoding algorithms suitable for the chaos-based encoding
proposed. Using these decoding algorithms, we have tried to gain insight into the
behaviour of the system, its performance and possibilities.

The maps proposed, with different properties respecting their dynamics and
invariant density, have not proved to be good performing, at least in the sense
of behaving better than uncoded BPSK. This is a well established fact for the
BSM encoding system [Kozic, 2006]. Nevertheless, even the map with the worst

5That is to say, when D = 5 and p = 32.
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bit error probability for simple decoding, the FLPM, was able to perform better
than other standard chaotic based systems [Abel and Schwarz, 2002; Lau and Tse,
2003; Xiaofeng et al., 2004]. Nowadays, there exist a number of techniques able
to provide good coding gains with chaos-based communications systems similar to
the one presented here [Schimming and Hasler, 2002; Escribano et al., 2006c; Kozic
et al., 2006], but the developments of this chapter serve us to gain an invaluable
insight into the working-out and possibilities of communicating binary data with
discrete chaotic maps.

The design task accomplished had as objective to verify how important can
be the map dynamics face to the invariant density, and how such factors, when
considered together, could affect the BER on the decoder side. Though the invariant
density of the BSM concentrates more data in the region of the deciding threshold,
this does not degrade the performance with respect to the MLM system, which,
respecting the pdf shape, could be seen as a case closer to BPSK than the BSM
system. This means clearly that the implicit dynamics of the maps involved is more
important for decoding than the pdf of the encoded sequence, and that the piecewise
linear dynamics offers advantages over the piecewise nonlinear dynamics at least in
a channel like the AWGN one. The FLPM exhibits a BER in the case of direct
decoding (see Fig. 2.7) worse than the other two cases, and this property holds
when decoding the sequence with any of the algorithms proposed. This means that
the concentration of data around the threshold point imposes a severe penalty that
cannot be easily overcome. In some way, we can say that the pdf can account for
the general behaviour (a pdf with more data around the critical point leads surely
to worse results), but not for the details (a uniform pdf can offer better results than
a pdf designed to avoid the accumulation of data around the critical point).

With respect to the decoding algorithms proposed, we can draw two important
consequences that should not be overlooked in this kind of chaos-based communica-
tions:

1. The received samples which, after the addition of the Gaussian noise, lie out-
side the definition interval, play a major role in the final BER performance
when only a limited number of samples is involved in the decoding of each of
the bits, and

2. The best possible performance for a given chaos-based encoding is only at-
tainable if the evidence stored in the whole sequence is effectively used and
propagated during the decoding process, thus helping to minimize the effect
of the outlying samples.

With the heuristic decoding there was a tradeoff between complexity and error floor
not easy to manage, while the recursive variant, and the ML and MAP decoding
algorithms offered lower complexity alternatives leading to much better results, since
they were able to propagate the evidence more efficiently. We have also shown
that MAP decoding, though more time consuming, leads to better results than ML
decoding when using a sliding window framework, and this gives us a clue that a
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possible concatenation of chaotic systems with iterative MAP decoding, as is done
in turbocodes or in serial concatenation of channel codes, can possibly improve the
behaviour of chaos-based communications systems. Chapters 4 and 5 will show the
accurateness of this hint.



38 Chapter 2. Coding and Decoding with Discrete Chaotic Maps



Chapter 3

Chaos Coded Modulations

over Dispersive Channels

3.1. Introduction

We have seen in Chapter 2 that encoding binary data with antisymmetric piece-
wise nonlinear maps cannot do better than the simple system based on piecewise
linear BSM, at least when we choose as design criterion only the invariant density
of the data. The results pointed towards a better behaviour of the piecewise lin-
ear systems in the AWGN channel. Recent work has focused on a kind of chaotic
encoding stemming from the description of piecewise linear maps in terms of a re-
lated trellis coded modulation (TCM), and has provided a generalization of this
framework to chaotic encoding systems without the need of a proper discrete map
equivalence [Schimming and Hasler, 2002; Kozic et al., 2003a; Kozic et al., 2006].
Moreover, these systems have proved to be more efficient than uncoded BPSK and
exhibit BER performances comparable to TCM. The key to this success has been the
approaching of the fields of digital communications and Chaos Theory, so that nowa-
days there is a number of tools to study and design chaos-based encoding systems
suitable for potential applications in communications systems.

We then drop the possibility to look deeper into the piecewise nonlinear maps
and we will proceed to study this new kind of chaos-based encoding systems, which
are based initially in a chaotic piecewise linear map driven (or controlled) by small
perturbations and whose general principles are close to the encoding rules of the
BSM system seen in the last chapter. These systems are generally designed as
chaos coded modulations (CCM) [Kozic, 2006]. Together with the review of this
class of chaos-based encoders, the main task we are interested in addressing here is
whether the simplest CCM (the one based on the BSM) can offer still advantages
in some kind of channel different from the AWGN channel. The results of Chapter
2 suggested that the redundancy contained in the BSM chaotic sequence cannot
be fully exploited in AWGN. The coded modulated characteristics of the chaotic
signal give the clue that maybe this redundancy can be useful face to dispersive
environments, as it happens with TCM [Anderson and Svensson, 2003].

According to this, this chapter deals with the study of the BSM CCM system
in two different kinds of dispersive channels. The first one is a time invariant and

39
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frequency selective channel where the main source of distortion is intersymbol inter-
ference (ISI) modeled by means of a filter [Proakis, 2001]. The second one is a time
varying and frequency non-selective channel where the main source of distortion is
flat fading [Haykin, 2001]. The analysis performed and the simulation results will
highlight the fact that the lack of good results in the AWGN channel is not enough
reason to neglect the chaos-based encoding systems, and that the commonplace of
the suitability of chaotic signals in dispersive channels can in fact become true with
a good scheme for coding and decoding.

With these goals in view, this chapter is structured as follows. Section 3.2 is
devoted to the description of the CCM system in its simplest form, and to the
derivation of a decoder suited to this sort of chaotic encoding. Section 3.3 describes
the ISI channel, addresses the analysis of the bit error probability of the BSM CCM
system, and shows by means of some simulation results the potential coding gain
achievable in this kind of channel. Section 3.4 reproduces the structure of Section
3.3, but this time with the flat fading channel. Finally, Section 3.5 is devoted to the
conclusions.

3.2. System model

In the previous chapter, we reviewed a method for encoding binary data using
chaotic maps based on the discretization of the chaotic sequence generated by the
BSM and using the conjugacy properties between the BSM and the class of one-
dimensional antisymmetric maps. We also used the invariant pdf of the chaotic
samples to design maps and to define the conjugating function needed to set a
practical encoding scheme. We have seen how the information was carried in the
associated symbolic sequence, so that the bit of interest could be exactly recovered
in absence of distortion or noise.

We have also reviewed and proposed some decoding methods. The best ones
were those which involved the whole chaotic sequence in the decoding process and
which were based on the principles of ML or MAP sequence estimation. This was
possible because, at the decoder side, after discretizing the definition interval of the
encoding chaotic map, the chaotic sequence could be substituted by the sequence of
intervals visited (i.e., its symbolic sequence), and this sequence could be finally seen
as a Markov process with a finite number of states and a series of binary transitions
determined by the information bit sequence.

This point of view allowed the uncoupling of the discretization level at the en-
coding side and at the decoding side. In this way, at the encoder it could be set
as high as possible to keep the discretized chaotic sequence closest to the real one,
and as low as possible at the decoder to reduce the complexity of the decoding algo-
rithm. This helped to overcome some side effects which appeared with the decoding
algorithms based on the estimation of the initial condition when the quantization
level in the encoder was not high enough.

Nevertheless, for the decoding methods based on ML or MAP sequence estima-
tion, there were no such side effects nor such drawbacks, and there is no need to
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keep the difference between the quantization level at the encoder and at the decoder.
So, from this point onwards, we will use an encoding method which requires a de-
coding algorithm matched to the same discretization level and whose extension and
generalization to multidimensional systems has provided good BER results even in
the AWGN channel. It also has the advantage of being closely related to the well
known TCM systems [Ungerboeck, 1982; Kozic, 2006], and thus can offer the good
properties of combined coded and modulation systems [Benedetto et al., 1988]. In
the next subsections, we review briefly this encoding method and propose a related
MAP decoding module which will allow us to derive in the following chapters new
interesting developments with potential application in chaos-based communications.

3.2.1. Encoder

The encoder, as described in terms of its map view [Kozic et al., 2003b], is a
chaos-based encoder driven by small perturbations [Schimming et al., 2002]. It
follows the recursion

zn = f(zn−1) + bn · 2−Q, (3.1)

xn = 2zn − 1, (3.2)

where Q is a natural number which we will see is related to the quantization level of
the chaotic signal, and f(z) : [0, 1] → [0, 1] is a chaotic map, which in our examples
will belong to the subset of the piecewise linear maps (PWLM) where the linear
sections have always slope 2 or −2 [Sprott, 2003]. Throughout this chapter, the
map employed will be the BSM, f(z) = 2z mod 1. Note that under these conditions
the small perturbation manifests itself after Q − 1 iterations. As seen in Eq. (3.2),
the chaotic encoded signal sent to the channel xn is defined in the [−1, 1] interval
for symmetry reasons. It is easy to show that a recursion like the one in Eq. (3.1)
leaves the finite set

SQ = {i · 2−Q|i = 0, · · · , 2Q − 1} (3.3)

invariant and, therefore, we can restrict Eq. (3.1) to SQ taking as initial condition
z0 any point in SQ (e.g. z0 = 0) [Kozic et al., 2006]. In this way, we have a chaotic
sequence quantized over 2Q possible values which coincides exactly with its symbolic
representation [Schweizer and Schimming, 2001b] and that can be described as a
trellis encoded sequence, with a state given by a shift register of Q positions and
two possible transitions in a Markov chain determined by the input bit bn. When
Q → ∞, Eq. (3.1) becomes simply the recursion by the chaotic map f(z) without
control. This kind of encoding is designed generally as chaos coded modulation
(CCM) and has an equivalent representation in terms of a trellis encoder view [Kozic
et al., 2006], since it is closely related to TCM [Ungerboeck, 1982]. When we are
restricted to the values of SQ, the encoding for the BSM map, for example, can
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simply be performed following

ri = ri−1 i = Q, · · · , 2,

r1 = bn, (3.4)

zn =

Q
∑

i=1

2−(Q+1−i) · ri,

where ri are memory positions storing successive values of the input bit bn. The
related trellis encoding like structure can be seen in Fig. 3.1.

1/2

bn
r1 r2 r3 rQ

1/2

1/2

1/2

zn

Q

Q−1

Q−2

Figure 3.1. Trellis encoder view of the BSM based CCM.

For the kind of maps mentioned and when bn is an iid binary sequence, the
invariant pdf will be uniform in [0, 1] for zn, and uniform in [−1, 1] for xn [Sprott,
2003], so that the power of this signal will be 4 times the power of zn, and, using
the result of Eq. (2.42) [Escribano et al., 2006a], we can use in our calculations

P ≈ 1

3
. (3.5)

This power P corresponds to the case when Q → ∞, but the difference with respect
to the actual value when Q ≥ 4 is negligible for our purposes. The minimum squared
Euclidean distance between all possible chaotic encoded sequences for this setup will
correspond to the binary error events with weight 1 [Kozic et al., 2003b]. For the
BSM based CCM, two sequences zn and z′n differing in only one bit will determine
a loop of length L = Q + 1 in their trellis representation (see Fig. 3.5), and so up
to L − 1 nonzero values of |zn − z′n|. This difference is an increasing power of 1/2
starting from (1/2)Q when the paths start to diverge and ending in 1/2 before the
merging of the paths. So the minimum squared Euclidean distance will be

d2
min = 4

L+m−1
∑

n=m

(zn − z′n)2 = 4

Q
∑

i=1

1

4i
=

4

3

(

1 − 1

4Q

)

. (3.6)

When needed, we will use the value d2
min ≈ 4/3 for Q ≥ 4 without incurring in much

error.
In recent work [Kozic, 2006], this setup has been expanded to the design of

multidimensional chaos-based modulators which have no associated corresponding
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discrete map and whose rate is lower than R = 1 sample per bit. The developments
we will show in this and the following chapters are easily extended to this kind of
modulators, since both our encoder and decoder are designed under the assumption
of an equivalent trellis representation, which is common to all such class of chaos-
based modulations.

3.2.2. Decoder

According to what has been said at the beginning of this section, and following
the principles of CCM shown in the preceding description, we will use for decoding
an algorithm matched to the CCM trellis representation. In this case, the symbolic
dynamics of the decoder is limited to the 2Q values within SQ and to the possible
transitions between the states represented by these discretized values. The decoding
method has been chosen taking into account the following facts:

As seen in Chapter 2, it has to be able to work over a potentially large block
of chaotic samples to overcome the problem of estimating a chaotic sample
based only on a limited number of successive samples.

We will prefer a decoding algorithm based on MAP sequence estimation, since
our first objective is to reduce the BER and MAP decoding was shown to give
better results than ML decoding in Chapter 2.

It has to be easily adaptable for concatenated iterative decoding.

This last condition stems from the fact that, as this kind of chaos-based modulation
is in fact a coded modulation, we will study in the following chapters the possibil-
ity of exploiting successfully the serial and parallel concatenation of CCM’s as is
made with other standard coded modulations [Robertson and Wörz, 1998; Caire
et al., 1998]. One possible decoding algorithm which meets the enumerated condi-
tions is the additive Soft-Input Soft-Output (SISO) decoding algorithm proposed
in [Benedetto et al., 1996] for binary block and convolutional codes. Though in
its simplified forms it is suboptimal with respect to the multiplicative MAP BCJR
algorithm [Bahl et al., 1974], it is less complex and does not suffer from numerical
problems related with the required multiplications. We could thus process large
blocks and we are not forced to resort to sliding window adaptations of the algo-
rithm as seen in the previous chapter. The core of the algorithm follows the additive
log-MAP algorithm of [Benedetto et al., 1996], but a few arrangements are needed
to adapt it to CCM. This kind of SISO modules for sequence MAP decoding of chaos
coded modulated signals have already been employed in communications schemes
in [Escribano et al., 2005; Escribano et al., 2006c]. In the following, we will review
the algorithm and point out the particularities.

In Fig. 3.2 we have depicted the SISO module with its inputs and outputs.
The quantities Λ(bn; ·) represent log probability ratios over the binary data bn. The
parameter I in Λ(·; ·) stands for input, and O for output. The vector r = (r1, · · · , rN)
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Figure 3.2. Input and output scheme of the SISO decoding module.

represents a block of N received samples. The sequence rn corresponds to the
encoded sequence xn after having suffered the distortion of the channel, i.e.,

rn = qn(x,Θ), (3.7)

where the function qn(x,Θ) is the channel function at time n. It will include at
least AWGN and possibly other sources of impairment. The expression in Eq. (3.7)
remarks the fact that the output rn will depend in general on the CCM signal block
x = (x1, · · · , xN) (or only on xn if the channel has no memory) and on the channel
parameters, which are denoted implicitly under the dummy vector Θ.

Let us denote as si = i the state corresponding to the i-th element of SQ,
i = 0, · · · , 2Q − 1, see Eq. (3.3). If the encoder is initially at state sj and an input
bit bn drives it at state sk at time n, the output will be given by zn = k · 2−Q

and xn = 2zn − 1. According to these definitions, the output log probability ratio
Λ(bn; O) will be calculated as follows

Λ(bn; O) = log

∑

sj−−−→bn=1
sk

exp (αn(sj) + π(xn; I) + βn(sk))
∑

sj−−−→bn=0
sk

exp (αn(sj) + π(xn; I) + βn(sk))
, (3.8)

where the summations are taken over all possible transitions sj−−−→bn=b
sk between states

where bn takes the value b and the corresponding output is xn. The quantities
αn(·) and βn(·) are probabilities for the corresponding states at time n which will be
reviewed in the following. π(xn; I) = log [p(rn|xn)] is the transition log probability of
the channel. In the AWGN channel, this transition probability is given by [Proakis,
2001] (see Subsection 2.4.2)

p(rn|xn) =
1√
2πσ

exp

(

−(rn − xn)2

2σ2

)

, (3.9)

where, as usual, σ2 is the power of the Gaussian noise, related to the signal to noise
ratio as

σ−2 =
1

2P

Eb

N0

. (3.10)

Therefore, the log transition metric for the algorithm would be π(xn; I) = A(rn −
xn)2 + B, where A and B are constants which depend on the signal to noise ratio
Eb/N0. For channels with other impairment sources, we will have to change this
channel metric accordingly. Note that xn is the quantized value for the chaotic
sample taken as candidate to calculate the distance with respect to the received
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sample rn [Escribano et al., 2006b]. This is analogous to the replacing of the actual
chaotic sample by the interval center values in Subsection 2.4.2.

If sj denotes again a starting state and sk an ending state for a transition at time
n given by the bit bn = b and whose corresponding output is xn, the probabilities
αn(·) and βn(·) are calculated through a forward-backward algorithm according to

αn(sk) = log





∑

sj

exp (αn−1(sj) + π(xn; I) + π(bn = b; I))



+ hα,

n = 1, · · · , N, (3.11)

βn−1(sj) = log

(

∑

sk

exp (βn(sk) + π(xn; I) + π(bn = b; I))

)

+ hβ,

n = N, · · · , 1. (3.12)

The constants hα and hβ are normalization constants needed to avoid overflows in
the algorithm, and π(bn = b; I) = log [p(bn = b; I)] is the a priori input log probability
for bn = b. Since the input log probability ratio Λ(bn; I) is defined as

Λ(bn; I) = log
p(bn = 1; I)

p(bn = 0; I)
, (3.13)

then

π (p(bn = 1; I)) = Λ(bn; I) − log (1 + exp (Λ(bn; I))) , (3.14)

π (p(bn = 0; I)) = − log (1 + exp (Λ(bn; I))) . (3.15)

When there is no iterative decoding, p(bn = b; I) = 1/2, b = 0, 1, and Λ(bn; I) = 0.
To compute Eqs. (3.11) and (3.12), we need the initial values for probabilities α0(·)
and βN(·). As we will always start with z0 = 0, the encoder at the initial state
will be in the zero state. Therefore α0(sj = 0) = 0 and α0(sj 6= 0) = −∞. With
respect to βN (·), we will not perform trellis termination, so that it will be initialized
equiprobably, βN(sk) = log(1/2Q).

The log probability ratio Λ(bn; O) can be employed as input log probability ratio
Λ(bn; I) for other SISO module in a concatenated scheme, or, when using CCM
alone, hard decoded to give the estimated bit b̂n as

Λ(bn; O) > 0 ⇒ b̂n = 1,

Λ(bn; O) < 0 ⇒ b̂n = 0. (3.16)

From now onwards, we will use the SISO module in the described log-MAP form,
without any further simplification in the calculation of the logarithm of the sum of
exponentials (as is made for example in its max-log-MAP variant [Benedetto et al.,
1996]).
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3.3. Chaos Coded Modulations over ISI channels

We have mentioned that we will consider at least the presence of AWGN in
the channel, but also other possible kinds of impairment. As the target of this
chapter is the evaluation of the CCM scheme in dispersive channels, face to which
the chaotic sequences are supposed to offer potential good properties, we will first
try a channel with intersymbol interference (ISI). The ISI can easily appear in a
broadband modulation like CCM due to the usual presence of filters at the encoder
or at the decoder needed to comply with band and interference restrictions. Though
there are a large number of strategies to cope with this kind of distortion, we are
interested in verifying if this coded modulation can be robust against a certain degree
of ISI without the application of additional equalization techniques.

3.3.1. Channel model

Chaos
coded

modulator

SISO

decoder

bn yn r n

nn

xn pn bn

Channel

ISI

h
θ

Figure 3.3. Block diagram of the communications system.

The channel is a conventional ISI channel with AWGN, where the ISI is simulated
by a finite impulse response (FIR) linear filter [Oppenheim and Schafer, 1989] given
by a set of coefficients h = (h−M , · · · , hM) [Proakis, 2001]. We show the complete
communications system in Fig. 3.3, where we have depicted the chaos-based encoder,
the channel model, the decoder and the decisor. This channel model corresponds
to the case where, due to band constraints, some bandlimiting filtering has to be
applied on the encoder or the decoder side (or both). As we do not perform iterative
decoding and the a priori bit probabilities are the same, the SISO block only shows
one input, i.e., Λ(bn; I) = 0. For convenience, we have denoted the sequence of
output log probability ratios Λ(bn; O) as pn. The hard decoding of these samples pn

is represented in Fig. 3.3 by a slicer with threshold θ = 0.
The impulse response h of the filter is normalized following

∑M

m=−M |hm|2 = 1,
so that it does not affect the signal to noise ratio at the receiver. The AWGN process
adds iid samples nn that are Gaussian distributed with mean η = 0 and power σ2.
In our examples, we will consider three possible degrees of distortion, given by the
impulse responses hl for low ISI, hm for moderate ISI and hh for high ISI. Their
coefficients are shown in Table 3.1 and depicted in Fig. 3.4.

The low ISI filter represents a lowpass FIR filter with normalized cutoff fre-
quency 0.9, the moderate ISI filter has normalized cutoff frequency 0.8, and the
impulse response for high ISI was taken from [Proakis, 2001]. With respect to the
decoding algorithm, we will use the metrics adapted to the AWGN channel as seen
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m hl hm hh

-3 0.034 0.040 0.0
-2 -0.063 -0.103 0.227
-1 0.089 0.171 0.460
0 0.896 0.800 0.688
1 0.089 0.171 0.460
2 -0.063 -0.103 0.227
3 0.034 0.040 0.0

Table 3.1. ISI FIR filter coefficients.
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Figure 3.4. Coefficients for the ISI filters; ’o’: hl; ’*’: hm; ’2’: hh.

in the previous subsection, without further processing as we are not interested in
performing equalization.

Taking into account these definitions, the signal at the output of the channel
(see Fig. 3.3) will be

rn = qn(x,Θ) = yn + nn =

M
∑

m=−M

hmxn+m + nn. (3.17)

In the next subsection we study theoretically the performance of the system in this
kind of ISI channel and attempt to derive a bound for the bit error probability.
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3.3.2. Performance analysis and bounds

To establish comparisons with the performance of the chaos coded modulated
system, we will take into account also the case of uncoded binary phase shift keying
(BPSK) over the same channel, as was done for the AWGN channel in Chapter 2.
Recall that in the BPSK case the input to the channel is simply given by x∗

n = 2bn−1.
Let x∗ = (x∗

n−M , · · · , x∗
n+M) denote an iid sequence of 2M +1 BPSK symbols. There

are a total of 22M+1 possible sequences x∗. It is easy to show that the bit error
probability under threshold decoding of the received value yn =

∑N

m=−N hmx∗
n+m+nn

is given by [Prabhu, 1973]

Pb =
1

22M+1





∑

x∗|x∗

n=−1

erfc

(

−
√

Eb

N0

M
∑

m=−M

hmx∗
n+m

)

+

+
∑

x∗|x∗

n=+1

erfc

(

√

Eb

N0

M
∑

m=−M

hmx∗
n+m

)



 , (3.18)

where the summations are taken over all possible sequences x∗ when x∗
n takes the

corresponding value −1 or +1. This bit error probability can be calculated only for
low and moderate values of M , but it is also possible to give good bounds for the
case when M → ∞ [Prabhu, 1973].

In the case of our CCM system, we need to compute the error probability in
terms of the associated error events, since we perform sequence decoding [Lin and
Costello, Jr., 2004]. Therefore, there will be an error event when, having sent the
sequence x, the decoder chooses x′ 6= x, whose values diverge from a common state
at time m and eventually merge again after L steps in (possibly) other different
common state1, i.e., xn 6= x′

n, n = m, · · · , L+m− 2 (xm+L−1 = x′
m+L−1 because the

ending states are the same). Since the a priori probabilities are the same, the MAP
decoding performed by the SISO module is equivalent to ML decoding, and, as the
decoding is based upon the metric (rn − xn)2 (see Eq. (3.9)), an error event of the
described type will happen when [Proakis, 2001]

L+m−1
∑

n=m

(rn − x′
n)2 <

L+m−1
∑

n=m

(rn − xn)2. (3.19)

This is equivalent to

L+m−1
∑

n=m

((yn − x′
n) + nn)2 <

L+m−1
∑

n=m

((yn − xn) + nn)2, (3.20)

1This is consequence of the nonlinearity of this kind of coded modulation, which makes the
analysis more complex, since the error events cannot be simply calculated assuming that the all-
zero codeword has been sent. Note also that we are assuming implicitly L ≪ N , so that these
error events appear randomly at any point of the sequence.
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and, after a little algebra, to

L+m−1
∑

n=m

(yn − x′
n)2 −

L+m−1
∑

n=m

(yn − xn)2 <
L+m−1
∑

n=m

2(xn − x′
n)nn = A, (3.21)

where yn was defined in Eq. (3.17) and we have defined the random variable (RV)
A for convenience. Since nn are iid samples of a Gaussian process N (0, σ2), and xn

and x′
n are known, A is a Gaussian RV with mean

ηA = E

[

2

L+m−1
∑

n=m

(xn − x′
n)nn

]

= 0, (3.22)

and variance

σ2
A = E

[

4(
L+m−1
∑

n=m

(xn − x′
n)nn)2

]

= 4σ2
L+m−1
∑

n=m

(xn − x′
n)2 = 4σ2d2

E , (3.23)

where

d2
E =

n=L+m−1
∑

n=m

(xn − x′
n)2 (3.24)

is the squared Euclidean distance between sequences x and x′. Recall that, when A
is a Gaussian RV [Haykin, 2001], we have

P (A > w) =
1

2
erfc

(

w√
2σA

)

. (3.25)

Then, recalling Eqs. (3.21) and (3.10), we can derive the error event probability
(EEP) for an input binary error event loop of length L as

Pe(x → x′|x) =
1

2
erfc





√

d2
eq

4P

Eb

N0



 , (3.26)

where P = 1/3 is the power of the CCM signal, and d2
eq is an equivalent squared

Euclidean distance in the ISI channel between the sequences x′ and x, given by

d2
eq =

(

∑M

n=1(yn − x′
n)2 −∑M

n=1(yn − xn)2

dE

)2

. (3.27)

We have defined this equivalent distance in analogy with the EEP in a channel where
the only source of distortion is AWGN [Proakis, 2001]

Pe(x → x′|x) =
1

2
erfc





√

d2
E

4P

Eb

N0



 . (3.28)
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It is clear that the evaluation of the bit error probability starting from the event
error probability and using union bound techniques [Proakis, 2001; Lin and Costello,
Jr., 2004] is unfeasible even for moderate values of N , Q and M . Since we cannot
use the linearity property and assume that the all-zero codeword has been sent,
the number of possible error paths for a sequence of length N under ML decoding
makes the required calculations prohibitive. Nevertheless, we can resort to the
theory of rare events, so that, for high Eb/N0 values and low ISI, we can assume
that the dominant error events will be of the minimum d2

eq kind. Exploring the error
events for minimum d2

eq is also quite a burdensome task for a coded modulation not
admitting linear simplifications like other TCM schemes [Schlegel, 1991; Carlisle
et al., 1994; Li et al., 2004; Ryan and Tang, 2004], but we have found out in our
simulations that such error events for the BSM CCM in low or moderate ISI are
the ones involving an encoded message of the kind · · · bn−101bn+2 · · · and a decoded
message with two adjacent bit errors · · · bn−110bn+2 · · · , and viceversa. In Figure
(3.5) we can see the trellis for Q = 3. We have highlighted with boldline two pairs
of paths starting from the same state and merging after some steps. We have two
merging paths with length L = Q + 1 leading to 1 bit error, 1111 and 0111 (these
are the kind of error paths leading to minimum squared Euclidean distance events
for a BSM CCM in the AWGN channel [Kozic et al., 2006]), and two merging paths
with length L = Q+2 leading to 2 bit errors, 01101 and 10101. With independence
of Q and of the preceding or following bits, in the case of low or moderate ISI, the
simulations have pointed out that the error events are mainly of the second kind for
large Eb/N0. Even the error paths leading to 2 adjacent bit errors and beginning
with 00 or with 11 lead to much higher d2

eq values and less frequent error events.
We can say that the effect of the ISI FIR filter is a transformation of the error
event spectrum, so that the minimum squared distance now is associated with input
binary error events of Hamming weight 2 and a special structure [Schlegel, 1991; Li
et al., 2004].
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Figure 3.5. Chaos coded modulation trellis for the BSM encoder with Q = 3.
Continuous lines: input bit 0; dashed lines: input bit 1.

According to this, we have only to focus on the error events of the described kind
to get a bound of the bit error probability in the high signal to noise ratio region. We
have two possibilities: we could compute the bound based on the minimum d2

eq over
all such error events, or compute the bound taking into account all possibilities for
such error events. Recall again that, since the resulting chaos coded modulation is
not linear, we cannot assume that the all-zero codeword has been sent and make the
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calculations as a function of the associated binary error event alone. The presence
of the ISI FIR filter makes things worse, preventing any simple relationship between
the values of d2

eq and the error events starting with 01 against 10, and viceversa.
Now we have to examine all the possible cases, starting from all the possible states,
not just the all-zero state. Nevertheless, if we consider the sequence x encoding the
binary message · · · , bn−1, 0, 1, bn+2, · · · and a corresponding sequence x′ encoding the
erroneous binary message · · · , bn−1, 1, 0, bn+2, · · · , we have only to evaluate 24M+2Q−1

potentially different d2
eq values. Since yn =

∑M

m=−M hmxn+m and xn is uniquely
determined by bn−Q+1, · · · , bn, it is easy to verify that only the binary samples
bn−2M−Q+1, · · · , bn−1, b

∗
n, b∗n+1, bn+2, · · · , bn+2M+Q+1 determine values of xk, x′

k and
yk that make quantities (yk − xk)

2 6= (yk − x′
k)

2, for k = n − M, · · · , n + M + Q.
It is the same for the 10 → 01 case, thus yielding a total of 24M+2Q possibilities.
In our examples, where M takes values of 2 and 3, and Q between 4 and 6, this
evaluation, though burdensome, is computationally feasible2. In Figure (3.6) we
plot the histogram of the corresponding d2

eq for the case of low ISI. It can be seen
that the distribution of d2

eq is centered around d2
E = 4/3, which we have seen is

the approximated value of the minimum squared Euclidean distance for this kind of
system in AWGN channels [Kozic et al., 2006].
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Figure 3.6. Normalized histogram of d2
eq for Q = 4 and for the error patterns

under evaluation with ISI filter hl.

If we consider that all the error events for high signal to noise ration involve
the absolute minimum of d2

eq, the bit error probability can be bounded by [Proakis,

2In the case with Q = 6 and M = 3, the possibilities are 224
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2001]

Pb ≤ βmin
1

2
erfc





√

d2
eqmin

4P

Eb

N0



 . (3.29)

The bit enumerator function βmin has to take into account the fact that the error
events lead to 2 adjacent error bits, and that only half of such possible error patterns
can be involved (01 vs 10 and viceversa, but not 00 vs 11 and viceversa), with
independence of the starting and ending state. Thus βmin = 2/2 = 1. In Fig. (3.6)
we have depicted the histogram of the 24M+2Q possible values for d2

eq, and we see
that this bound would be very conservative, as there are only a few number of error
events leading to the absolute minimum of d2

eq. A tighter bound can be evaluated
if we consider all possibilities and assume that all of them are equally likely. This
makes sense, since all binary messages are equiprobable with this setup. In this
case, the bit error probability can be approximated by the average bound

Pb ≈
βmin

24M+2Q+1

∑

d2
eq

erfc





√

d2
eq

4P

Eb

N0



 , (3.30)

where the sum is taken over the 24M+2Q possible values of d2
eq. As before, βmin = 2.

3.3.3. Simulation results

In Figs. 3.7 and 3.8 we can see the results for the proposed chaos coded mod-
ulation system and for uncoded BPSK, together with the proposed bounds. All
simulations have been run with bit and symbol blocks of length N = 10000, and
the BER computed for a minimum of 100 frames with errors. We can see that, for
the cases with low and moderate ISI, the behaviour of the chaos coded modulation
is better than uncoded BPSK for high signal to noise ratios (specially in the case
of moderate ISI), while with AWGN alone the BPSK system is known to perform
better than the BSM chaotic system [Kozic et al., 2006]. We have already verified
it in Chapter 2. This can be explained because the chaotic signal may be seen as
a case of precoding for the ISI channel, and this can be fully exploited by a good
decoder, even in the absence of equalization [Laroia et al., 1993; Laroia, 1996]. On
the other side, we can see that the influence of Q is slight, which is a desirable fea-
ture in such chaos coded system [Kozic et al., 2006]. We also see that the proposed
average bound is very tight when the ISI level is not high, while, as foreseen, the
simpler bound based upon the minimum value of d2

eq is much looser. When the ISI
level is high, the behaviour of the BSM CCM and of BPSK is equally poor, and the
bounds are useless, since there are a large number of error events involved, even for
high Eb/N0.
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Figure 3.7. Simulation results and bounds for low and high ISI. The bounds
for the BSM CCM are depicted with continuous lines. The theoretical bit error
probability for BPSK is represented with a dash-dotted line. The performance of
the BSM CCM in the AWGN channel, when Q = 5, is shown with dotted line as a
reference.
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Figure 3.8. Simulation results and bounds for moderate ISI. The bounds
for the BSM CCM are depicted with continuous lines. The theoretical bit error
probability for BPSK is represented with a dash-dotted line. The performance of
the BSM CCM in the AWGN channel, when Q = 5, is shown with dotted line as a
reference.
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3.4. Chaos Coded Modulations over frequency-non selective
fading channels

After having seen the effect of ISI on the chaotic signal, we will consider a radio
environment, where one of the main sources of distortion is the attenuation of the
signal together with the fact that it can reach the receiver from different paths, thus
leading to a self interference phenomenon. This multipath situation gives rise to
fading [Biglieri et al., 1998], which can affect the amplitude of the received signal
in different ways. We will only focus here on one class of fading, which we review
briefly in the following subsection.

3.4.1. Channel model

SISO

decoder

yn r n pn bnChaos
coded

modulator

bn xn

an nn

θ

Channel

Figure 3.9. Block diagram of the communications system.

The channel includes AWGN together with frequency non-selective (flat) fading
[Biglieri et al., 1998]. This fading process is described by an uncorrelated sequence
of amplitudes a = (a1, · · ·aN) for each block of N chaos coded modulated samples
x = (x1, · · · , xN). We assume that the fading process is slow enough so that the
fading amplitudes remain constant throughout a symbol period, but change from
symbol to symbol. Each an follows a Rician probability density function (pdf) given
by

p(a) = 2a(1 + K)e−a2(1+K)−KI0

(

2a
√

K(K + 1)
)

, a ≥ 0, (3.31)

where I0(·) is the zeroth-order modified Bessel function of the first kind, and K
is the ratio of specular to diffuse energy [Proakis, 2001]. The Rice distribution is
usually given in terms of two parameters, νR and σR, and they are related to K as

K =
ν2

R

2σ2
R

, (3.32)

so that ν2
R is directly related to the energy of the specular component and σ2

R, to the
energy of the diffuse component. This model describes well the radio propagation
anomaly caused by a partial cancellation of the signal by itself when it reaches the
receiver from at least two different paths. The Rician fading occurs when one of the
paths, typically a line of sight signal (specular component), is much stronger than
the others (diffuse component). When there is no line of sight signal, K = 0 and
we have Rayleigh fading. When the specular component becomes dominant and
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K → ∞, the channel tends to be an AWGN channel without fading. The mean and
variance of the related Rician process are given by

ηa =
1

2

√

π

1 + K
e−

K
2

[

(1 + K)I0

(

K

2

)

+ KI1

(

K

2

)]

, (3.33)

σ2
a = 1 − η2

a, (3.34)

where I1(·) is the first-order modified Bessel function of the first kind. The pdf is
normalized so that E[a2] = 1 to make sure that the signal to noise ratio at the
transmitter and the decoder side are the same. The channel is further described by
the presence of the AWGN process, which adds iid Gaussian samples nn with zero
mean and power σ2. As seen in Fig. 3.9, which is completely analogous to Fig. 3.3
with the exception of the channel description, the signal arriving at the decoder will
be given by

rn = qn(x,Θ) = qn(xn,Θ) = yn + nn = anxn + nn. (3.35)

In Fig. 3.10 we show the pdf of the fading amplitudes for the cases we will consider
in our simulations, K = 0, 5, 20, 50. We see that the Rayleigh case is the worst case
and how p(a) → δ(a − 1) as K → ∞.
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Figure 3.10. Rician pdf for several specular to diffuse energy ratios.

In a channel with fading, two important possible situations arise. In the most
favorable one, the sequence of fading amplitudes a is known to the decoder due to
the presence of some channel estimation method. In this case, we say to have perfect
channel state information (CSI) and the decoding algorithm in the SISO module uses
the metric (rn −anxn)2 [Biglieri et al., 1998] instead of the simple (rn −xn)2 AWGN
metric. In the other situation, the receiver has only information, if any, about some
parameters of the channel, such as the mean ηa, and we do not have perfect CSI.
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In this case, the metric for the SISO module will be taken as (rn − ηaxn)2 [Hall and
Wilson, 1998]. In the next subsection, we will examine both situations theoretically
and try to derive bounds for the bit error probability.

3.4.2. Performance analysis and bounds

To calculate the bounds of the bit error probability we have to take into account
that, as the a priori probabilities are the same, the MAP decoding is again equivalent
to ML decoding. Let us recall that there will be an error event when, having sent
the sequence x, the decoder chooses x′ 6= x, both sequences starting in the same
state and merging again in (possibly) other state after L steps. In the following
subsections we will develop the bounds for the case with perfect CSI and for the
case without CSI under the assumption of ML decoding and using the corresponding
decoder metrics. We will rely also on the calculation of the EEP (which is the same
as the pairwise error probability between two words differing in an error event), since
this is the usual approach for coded modulations in the fading channel [Biglieri et al.,
1995; Sayana and Gelfand, 2004; Kambo et al., 2005]. As in the Section 3.3, we
will use the performance of BPSK over the same channel to establish comparisons
and show that there is a potential coding gain in dispersive channels contrary to
the AWGN channel case. The bound for BPSK over a Rician fading channel can be
easily calculated [Proakis, 2001]

Pb ≤
1

2

1 + K

1 + K + Eb

N0

exp

(

−
K Eb

N0

1 + K + Eb

N0

)

. (3.36)

For the special case of K = 0 (Rayleigh fading), there exists an exact expression for
the bit error probability [Haykin, 2001]

Pb =
1

2



1 −

√

√

√

√

Eb

N0

1 + Eb

N0



 . (3.37)

Performance with CSI

We have mentioned that the metric for the decoding algorithm in the case with
perfect CSI is calculated as a function of (rn − anxn)2, so that, under ML decoding,
the decoder will choose the sequence x′ instead of x when [Proakis, 2001]

L+m−1
∑

n=m

(rn − anx
′
n)2 <

L+m−1
∑

n=m

(rn − anxn)2, (3.38)

for an error loop of length L starting at time m. This is equivalent to

L+m−1
∑

n=m

(an(xn − x′
n) + nn)2 <

L+m−1
∑

n=m

n2
n, (3.39)
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and, after some algebra, to

L+m−1
∑

n=m

a2
n(xn − x′

n)2 = A < 2
L+m−1
∑

n=m

nnan(xn − x′
n) = B (3.40)

where A and B are RVs whose meaning will be clear in the sequel. As x, x′ and a

are known and nn are iid samples of a Gaussian process N (0, σ2), B is a Gaussian
random variable with mean

ηB = E

[

2
L+m−1
∑

n=m

nnan(xn − x′
n)

]

= 0, (3.41)

and variance

σ2
B = E

[

4(
L+m−1
∑

n=m

nnan(xn − x′
n))2

]

= 4σ2
L+m−1
∑

n=m

a2
n(xn − x′

n)2 = 4σ2A. (3.42)

Taking into account the result of Eq. (3.25), the EEP conditioned to the fading
amplitudes for the perfect CSI case will be

Pe(x → x′|x, a) =
1

2
erfc

(

√

1

4P

Eb

N0

A

)

≤ 1

2
exp

(

− 1

4P

Eb

N0

A

)

, (3.43)

where we have made use of the inequality erfc(x) ≤ exp (−x2) [Proakis, 2001].
The unconditioned EEP will be then upper bounded by

Pe(x → x′|x) = Ea [Pe(x → x′|x, a)] ≤ Ea

[

1

2
exp

(

− 1

4P

Eb

N0

A

)]

, (3.44)

where the subindex a means that the expectation has to be taken over the RVs an.
Since an follows a Rician distribution, each a2

n(xn − x′
n)2 is a noncentral χ2 RV. Let

us denote as Ψn(s) the characteristic function [Papoulis and Pillai, 2002] of such
noncentral χ2 RV. Following [Proakis, 2001] and recalling that the Rician RV an is
scaled by (xn − x′

n), and taking into account that K = ν2
R/(2σ2

R), this characteristic
function can be written as

Ψn(s) =
1 + K

1 + K − s(xn − x′
n)2

exp

(

Ks(xn − x′
n)2

1 + K − s(xn − x′
n)2

)

. (3.45)

As the RV A is a sum of iid RVs, its characteristic function will be

ΨA(s) =

L+m−1
∏

n=m

Ψn(s). (3.46)

By definition of the characteristic function [Proakis, 2001]

E [exp(sA)] = ΨA(s), (3.47)
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so that

Ea

[

exp

(

− 1

4P

Eb

N0

A

)]

=
n=L+m−1
∏

n=m

Ψn

(

− 1

4P

Eb

N0

)

. (3.48)

Finally, taking into account that xm+L−1 = x′
m+L−1, we can write the EEP as

Pe(x → x′|x) ≤ 1

2

L+m−2
∏

n=m

1 + K

1 + K + 1
4P

Eb

N0
(xn − x′

n)2
·

· exp

(

−
K 1

4P

Eb

N0
(xn − x′

n)2

1 + K + 1
4P

Eb

N0
(xn − x′

n)2

)

. (3.49)

For an error event with L < ∞, when Eb/N0 → ∞, this EEP tends to

Pe(x → x′|x) → 1

2

(1 + K)L−1

(

1
4P

Eb

N0

)L−1
∏L+m−2

n=m (xn − x′
n)2

exp (−(L − 1)K) . (3.50)

The factor

d2
P (x,x′) =

L+m−2
∏

n=m

(xn − x′
n)2, (3.51)

is the product distance associated to the error event [Anderson and Svensson, 2003].
The number of samples with xn 6= x′

n is the Hamming distance (dH(x,x′) = L − 1)
of such error event [Anderson and Svensson, 2003]. Therefore, for the fading channel
with CSI, the determinant factor in the high signal to noise ratio is not the minimum
squared Euclidean distance, but seems to be the pair d2

P (x,x′) and dH(x,x′) instead.
This is specially true for traditional coded modulations, but we will show with the
BSM example that this pair is not so important in CCM systems, since normally
they cannot be increased at the same time.

To give a bound for the bit error probability, we see in Eq. (3.49) that the most
probable error events when Eb/N0 → ∞ will be those with minimum (xn − x′

n)2,
n = m, · · · , m + L − 1, and those error events will be the ones related with the
minimum of d2

E for the BSM CCM. These error events, in terms of the binary input,
are given by bm, bm+1, · · · , bQ+m vs b∗m, bm+1, · · · , bQ+m, with bm 6= b∗m, and are of
length L = Q + 1. They lead to (xn −x′

n)2 = (1/4)m+Q−1−n, n = m, · · · , m+ Q− 1,
with independence of the previous values of bn and xn, and so the bit error probability
could be approximated in the high signal to noise ratio region by

Pb ≈ βmin
1

2

Q−1
∏

i=0

1 + K

1 + K + 1
4P

Eb

N0

1
4i

exp

(

−
K 1

4P

Eb

N0

1
4i

1 + K + 1
4P

Eb

N0

1
4i

)

, (3.52)

where βmin = 1 is the bit enumerator associated to these error events with d2
min =

4/3, since there is only one bit on error. Note that the product distance and the
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Hamming distance in this case are

d2
P (x,x′) =

Q−1
∏

i=0

1

4i
, (3.53)

d2
H(x,x′) = Q. (3.54)

We could think of managing the BER by changing the quantization level Q, but in
fact there is a tight tradeoff: while Q → ∞ leads to a Hamming distance tending to
∞, the product distance tends to 0, so that, at the end, the result of the bound in
Eq. (3.52) will remain basically the same and independent of the values of Q when
Q ≥ 5.

Performance without CSI

In the case without CSI, we have seen that the metric for the decoder is calculated
as a function of (rn−ηaxn)2 , and so an error event loop of length L will occur when

L+m−1
∑

n=m

(rn − ηax
′
n)2 <

L+m−1
∑

n=m

(rn − ηaxn)2 (3.55)

which is equivalent to

L+m−1
∑

n=m

((anxn − ηax
′
n) + nn)2 <

L+m−1
∑

n=m

((anxn − ηaxn) + nn)2, (3.56)

and, after some algebra, to

L+m−1
∑

n=m

(anxn − ηax
′
n)2 −

L+m−1
∑

n=m

(anxn − ηaxn)2 = A < 2ηa

L+m−1
∑

n=m

nn(xn − x′
n) = B,

(3.57)
where again A and B are RVs defined for convenience. The sequences x and x′ are
known, and so the RV B is a weighted sum of iid Gaussian variables. Therefore, B
is a Gaussian RV with mean

ηB = E

[

2ηa

L+m−1
∑

n=m

nn(xn − x′
n)

]

= 0, (3.58)

and variance

σ2
B = E

[

4η2
a(

L+m−1
∑

n=m

nn(xn − x′
n))2

]

= 4η2
aσ

2
L+m−1
∑

n=m

(xn − x′
n)2 = 4η2

aσ
2d2

E. (3.59)

With these definitions, and using Eq. (3.25), the EEP conditioned to the fading
amplitudes for the case without CSI will be

Pe(x → x′|x, a) =
1

2
erfc

(

√

1

4P

Eb

N0

A

ηadE

)

≤ 1

2
exp

(

− 1

4P

Eb

N0

A2

η2
ad

2
E

)

. (3.60)
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The RV A is a weighted sum of several iid RVs, and if L ≥ 5, by virtue of the
Central Limit Theorem [Papoulis and Pillai, 2002], it could be well approximated
by a Gaussian RV with mean

ηA = Ea

[

L+m−1
∑

n=m

(anxn − ηax
′
n)2 −

L+m−1
∑

n=m

(anxn − ηaxn)2

]

=

= η2
a

L+m−1
∑

n=m

(xn − x′
n)2 = η2

ad
2
E , (3.61)

and variance

σ2
A = Ea





(
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n=m

(anxn − ηax
′
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L+m−1
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(anxn − ηaxn)2 − ηA

)2


 =

= 4σ2
aη

2
a

L+m−1
∑

n=m

x2
n(xn − x′

n)2. (3.62)

Let us define the variable θ (x,x′) as

θ (x,x′) =
L+m−1
∑

n=m

x2
n(xn − x′

n)2. (3.63)

If ρ is a constant and B a Gaussian RV, when

ρ <
1

2σ2
A

, (3.64)

it is easy to show that

E
[

exp
(

ρB2
)]

=
1

√

1 − 2ρσ2
A

exp

(

ρη2
A

1 − 2ρσ2
A

)

. (3.65)

Taking this into account and recalling Eq. (3.60), the bound for the unconditioned
EEP will be

Pe(x → x′|x) = Ea [Pe(x → x′|x, a)] ≤

≤ 1

2

1
√

1 + 2
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Eb

N0
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Eb

N0
σ2

a
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d2
E



. (3.66)

The condition of Eq. (3.64) is always met, since, as seen in Eq. (3.60)

ρ = − 1

4P

Eb

N0

1

η2
ad

2
E

< 0. (3.67)
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In the high signal to noise ratio region, when Eb/N0 → ∞, this bound tends to

Pe(x → x′|x) → 1

2

1
√

2
P

Eb

N0
σ2

a
θ(x,x′)

d2
E

exp

(

− η2
ad

4
E

8σ2
aθ(x,x′)

)

. (3.68)

According to this, Pe(x → x′|x) → 0 when Eb/N0 → ∞, but the simulations
will show the appearance of an error floor whose value decreases as K grows. To
obtain a bound for this error floor we need to refine the calculations. In fact, when
Eb/N0 → ∞, the right hand side of the inequality in Eq. (3.57), which depends only
on the noise and not on the fading, becomes negligible with respect to the value of
the left hand side3. In this case, the EEP will depend only with good approximation
on the fading amplitudes, and, dropping the right hand side, the inequality in Eq.
(3.57) becomes

2

L+m−1
∑

n=m

anηaxn(xn − x′
n) = C <

L+m−1
∑

n=m

η2
a(x

2
n − x′

n
2
). (3.69)

Again, the left hand side of this inequality can be approximated by a Gaussian RV
C for L ≥ 5, with mean

ηC = Ea [2anηaxn(xn − x′
n)] = 2η2

a

L+m−1
∑

n=m

xn(xn − x′
n), (3.70)

and variance

σ2
C = Ea

[
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anηaxn(xn − x′
n) − ηC)2

]

= 4η2
aσ

2
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∑
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x2
n(xn − x′

n)2. (3.71)

Now, taking into account that [Haykin, 2001]

P (C < z) = 1 − 1

2
erfc

(

z − ηC√
2σC

)

, (3.72)

the EEP, after some algebra, will tend to

Pefloor
(x → x′|x) → 1 − 1

2
erfc

(

− ηad
2
E

2σa

√

2θ(x,x′)

)

=

=
1

2
erfc

(

ηad
2
E

2σa

√

2θ(x,x′)

)

, (3.73)

where θ (x,x′) is again defined as in Eq. (3.63).
With respect to the bit error probability, the analysis is more involved in this

case with respect to the perfect CSI case, since, as seen in Eqs. (3.66) and (3.73), the

3The power of the signal xn remains constant and so nn → 0 for high signal to noise ratio.



62 Chapter 3. Chaos Coded Modulations over Dispersive Channels

event error probability deepens on the specific values of xn through θ (x,x′), not only
on the squared Euclidean distance between the samples xn and x′

n. Nevertheless, for
the intermediate values of Eb/N0, we will see by means of the BSM example that the
bound of Eq. (3.66) calculated with the error events associated with the minimum
of d2

E can be tight enough, and the same will happen with the bound of Eq. (3.73)
for high values of Eb/N0. We have seen that these error events for the BSM chaos
coded modulator involve only a bit on error and they have length L = Q + 1. In
this case, we have 2Q equiprobable possible values for the initial value xm in the
error loop, and 2Q possible sequences xm+1, · · · , xQ+m for each xm, given by the 2Q

possible values of bm+1, · · · , bQ+m. The erroneous sequence x′
n, n = m, · · · , L+m−1

is completely determined by xn and the Hamming weight 1 binary error event. The
sequences x = (xm, · · · , xL+m−1) are equiprobable for an iid bn sequence, and so the
average bit error probability for error events with d2

E = d2
min could be calculated as

Pb ≈ βmin
1

2

∑

x∈X

1

22Q

1
√

1 + 2
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2
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1 + 2
P

Eb

N0
σ2

a
θ(x)

d2
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

, (3.74)

where X is the set of the 22Q possible sequences of length Q under the constraints
imposed by the chaos coded modulation. Again, βmin = 1 and d2

min = 4/3. Note
that

θ(x) =

m+Q−1
∑

n=m

1

4m+Q−1−n
x2

n (3.75)

now depends only on x, since the difference between the unequal values of xn and
x′

n is a power of 1/4 for these error patterns in the BSM encoder. When we are
in the error floor region, we can also calculate the average bound by assuming the
same kind of error events, and accordingly

Pbfloor
≈ βmin

1

2

∑

x∈X

1

22Q
erfc

(

ηad
2
min

2σa

√

2θ(x)

)

, (3.76)

where x, βmin, d2
min and θ(x) take the same values as before.

In Fig. 3.11 we have depicted the normalized histogram of the 22Q possible values
of θ(x)/d2

E in the case when Q = 5 for the error patterns with d2
E = d2

min. We have
verified that, with growing Q, the histogram tends to approximate an exponential
decay between a minimum value around 0.05 and a maximum value around 1.0 (the
maximum possible value of θ(x) is d2

min because |xn| ≤ 1). In any case, there is a
concentration of values not negligible far from the minimum value, so that, as in the
bound given for the ISI channel, the best approximation can only be given with the
average bound, not only with the absolute minimum of θ(x)/d2

E.

3.4.3. Simulation results

In Figs. 3.12 and 3.13 we can see the simulation results for several Q and K
parameters, together with the proposed bounds. In all cases, we have simulated
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Figure 3.11. Normalized histogram of θ(x)/d2
E for Q = 5 in the BSM CCM

system for the error patterns under evaluation.
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Figure 3.12. Results for the case with CSI. From left to right, K =
50, 20, 5, 0. The simulation results for Q = 4 are shown with continuous lines, the
corresponding bounds with dash-dotted lines. The simulation result and the bound
for Q = 6 and K = 5 are shown with ’+’ and ’x’ respectively. Dotted lines represent
the performance of BPSK, from left to right: K = ∞, 50, 20, 5, 0.
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Figure 3.13. Results for the case without CSI. From left to right: K =
50, 20, 5, 0. The simulation results for Q = 4 are shown with continuous lines, the
corresponding bounds with dash-dotted lines. The simulation result and the bounds
for Q = 5 and K = 20 are shown with ’+’ and ’x’ respectively. Dotted lines represent
the performance of BPSK, from left to right: K = ∞, 50, 20, 5, 0.

information frames of size N = 10000 and we have calculated the BER after a
minimum of 100 blocks with errors. The samples of the Rician process have been
generated using the rejection method [Press et al., 1992]. The bit error probabilities
of BPSK for several cases are shown for comparison, according to Eqs. (3.36) and
(3.37).

In the CSI case (Fig. 3.12), we see that the BSM CCM exhibits a potential
coding gain with respect to BPSK for K < ∞. Moreover, the bounds calculated
with the d2

min events are tight enough to give reason of the BER slope for high Eb/N0.
We can also see that the influence of Q is small, both for the simulation results and
for the bounds, which we know is a desirable feature in this kind of chaos coded
modulations, where we are interested in keeping the coding gain with the lowest
possible complexity.

On the other side, when there is no CSI (Fig. 3.13), there is no coding gain in
any case with respect to uncoded BPSK. Nevertheless, we can see that the proposed
bounds for the intermediate Eb/N0 region are tight enough, and that the error floor
is appropriately described by the error floor bound4. As with the CSI case, we can
verify that the influence of Q is small both for the simulations and for the bounds.
Note that the Q = 4 case is the minimum we can have to match the assumptions
made while developing the bounds.

4The error floor bound for K = 50 does not appear since it lies below 10−9.
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3.5. Concluding remarks

Throughout this chapter, we have analyzed the performance of one of the most
simple chaos-based encoding methods when the communication channel includes,
besides AWGN, some amount of dispersive impairment. First of all, we have revised
the encoding framework and we have limited ourselves to piecewise linear discrete
maps. Though we have only described in detail the case of BSM, there is a wide range
of chaos coded modulation systems, both based on chaotic maps or not [Kozic et al.,
2006], that can be designed and analyzed under the same principles. These chaos
coded modulations (CCM) have the special feature, compared to what was seen in
Chapter 2, that the same trellis description of the resulting coded modulation is used
at the encoder side and at the decoder side, in complete analogy with convolutional
encoders or trellis coded modulated systems. According to this new framework, we
have also proposed a MAP decoding method matched to CCM that will allow us to
straightforwardly employ CCM within concatenated systems, as we will see in the
subsequent chapters.

For the time invariant frequency selective impairment (ISI), we have drawn pos-
sible bounds for the BSM CCM, and we have shown by simulation that these bounds
can explain reasonably well the behaviour of the BER when Eb/N0 → ∞ if the ISI
level is low enough that the error events still consist on input binary error events
of limited Hamming weight. This has the positive consequence that such bounds
can help in design tasks. Moreover, we have found out that the BER of the BSM
CCM outperforms uncoded BPSK in the cases when equalization is not mandatory
(low and moderate ISI), which is the opposite situation with respect to the AWGN
channel. This means that CCM can offer potentially interesting properties in this
kind of dispersive channels, even when the same CCM may be not so good in the
absence of dispersive phenomena.

The same circumstances are emphasized by the results of BSM CCM in presence
of frequency non-selective time varying impairment (flat fading). In this case, we
have also drawn bounds for the situations when there is side information at the
decoder, and when there is not, and we have verified that they can match the
simulation results with the needed degree of accuracy. Apart from allowing us to
gain insight into the behaviour of the chaotic encoding system, they offer again
potential application in design tasks. When we have CSI, the BER with BSM CCM
is again better than with uncoded BPSK, and so we verify that this kind of dispersion
may possibly be managed with CCM schemes. Nonetheless, the case without CSI is
catastrophic for the BSM CCM, and this points towards the need for more refined
schemes if we want to use CCM in this kind of environment.

It is evident that ISI itself can be successfully managed by a number of equal-
ization strategies [Li et al., 1995; Proakis, 2001] and that against fading we can use
diversity techniques [Goldsmith, 2005], but the main point of this chapter was not
to search for additional improvements, but only to show what kind of channels could
be best suited to take advantage of the chaos-based encoding systems. In fact, there
had been a commonplace for a long time that chaos could do well in dispersive envi-
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ronments, but the poor results of CCM and related systems in AWGN had for some
time prevented further research on this topic [Abel and Schwarz, 2002; Dmitriev
et al., 2003], and therefore the main stress had been placed in multiple access sys-
tems or other kind of chaos-based modulations [Kennedy et al., 2000a; Setti et al.,
2004]. With the evidence that CCM can be useful in usual dispersive channel, we
will explore in the next chapters the possibility of designing more efficient higher
dimensional chaos-based systems using the known principles of concatenated coding
[G. D. Forney, 1966].



Chapter 4

Serially Concatenated

Chaos Coded Modulations

4.1. Introduction

In Chapter 3 we have introduced a framework for chaos coded modulations which
could be associated with an equivalent trellis encoder view analogous to Unger-
boeck’s trellis coded modulation (TCM) [Ungerboeck, 1982]. We have shown with
bounds and simulations that this CCM scheme can offer some degree of robustness
in dispersive channels, but the final performance of the example chosen was not good
enough to lead to practical systems. One of the paths recently opened to improve
the results of CCM in the AWGN channel has been the increasing of the chaotic
map dimensionality and the expansion of the framework to chaotic systems without
an underlying chaotic map [Schimming and Hasler, 2003; Kozic and Schimming,
2005; Kozic et al., 2006], together with the design of new decoding strategies [Kozic
and Hasler, 2006]. Other possible way to increase the dimensionality and potential
performance of the chaotic system is concatenation [G. D. Forney, 1966], and this is
the alternative we will follow in this and the next chapter.

The task of designing concatenating systems with CCM is easy to address be-
cause the TCM equivalence of CCM allows us to evaluate this kind of chaos coded
modulations in the same environments where the other usual coded modulations
have found application. This offers the additional advantage face to old approaches
in chaos-based communications that a number of well known and established tools
from digital communications theory will be at hand to help in the design and eval-
uation tasks. On the other side, we can take advantage of the fact that serially
concatenated channel codes (SCCC) [Benedetto et al., 1998; Schlegel and Pérez,
2004] and serially concatenated trellis coded modulations (SCTCM) [Divsalar and
Pollara, 1997; Narayanan and Stüber, 1999; Altunbas and Narayanan, 2001; Tull-
berg and Siegel, 2001; Pfister and Siegel, 2003; Tullberg and Siegel, 2005a; Tullberg
and Siegel, 2005b; Mitra and Lampe, 2006; Howard and Schlegel, 2006] have shown
good results in AWGN and fading channels [Vucetic, 1993; Yuan et al., 2002; Gulati
and Narayanan, 2003; Schlegel and Pérez, 2004; Goldsmith, 2005], because they can
offer a robust solution where the changes in the channel does not affect much at
the decoder side [Biglieri et al., 1998]. This is due to the fact that serial concate-

67
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nation somewhat uncouples the squared Euclidean distance spectrum of the inner
encoder and the Hamming distance spectrum of the outer encoder and increases this
latter at the expense of a little reduction on the former. The serial concatenation
of a channel encoder and a CCM can also be compared to bit-interleaved coded
modulation (BICM) [Caire et al., 1998], though in this case the inner encoder is
not properly speaking a trellis encoder. Nevertheless, we will see that they have
several interesting analogies, like the dramatic improvement achieved by iterative
decoding [Li and Ritchey, 1997]. This will allow us to exploit in our analysis some
developments originally intended for BICM.

According to this and with the aim of further exploiting the good properties
of CCM in dispersive channels, we can think of modifying the SCTCM system by
replacing the TCM usually employed as inner encoder by a CCM. Such concatenated
systems where the coded modulation is replaced by a chaos coded modulation were
proposed in [Escribano et al., 2005; Escribano et al., 2006c], and the results under
iterative decoding assessed the good possibilities of this new approach with respect
to traditional chaos-based systems, specially when some conditions are met in the
CCM module.

These are the reasons why we comprehensively address in this chapter the con-
catenated systems with binary convolutional channel codes and CCM joined by
means of a bit interleaver, and show how we can study their behaviour in AWGN,
ISI and frequency non-selective fading channels with the help of known develop-
ments in SCTCM or BICM. We will show that we can reach a good performance
with low complexity outer channel codes and with the simplest CCM already used
in Chapter 3. This, together with the characteristics of the chaotic signal in the
channel, which has the advantage of being easily generated [Lau and Tse, 2003],
allows us foresee potential applications for these systems.

Accordingly, the chapter is structured as follows. In Section 4.2 we will look
into the concatenated system and its particularities, including the description of
the concatenated encoder, the channel model and the iterative decoder. Section
4.3 addresses the convergence analysis of the decoding algorithm by means of the
extrinsic information transfer chart tool. In Section 4.4 we will explain how to
draw bounds for the bit error probability under the assumption of a binary input-
output symmetric channel. Section 4.5 shows the simulation results and validates
the bounds and predictions of Section 4.3. Section 4.6 is devoted to the conclusions.

4.2. System model

As stated, this chapter deals with an extension of SCTCM, where we make use of
chaos coded modulations (CCM) instead of the usual coded modulations based on
trellis codes or the like [Caire et al., 1998; Escribano et al., 2006c]. According to this,
we will call this system serially concatenated chaos coded modulations (SCCCM).
The scheme of the complete system can be seen in Fig. 4.1, and we will describe it
with the needed detail in the next subsections.
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Figure 4.1. Block diagram of the serially concatenated encoder, the channel
and the iterative decoder.

4.2.1. Serially concatenated encoder

On the left hand side of Fig. 4.1, we have depicted the serially concatenated
encoder. We have as outer encoder a binary convolutional code (CC) of rate R, which
accepts as input an independent and identically distributed (iid) binary sequence
bn, and produces a convolutionally encoded binary sequence cn. As the chaos coded
modulator will work with input bit blocks of size N , and as we perform trellis
termination for the convolutional encoder [Proakis, 2001], each input block for the
inner encoder will be produced by a binary sequence b = (b1, · · · , bD) of size D =
R · N − ν, where ν = m + 1 is the constraint length of the convolutional encoder,
and m is its memory length [Lin and Costello, Jr., 2004].

In analogy with the model of SCTCM, we introduce an interleaver between the
outer and the inner encoders. This interleaver performs a permutation on the CC
output sequence cn, so that the input CCM data dn is handed to the inner encoder
in a different order with respect to cn. Since a typical N1 × N2 block interleaver1

leads almost always to a bad behaviour due to its regularity when no termination is
applied to the inner encoder [Hokfelt et al., 2001], the interleaver considered here will
be an S-random interleaver [Divsalar and Pollara, 1995; Dolinar and Divsalar, 1995],
where the permutation function is chosen in a semi-random basis. This function will
map each index j into an index π(j), which means that the bit in position j, cj ,
at the output of the outer encoder will be taken as bit in position π(j), dπ(j), at
the input of the inner encoder. The index permutation is chosen according to the
following algorithm:

Choose an integer S.

For index π(j) corresponding to position j draw a random number t between
1 and N .

If t has not been chosen before, verify if the S previously chosen indexes lie at
least at a distance of S from t, i.e., |π(p) − t| > S for p = j − S, · · · , j − 1.

If t satisfies the conditions, keep it as π(j) = t and proceed until all N indexes
are chosen.

1We understand as N1 × N2 block interleaver an interleaver consisting in an N1 × N2 = N

matrix where the data is written columnwise and read rowwise or viceversa.
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This algorithm converges in a reasonable time when S is chosen according to

S <

√

N

2
. (4.1)

When S = 1, we have a purely random interleaver. Taking for S a higher value
ensures us that the adjacent bits in the convolutional encoder output word c =
(c1, · · · , cN) will be at least separated in S positions within the input word d =
(d1, · · · , dN) for the inner encoder. This is of consequence for the distance spectrum
of the concatenated system, as will be made evident throughout the developments
of this chapter [Dolinar and Divsalar, 1995; Sason and Shamai, 2000].

As inner encoder we have a chaos coded modulator (CCM) driven by small
perturbations [Kozic et al., 2006] of the kind seen in the last chapter, but with a
minor important modification. Now the output is recursively given by

zn = f(zn−1) + g(dn, zn−1) · 2−Q, (4.2)

xn = 2zn − 1, (4.3)

where n = 1, · · · , N , f(z) : [0, 1] → [0, 1] is the chaotic map and g(d, z) ∈ {0, 1}
is a binary function whose meaning will be explained in the following. Recall that
xn ∈ [−1, 1] and that the rate of the chaos coded modulation is one symbol per bit.
In the examples of this chapter, we will make use again of the Bernoulli shift map
(BSM), f(z) = 2z mod 1. It is easy to show that, again, a recursion like the one
in Eq. (4.2) leaves the finite set SQ = {i · 2−Q|i = 0, · · · , 2Q − 1} invariant, since
g(d, z) is a binary valued function. Therefore, we can restrict Eq. (4.2) again to SQ

by taking as initial condition z0 any point in SQ (e.g. z0 = 0) [Kozic et al., 2006].

dn
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r1 r2 r3 rQ

1/2
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1/2
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Q

Q−1
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Figure 4.2. Trellis encoder view of the BSM based CCM with the feedback
connection.

It is a known feature in concatenated coding that the inner encoder has to be
recursive in order to get interleaver gain [Benedetto et al., 1998], and the same
principles were shown to hold in the case of BICM [Narayanan and Stüber, 1999]
or SCTCM [Tullberg and Siegel, 2005a; Tullberg and Siegel, 2005b], and this is the
reason to define g(d, z) as

g (d, z) =

{

d z < 1
2

d z ≥ 1
2

, (4.4)
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where d = d ⊗ 1 and ⊗ is the binary XOR operation. The background for this
becomes more clear if we look into the trellis encoder view of this CCM [Kozic
et al., 2006], which can be developed through the associated symbolic dynamics as
described in the previous chapter [Schweizer and Schimming, 2001a; Schweizer and
Schimming, 2001b]. In fact, when z0 = 0, this encoder based upon the BSM can be
again seen as a shift register with Q memory positions storing Q successive values
of g(dn, zn), and where the output zn is calculated as (see Fig. 4.2)

ri = ri−1 i = Q, · · · , 2,

r1 = g(dn, zn−1), (4.5)

zn =

Q
∑

i=1

2−(Q+1−i) · ri,

or, equivalently

zn =

Q
∑

i=1

2−(Q+1−i) · g(dn−i+1, zn−i), (4.6)

where g(dn, zn−1) = dn ⊗ rQ (note that this is equivalent to Eq. (4.4)). If we
compare this with Eq. (3.4), the only difference is that the associated register stores
values of g(dn, zn−1) instead of the binary data dn. Though here we focus only on
the simple case of the BSM to illustrate the potential properties of SCCCM, there
is again a whole kind of chaos coded modulators based upon the same principles
that could be employed in this same framework and that could be described by
an equivalent trellis encoder, and thus decoded with known sequence estimation
techniques [Kozic, 2006]. Note also that, since g(d, z) is equivalent to the precoder
defined by the polynomial 1 + DQ−1, it will always be possible to include such
kind of simple recursive precoder (rate 1 accumulate code) before the chaos coded
modulator, as is usually done in turbo-equalization [Koetter et al., 2004; Narayanan,
2001], or in serial concatenation of convolutional encoders and TCM [Tullberg and
Siegel, 2005a; Tullberg and Siegel, 2005b], in order to preserve the interleaver gain.
In the context of chaos coded modulations with serially concatenated schemes, the
key role of feedback on the inner encoder was made evident in [Escribano et al.,
2005; Escribano et al., 2006c].

Thanks to this precoding, we can avoid the situation where a binary error event
of weight d in the convolutional encoder, after being interleaved and assuming that
the error bits are scattered far apart enough2, only induces d 1-bit minimum distance
events in the BSM CCM (see Subsection 3.2.1 in the last chapter). It is straightfor-
ward to show that, in the AWGN channel, such concatenation of error events within
the CCM would induce an error event probability Pe(x → x′|x) given by [Proakis,
2001]

Pe(x → x′|x) ∝ erfc

(

√

Add2
min

)

, (4.7)

2Which could be most probable when d is small, i.e., for the most critical binary error events
in the CC.



72 Chapter 4. Serially Concatenated Chaos Coded Modulations

where A is a factor depending on the signal to noise ratio, the power of the CCM
signal and the CC rate, x is the CCM word actually sent, and x′ is the erroneous
decoded word corresponding to the binary error event of weight d. As usual, d2

min

is the minimum Euclidean distance of the BSM encoder. This probability could
be very high due to the poor minimum distance properties of BSM. With the pre-
coder 1 + DQ−1, the error events leading to d2

min in the BSM CCM will consist in
binary events of length L = Q + 1 with two bit errors, dn, dn+1, · · · , dn+Q−1, dn+Q

vs d∗
n, dn+1, · · · , dn+Q−1, d

∗
n+Q, with di 6= d∗

i . With a good interleaver design, i.e.,
a high value of S in the S-random interleaver, any binary error event of weight d
in the convolutional encoder could be scattered so efficiently that this undesirable
situation is not met with higher probability than in the case without precoding.

4.2.2. Channel

Once modulated, the samples xn are sent to the channel in baseband. Note that
xn is a broadband signal that, contrary to the usual coded modulation schemes em-
ployed in SCTCM or BICM, does not intend to provide spectral efficiency. Though
each xn conveys information about Q bits, we send all xn at the rate of 1 sample
per bit. In the channel, shown in Fig. 4.1 as a black box, xn is subjected at least to
the effects of additive white Gaussian noise (AWGN) and possibly other sources of
distortion, according to the channel models seen in Chapter 3. We will thus consider
three kind of channels:

1. AWGN channel. In this simple case, the sequence arriving at the decoder side,
r = (r1, · · · , rN), will be

rn = yn + nn = xn + nn, (4.8)

where yn = xn, and nn is the usual iid sample of a Gaussian RV with zero
mean and power σ2.

2. ISI channel. It will be characterized, as in the last chapter, by means of a
normalized FIR filter of length 2M + 1 and coefficients h = (h−M , · · · , hM).
rn will then be (see Fig. 3.3)

rn = yn + nn =
M
∑

m=−M

hmxn+m + nn. (4.9)

The filter coefficients will be those of Table 3.1.

3. Fading channel. It will follow the model of the last chapter as well, so that the
chaotic signal will be affected by frequency-non selective (flat) uncorrelated
fading. The fading amplitude samples an follow uncorrelated Rician RVs with
parameter K and unit power. rn will then be (see Fig. 3.9)

rn = yn + nn = anxn + nn. (4.10)
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Note that, as the CC has rate R, the relationship between the power of the noise
and the signal to noise ratio in terms of bit energy to noise spectral density will now
be

σ−2 = 2
R

P

Eb

N0

, (4.11)

where P is the power of the chaos coded modulated signal. This relationship holds
for all channels mentioned.

4.2.3. Iterative decoder

Each block of N samples r = (r1, · · · , rN) is finally decoded by means of an iter-
ative decoder, shown on the right side of Fig. 4.1. This iterative decoder is based on
two soft-input soft-output (SISO) modules [Benedetto et al., 1997] linked by means
of a corresponding interleaver Π and a corresponding deinterleaver Π−1. The SISO
module for CCM is the adaptation of the usual SISO module implementing the
MAP BCJR forward-backward algorithm [Bahl et al., 1974] that takes advantage
of the equivalent trellis encoder description of the chaos coded modulation and the
underlying symbolic dynamics [Escribano et al., 2005]. This module was described
in Chapter 3. Again, since we do not perform any trellis termination in the inner
encoder, the ending state of the data block for the inner SISO will be unknown, and
the backward calculation of the MAP algorithm will be performed after initializing
βN(·) equiprobably [Benedetto et al., 1997] (see Subsection 3.2.2). Future research
should include the possible enhancement attainable by the use of trellis termination
techniques in the inner chaos coded modulator, though a good design of the inter-
leaver and a high value of N could be enough to make the differences between trellis
termination and non-trellis termination negligible [Hokfelt et al., 2001].

The SISO module for the CC is as presented in [Benedetto et al., 1997] without
any further change, and it takes into account the fact that the trellis of the convo-
lutionally coded sequence is terminated. Each run of the iterative decoding process
(see Fig. 4.1, where the parameters O and I in the log probability ratios stand for
output and input, respectively) will consist first in a calculation of the output log
probability ratios

Λ (dn; O) = log
P (dn = 1|r,Θ)

P (dn = 0|r,Θ)
, (4.12)

as a function of the channel output r and the input a priori log probability ratios
Λ (dn; I). We have included the possible knowledge of the channel parameters Θ in
Eq. (4.12) for the case where the channel state is known at the decoder and the
algorithm metrics take it into account. After being deinterleaved, the log probability
ratios Λ (cn; I) serve as input a priori information for the outer SISO, which gives as
output the log probability ratios for the input binary message Λ (bn; O) and for the
convolutionally coded sequence Λ (cn; O). These last ones are interleaved and used
as input log probability ratios Λ (dn; I) for the next iterative decoding run.

As presented in [Benedetto et al., 1997], the SISO modules have two possible
inputs and two possible outputs, but not all of them are needed in the serially
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concatenated setup. In the case of the inner SISO, the output probability estimations
of the chaos coded modulated sequence p(xn|r,Θ) are not needed. For the outer
SISO, since bn is an iid sequence, the input log probability ratios Λ (bn; I) are 0
throughout all the iterative decoding process.

The AWGN channel and the ISI channel employ the same metrics, calculated
as functions of (rn − xn)2, and no knowledge of the channel is taken into account3,
so that the extrinsic information at the output of the inner SISO can be simply
expressed as

Λ (dn; O) = log
P (dn = 1|r)
P (dn = 0|r) . (4.13)

In the fading channel without CSI, the metrics are calculated as functions of (rn −
ηaxn)2 [Hall and Wilson, 1998] and so the inner SISO module provides the extrinsic
information in form of log probability ratios

Λ (dn; O) = log
P (dn = 1|r, ηa)

P (dn = 0|r, ηa)
. (4.14)

Finally, for the fading channel with perfect CSI and metrics calculated as functions
of (rn − anxn)2, we will have

Λ (dn; O) = log
P (dn = 1|r, a)

P (dn = 0|r, a)
, (4.15)

where a = (a1, · · · , aN) is the vector of fading amplitudes. After several decoding
iterations through the inner and outer SISO modules, we get the estimated decoded
sequence b̂n by hard deciding over the log probability ratios Λ (bn; O) as indicated
in Eq. (3.16).

4.3. Convergence analysis

In this section we study the convergence behaviour of the iterative decoding algo-
rithm for the proposed channels. A powerful tool to look into the convergence of the
algorithm as a function of channel distortion is the so called EXtrinsic Information
Transfer (EXIT) charts [ten Brink, 2001]. They have proved to be useful as design
tools not only in the context of binary turbocodes or in serial concatenation of binary
codes, but also with SCTCM [Howard and Schlegel, 2006] and turbo TCM (TTCM)
systems [Chen and Haimovich, 2004; Kliewer et al., 2006], in the evaluation of turbo
equalized systems [Otnes and Tüchler, 2002] and with BICM [Li and Ritchey, 1997].
The EXIT charts are based on the computation of the mutual information [Cover
and Thomas, 2006] of the log probability ratios at the input of the SISO module
versus the mutual information of the log probability ratios at the output of the same
SISO module after each decoding step. These mutual informations I are calculated

3Recall that at least the transition probabilities of the channel require knowledge about the
noise power σ2, but we drop the dependency for convenience since it affects all the cases.
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as [Proakis, 2001]

I =
1

2

∑

d=0,1

∫ ∞

−∞
p(Λ|d) log2

(

2p(Λ|d)

p(Λ|1) + p(Λ|0)

)

dΛ, (4.16)

where p(Λ|d) is the probability density function of the log probability ratios when
the bit sent takes the value d = 0 or d = 1. We have dropped the index in d for
simplicity. In Fig. 4.3 we can see a scheme of the inner decoder where we have
depicted the distribution of a set of input log probability ratios, Λ(d; I), with two
peaks corresponding to each case, d = 0 and d = 1. If the decoding algorithm is
working well for the level of distortion in the channel, the distribution of the output
log probability ratios, Λ(d; O), will have the two peaks more distinctly separated,
which means a higher probability to decode without error, and also a growing value
of the mutual information I, as shown in the related I(O)/I(I) curve located at the
right hand side of the figure (O: output, I: input). Though Fig. 4.3 refers to the SISO
module for the chaos coded modulation, the same principles are straightforwardly
applicable to the SISO module for the convolutional code, just by renaming the
input and output as in Fig. 4.1 and dropping the input r, so that the mutual
informations will be calculated over Λ(c; I) and Λ(c; O), respectively. Note that
the I(O)/I(I) transfer curve depends on the channel distortion level for the inner
SISO module (it makes use of the channel output r to calculate Λ(d; O)), while it
does not for the outer SISO module. This I(O)/I(I) curve is known as the mutual
information transfer function of the decoder, and it relates the input and output
mutual information values through

I(O) = T (I(I),Θ), (4.17)

where again the dummy vector Θ emphasizes the possible dependence with the
channel state.
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Figure 4.3. Decoding behaviour of the SISO module from the mutual infor-
mation point of view.

The mutual information values I defined in Eq. (4.16) will be calculated under
the usual assumption of having Gaussian distributed input log probability ratios,
and so we will feed into the SISO modules values of Λ(d; I) and Λ(c; I) drawn from a
known Gaussian distribution and study the corresponding output values of Λ(d; O)
and Λ(c; O) for the inner and outer SISO modules, respectively. These a priori
inputs are generated as

Λ(d; I) = µSd + nS, (4.18)
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where nS is a Gaussian RV with zero mean and variance σ2
S, and µS = σ2

S/2 [ten
Brink, 2001]. Though written for Λ(d; I), the values of Λ(c; I) for the output SISO
are processed in the same way. Taking all this into account, the input mutual
information can be finally calculated as [ten Brink, 2001]

I(I) = 1 −
∫ ∞

−∞

exp (−(Λ − σ2
S/2)2/(2σ2

S))√
2πσS

log2 (1 + exp (−Λ)) dΛ. (4.19)

This integral has to be calculated numerically [Abramowitz and Stegun, 1965]. I(O)
will be calculated also through numerical integration, but after computing the his-
togram over the output log probability ratios Λ(d; O) and Λ(c; O), and averaging
over a number of runs.

I 2

I 1
0

0

1

1

Figure 4.4. EXIT chart and mutual information trajectory in iterative de-
coding. Iterations proceed as marked with arrows and reach the (1, 1) point (circled).

By combining the two I(O) = T (I(I),Θ) transfer curves from the two SISO
modules, we get the EXIT chart for the joint iterative decoder, as shown with
boldlines in Figs. 4.4 and 4.5 in the case of two imaginary encoders. The upper curve
is for the inner SISO, and the lower curve for the outer SISO. I1 is the input mutual
information for the inner SISO module, and I2 is the corresponding output mutual
information. At the same time, given that the output mutual information of the
inner SISO module, after going through the deinterleaving stage, is the input mutual
information for the outer SISO module, I2 is as well the input mutual information
for the outer SISO module, and, conversely, I1 is the output mutual information
for this same SISO module. The reason for this is that the deinterleaver and the
interleaver do not change the input/output distributions of the log probability ratios,
and their operation on the EXIT chart is a simple change in the meaning of the axis
of the corresponding plot. In this way, the iterative decoding process starts over the
(I1 = 0, I2 = Tinner(0)) point on the upper curve (corresponding to the inner SISO),
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Figure 4.5. EXIT chart and mutual information trajectory in iterative de-
coding. Iterations proceed as marked with arrows and get stuck in a fixed point
(circled) far from the (1, 1) point.

i.e., when there is still no input mutual information. This I2 value is the input value
for the lower curve, corresponding to the outer SISO, and we get at the output a
corresponding value I1 = Touter(I2) from this curve, which, in turn, will be the input
value for the next step at the inner SISO and its corresponding curve. This process,
illustrated with the help of arrows in Figs. 4.4 and 4.5, goes on till we reach a
crossing point between the two curves where the algorithm cannot proceed further.
This kind of EXIT charts and the iterative process they try to describe assume
additionally that the output log probability ratios from one decoding step and the
input log probability ratios for the next one are uncorrelated, which is not exactly
true as we iterate, but this situation can be approached with a good interleaver
design [ten Brink, 2001].

In Figs. 4.6, 4.8, 4.9 and 4.10 we have depicted several EXIT charts for the
different kinds of channels considered. All the charts have been calculated by simu-
lating data sequence blocks of 10000 samples and by averaging the results over 100
runs, both for the inner and the outer SISO. In Fig. 4.6, where we have plotted
the EXIT chart for two convolutional encoders and for the BSM modulator in the
AWGN channel, we see that the crossing point of the transfer curves is a function of
the channel distortion level. If this final point is the (1, 1) point, as is the case of the
transfer curves of the BSM modulator for Eb/N0 = 2.0 dB with respect to the two
CC transfer curves, the algorithm truly converges and we are in the region where
the BER is dominated by the error floor, and where we need just a few number of
iterations to reach this BER [ten Brink, 2001]. If the final point is not the (1, 1)
point (see trajectory of Fig. 4.5), as is the case of the BSM encoder transfer curves
for Eb/N0 = 0.0 dB with respect to the transfer curves of both convolutional coders,
the algorithm gets stuck at a fixed point leading to a higher value in the BER and a



78 Chapter 4. Serially Concatenated Chaos Coded Modulations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
1

I 2

CC ν=7

CC ν=4

BSM coded modulation, Q=4,5,6, E
b
/N

0
=1.0 dB

BSM coded modulation, Q=4,5,6, E
b
/N

0
=2.0 dB

BSM coded modulation, Q=4,5,6, E
b
/N

0
=0.0 dB

Figure 4.6. EXIT chart in the AWGN channel with two different convolu-
tional encoders, and a BSM CCM with Q = 4, 5, 6. Dotted lines represents transfer
curve for BSM without the 1 + DQ−1 precoder, with Q = 5 and three different sig-
nal to noise ratios: Eb/N0 = 0.0 dB (lower line), Eb/N0 = 1.0 dB (mid line) and
Eb/N0 = 5.0 dB (upper line).

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER

I 2

Figure 4.7. BER of the CC SISO decoder for the CC with ν = 4 as a
function of its input mutual information I2.
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Figure 4.8. EXIT chart for the convolutional encoder with ν = 4 (dashed
line), and BSM coded modulation with Q = 5 for the ISI channel. ’+’: Eb/N0 = 1.0
dB, low ISI. ’▽’: Eb/N0 = 1.5 dB, moderate ISI. ’o’: Eb/N0 = 1.5 dB, high ISI.
’2’: Eb/N0 = 8.0 dB, high ISI.
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Figure 4.9. EXIT chart for the convolutional encoder with ν = 4 (dashed
line), and BSM coded modulation with Q = 5 for the fading channel, in the case
where perfect CSI is available at the decoder. ’+’: Eb/N0 = 3.4 dB, K = 0. ’▽’:
Eb/N0 = 2.0 dB, K = 5. ’o’: Eb/N0 = 1.0 dB, K = 20.
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Figure 4.10. EXIT chart for the convolutional encoder with ν = 4 (dashed
line), and BSM coded modulation with Q = 5 for the fading channel, in the case
where there is no CSI at the decoder. ’+’: Eb/N0 = 4.0 dB, K = 0. ’▽’: Eb/N0 =
2.2 dB, K = 5. ’o’: Eb/N0 = 1.4 dB, K = 20.

higher degree of uncertainty over the message sent, no matter the number of itera-
tions performed. When the distortion in the channel is just low enough to allow the
decoding process to snake through a bottleneck between the curves, we are in the
waterfall or turbo cliff region [Schlegel and Pérez, 2004], where the algorithm starts
to converge to the (1, 1) point and where there is normally an abrupt change in the
BER slope.

The CC transfer curves of Fig. 4.6 have been drawn for two non-systematic non-
recursive rate R = 1/2 convolutional encoders of different complexity: an 8-state
convolutional code with ν = 4 and generator polynomials 1 + D3 and 1 + D + D3

(dfree = 5), and a 64-state convolutional code with ν = 7 and generator polynomials
1+D+D4+D5+D6 and 1+D3+D4+D5+D6 (dfree = 8) [Lin and Costello, Jr., 2004].
With respect to the BSM modulator, we see that the mutual information transfer
curves are the same as a function of Eb/N0 for three different quantization levels,
Q = 4, 5, 6, which is a desirable property that hints to the relative independence
of the performance on the Q parameter. This is good since we can just keep Q,
and thus the encoding and decoding complexity, as low as possible in practice,
while being able to study the system using the chaotic properties of the signal when
Q → ∞ (at least whenever this can help to simplify the calculations). This also
gives a hint that the results may be linked to the properties of the underlying map
rather than to such ad-hoc control parameter. On the other hand, we can see
that, for Eb/N0 = 1.0 dB, we reach full convergence to the (1, 1) point, at least
theoretically, with the convolutional encoder of lower complexity (ν = 4), while we
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would need additionally as much as some tenths of dB to be able to converge with
the other convolutional encoder, as the BSM curve for this Eb/N0 almost intersect
the convolutional encoder curve for ν = 7 at the point (0.20, 0.45). This is a known
property of the serially concatenated systems with interleavers [Narayanan, 2001],
and so we will prefer the convolutional encoder with lower complexity, but better
convergence results.

Moreover, the recursive inner encoder leads to a worse behaviour in the first
iterations, and a worse BER in the low Eb/N0 region, than a non-recursive one
[Narayanan, 2001], as can be seen by comparing the transfer curves of the non-
recursive BSM CCM with the recursive ones for the same Eb/N0 (see Fig. 4.6).
Nevertheless, with the recursive setup, once we are immediately above the threshold
and thus in the BER waterfall region, the performance is much better and we get
a higher coding gain [Otnes and Tüchler, 2002]. This is related to the fact that
the non-recursive BSM CCM transfer function does not tend to the (1, 1) point for
the signal to noise ratios of interest. In Fig. 4.7 we have plotted the BER of the
SISO for the CC with ν = 4 as a function of its input mutual information I2. We
see that, for Eb/N0 = 0.0 dB, the transfer function of the recursive BSM CCM
intersects the transfer curve of the CC at the point (0.2, 0.4), thus giving a BER
of about 2 · 10−1, while the non-recursive BSM CCM can proceed till the point
(0.8, 0.6), corresponding to a BER of 3 · 10−2. The situation changes abruptly for
Eb/N0 = 1.0 dB, since the recursive BSM CCM is in fact in the waterfall region, but
the non-recursive BSM CCM transfer curve gets stuck still at (0.9, 0.7), with a BER
of around 10−2. Even when Eb/N0 = 5.0 dB, the non-recursive BSM CCM does not
still reach full convergence, and we get stuck at around (0.99, 0.92), with a BER of
2 · 10−5. We will see in the section devoted to the simulation results that this BER
level is reached for the recursive BSM CCM well before Eb/N0 = 5.0 dB. Though
in the AWGN channel there seems to be a threshold of around 1.0 dB for the BSM
CCM, the BER curves will show that with a practical and finite size interleaver, and
as a consequence of not having exactly Gaussian distributed input log probability
ratios, this threshold is placed in practice at a higher Eb/N0.

In Fig. 4.8 we have depicted the EXIT charts for the CC with ν = 4 and the
BSM CCM in the ISI channel. The Eb/N0 threshold for low ISI will be almost the
same of the case without ISI, thus pointing to a loss of maybe a few tenths of dB. For
moderate ISI, the chart exhibits at least a loss in 0.5 dB with respect to the low ISI
case, while the two high ISI cases stress the fact that there will be no convergence to
the waterfall region, even for Eb/N0 → ∞. In fact, the starting I2 value of the BSM
CCM curve for high ISI grows a little from Eb/N0 = 1.5 dB to Eb/N0 = 8.0 dB,
but this is not enough to avoid crossing the convolutional encoder curve at around
(0.02, 0.27). Moreover, for a higher I1 input, the BSM CCM curve with Eb/N0 = 8.0
dB exhibits a clearly worse behaviour. Therefore, no matter how high the Eb/N0,
the channel output is so badly distorted that the output mutual information of the
inner SISO never grows at the required rate to avoid an early crossing with the CC
curve.

In Fig. 4.9 we have plotted the EXIT chart for the convolutional encoder with
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ν = 4 and three different cases for the BSM chaos coded modulation in the channel
with Rician fading and perfect CSI. When K = 20 and the channel tends to be a
pure AWGN one, we will almost have the same threshold as with the K → ∞ case,
Eb/N0 ≈ 1.0 dB. As expected, there is a gradual degradation as we tend to the
Rayleigh channel, so that the threshold for K = 5 is around 2.0 dB, and, finally,
around 3.4 dB for K = 0. As already stated, we will see that the BER curves
show an additional degradation in the Eb/N0 thresholds due again to the non-ideal
interleaver and because the Gaussian distribution assumption is not accurately met.
In any case, we can guess that, with CSI, there will be at most a loss of around
2.0 dB in signal to noise ratio, which is a positive result that confirms that the
SCCCM scheme can keep the potentially good properties of SCTCM or BICM in
fading channels [Biglieri et al., 1998]. In Fig. 4.10 we plot the EXIT charts for the
same situation, but without CSI. Now there is an additional loss of around 1.6 dB in
the Rayleigh fading non-CSI case with respect to the CSI case, and this loss tends
again to vanish as we approach the pure AWGN case (K → ∞).

These results will prove to be more orientative than exact, because the EXIT
charts shown here have been developed under the mentioned assumptions that we
have Gaussian distributed log probability ratios and that the interleaver depth is
high enough to make the input and output log probability ratios practically uncorre-
lated from one iterative decoding step to the next one. In a binary turbocode setup
with convolutional encoders as constituent encoders, or in usual TTCM, SCTCM or
BICM systems, the input/output log probability ratios are approximately Gaussian
distributed for the AWGN channel depending on the structure of the decoder and
the implementation of the related MAP algorithm within the SISO module [Avu-
dainayagam et al., 2004; Mart́ınez et al., 2006]. We have found out that this also
approaches the case for our SCCCM system in the AWGN channel, but it is only
a loose approximation in the case of the fading or ISI channels, and the Gaussian
distribution assumption only becomes close to the real situation as K → ∞ in the
fading channel, or when the degree of ISI is low enough. Thus, we will find some
mismatch between the threshold points for the waterfall region as calculated in this
section and the ones shown in the BER plots depending not only on the size and
sort of the interleaver employed, which affects to the independence and uncorrelation
assumption, but also on the kind of channel and the degree of distortion introduced.
Note also that the uncorrelation assumption is not met in the ISI channel even with
a good interleaver, because the channel itself introduces extra correlation among
the chaotic samples. Nevertheless, the thresholds obtained from this EXIT charts
analysis will give an approximate situation of the waterfall region within the BER
plots when there is sufficient interleaving.

4.4. Error probability analysis

The general behaviour of a concatenated system with interleavers, be it serial or
parallel, for a purely AWGN channel can be seen in Fig. 4.11. We can distinguish
three regions as a function of the signal to noise ratio [Schlegel and Pérez, 2004].
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For low Eb/N0, the error rate is high because the iterative decoder process is stuck
at a fixed point in the EXIT chart far from the (1, 1) point. For mid values of
Eb/N0, after reaching the threshold for which the (1, 1) point in the EXIT chart
is accessible, the error rate falls with a steep slope: this is the already mentioned
turbo cliff or waterfall region. When Eb/N0 → ∞, the error events are dominated
by the events occurring with highest probability, which are the ones corresponding
to output words with lower squared Euclidean distance, and we are in the error floor
region, where the slope changes substantially and the error rate decreases at a much
lower rate. It is clear that we need different approaches if we want to bound the
bit error probability in each of the regions of interest: the waterfall region and the
error floor region.

bi
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signal to noise ratio

Figure 4.11. Typical BER curve for a concatenated code with interleavers
after several decoding iterations.

To provide bounds for the bit error probability, we will make use of the develop-
ments introduced in [Mart́ınez et al., 2006] for BICM. These developments are only
valid if we do not perform iterative decoding, i.e., if we perform only one decoding
pass through both SISO modules. Nevertheless, with slight arrangements, they will
provide us with useful bounds also for the iterative case. Following [Mart́ınez et al.,
2006], we will not focus on the standard channel interface (the one whose input is xn

and whose output is rn, see Fig. 4.1). We will not try either to establish the union
bound for ML decoding by calculating the distance spectrum of the serial concate-
nation of the convolutional code and the chaos coded modulation, which could be a
very cumbersome task because the error event probability (EEP) calculated over the
chaotic samples in the channel, Pe(x → x′|x), and the bit error probability are not
straightforwardly related due to the nonlinear structure of the chaos coded mod-
ulation. The evaluation of the joint input-output weight enumerator coefficients,
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needed to provide a ML bound as is done in [Benedetto et al., 1998] for serially
concatenated systems, would be very difficult, even though our chaos coded modu-
lation admits a description in terms of states and binary transitions between states,
and it is possible to calculate the corresponding transfer function as is done with
TCM [Lin and Costello, Jr., 2004] or BICM [Narayanan and Stüber, 1999]. To avoid
these tasks, we will make use instead of the fact that the interface between cn and
Λ(cn; I) (see Fig. 4.1) constitutes a binary input-output symmetric (BIOS) channel
if there is sufficient bit interleaving at the convolutional encoder output, so that we
can assume that the mapping between c and x is independent and the performance
will depend on the binary error event c⊗ c′ instead of on the individual values of c

and c′. In our case, due to the characteristics of the chaos-based encoder, we do not
need to symmetrize the channel by randomly manipulating the mapping, as is done
with BICM in [Caire et al., 1998]. Therefore, we can only focus on the convolutional
decoder and on the EEP over the outputs of the deinterleaver at the receiver side
[Caire et al., 1998]. Fortunately, since this BIOS channel is linear, we can assume,
without loss of generality, that the all-zero codeword c = (0, · · · , 0) has been sent.
For clarity sake, we review briefly the method of [Caire et al., 1998], where the bit
error probability is closely upper bounded by the union bound

Pb ≤
∞
∑

d=dfree

BdPe(d|Θ), (4.20)

where Bd is the bit enumerator of the CC for error paths differing in a Hamming
weight d, Pe(d|Θ) is the error event probability for an output error event with
Hamming weight d, and dfree is the free distance of the convolutional code. We have
introduced the dummy variable vector Θ which includes the parameters that define
the distortion introduced by the channel, just to recall that the EEP will depend
on the state of the channel. This EEP will be a function of the random variable (or
equivocation)

Λ = Λ(c; I) = log
P (c = 1|Θ)

P (c = 0|Θ)
, (4.21)

where we have dropped the subindex because the sequence Λ (cn; I) will be approx-
imately iid under the assumption of sufficient interleaving. As shown in [Mart́ınez
et al., 2006], the EEP for MAP decoding (which is the same of ML decoding in the
non-iterative case, since the a priori probabilities are the same) will be

Pe(d|Θ) = P

(

d
∑

i=1

Λi > 0

)

, (4.22)

where the Λi are d independent realizations of the random variable Λ of Eq. (4.21).
That is to say, Eq. (4.22) is the probability of decoding a word with a Hamming
weight d instead of the all-zero codeword. The tail probability of the sum of random
variables of Eq. (4.22) can be efficiently bounded by using the cumulant transform
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[Mart́ınez et al., 2006]

κ(s) = log E
[

esΛ
]

= log

[
∫ ∞

−∞
esΛfΛ (Λ) dΛ

]

, (4.23)

where s ∈ R and fΛ (Λ) is the pdf of Λ. κ(s) is a convex function which reaches
its maximum at ŝ = 1/2, and, following the Gaussian approximation of [Guillén i
Fábregas et al., 2004], the bound for the EEP can be written finally as

Pe(d|Θ) ≈ 1

2
erfc

(

√

−dκ(ŝ)
)

≤ 1

2
edκ(ŝ), (4.24)

where we have made use of the inequality erfc (
√

x) ≤ e−x [Proakis, 2001]. On the
other side, knowing that the bit weight enumerator function of the convolutional
code can be expressed as [Lin and Costello, Jr., 2004]

B(X) =

∞
∑

d=dfree

BdX
d =

1

k

∂A(X, W )

∂W

∣

∣

∣

∣

W=1

, (4.25)

where A(X, W ) is the input-output weight enumerator function and k = 1 is the
number of information bits per unit time, Pb can be upper bounded by

Pb ≤
1

2
B(X)

∣

∣

∣

∣

X=eκ(ŝ)

. (4.26)

A tighter bound can be given by using the inequality erfc (
√

x + y) ≤ erfc (
√

x) e−y,
x > 0, y ≥ 0 [Lin and Costello, Jr., 2004], so that, finally

Pb ≤
1

2
erfc

(

√

−dfreeκ(ŝ)
)

e−dfreeκ(ŝ)B(X)

∣

∣

∣

∣

X=eκ(ŝ)

. (4.27)

To calculate κ(ŝ) as the logarithm of the expectation of Eq. (4.23), we can resort to
simulate the system and store the resulting samples to get the histogram of Λ, since
the theoretical calculation of the pdf fΛ(Λ) with a CCM system will be difficult
even in the AWGN channel, and it could depend in a complex way on the mapping
between the bits and the chaos coded modulated symbols. This also depends on
the particular implementation of the BCJR algorithm within the SISO module [Yeh
et al., 2006]. In any case, the simulations needed to get the histogram of Λ with
enough accuracy are less time consuming than the simulations needed to give a
Monte Carlo estimation of the BER.

With respect to the iterative case, we can make use of the same principles and
take the histogram over Λ after several iterations. The channel thus described will
also be BIOS, and the decoding will now be MAP decoding, since we are making use
of the a priori information from the other SISO module. Following the definition
of Λ, the EEP for MAP decoding, assuming that the all-zero codeword has been
sent, is again given by the equations seen, and κ(ŝ) can be as well calculated by
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simulation and using the corresponding histogram. Though this bound is based on
probability density estimation as is done in the calculation of EXIT charts, it will be
more accurate that a possible bound based on these charts [ten Brink, 2001], since
it takes into account the actual interleaver structure and depth. Note that these
developments are valid if Λ is Gaussian distributed at least in the tail [Mart́ınez et al.,
2006], and if we provide sufficient interleaving to keep c and x mutually independent.
These are almost the same assumptions we made to calculate the EXIT charts. As
was mentioned in this case, these assumptions will determine a mismatch between
the theoretical results and the simulation results. This difference will be specially
remarkable in the dispersive channels, or when the interleaver length is small.

In the examples of the next section, we will make use of the simple ν = 4 CC
introduced in the preceding section, whose input-output weight enumerator and bit
weight enumerator functions can be calculated using standard methods [Lin and
Costello, Jr., 2004], as

A(X, W ) =
WX5 − W 2X6 + W 2X8

1 − 2WX − WX3
=

= WX5 + W 2X6 + 2W 3X7 + (4W 4 + 2W 2)X8 + · · · , (4.28)

kB(X) =
X5 − 2X6 + 2X7 + 2X8 − X9 − X11

1 − 4X + 4X2 − 2X3 + 4X4 + X6
=

= X5 + 2X6 + 6X7 + 20X8 + 56X9 · · · . (4.29)

Note also that the bound of Eq. (4.27) for the non-iterative decoding is a union
bound and will converge only for high Eb/N0 [Proakis, 2001]. In the case of iterative
decoding, the bound will prove useful for the waterfall BER region, but not in the
error floor region, where we cannot resort to the computation of the evolution of
the log probability ratios due to the structural constraints of the SISO modules
(where some clipping and normalization in the log probabilities values must always
be performed in order to provide stability and avoid overflows [Benedetto et al.,
1997]). In this case, we would need a more involved analysis based upon a study
of the ML decoding of the joint SCCCM system without the simplification of the
BIOS channel. Though still not addressed due to its inherent complexity, this task
is required in order to complete the error analysis of the SCCCM, since in the error
floor region the BER cannot be reached easily by simulation4.

It has been shown for non-iterative decoding of BICM [Mart́ınez et al., 2006]
that the system will behave in the AWGN channel with Eb/N0 → ∞ like the CC

alone in a channel with κ(ŝ) → −d2
min

4
SNR = −2Rd2

min

4
Eb

N0
, where d2

min is the minimum
squared Euclidean distance of the modulation. This will also hold in our case for the
non-iterative case. This is a direct consequence of the metric definition, (rn − xn)2,
which will make that, for high signal to noise ratios, only the path with the minimum

4This is specially true in serial concatenated schemes like this one [Garello et al., 2001].
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metrics will survive in the decoding process (see Eq. (3.8)), and so, following a
development similar to the one presented in [Mart́ınez et al., 2006], we would have

κ(ŝ) → −minx,x′

∑

n(xn − x′
n)2

4
SNR = −2Rd2

min

4

Eb

N0
(4.30)

In our case, we take d2
min = 4/3, which is the minimum squared Euclidean distance

between all the possible chaotic sequences of the BSM encoder with Q → ∞, since
it does not differ much from the minimum squared Euclidean distance for the Q = 5
value of our examples [Kozic, 2006]. In this situation, the bound of Eq. (4.27) for
Eb/N0 → ∞ and non-iterative decoding can be calculated using

Pe(d|Θ) = e
− 2Rd2

min
4

Eb
N0 . (4.31)

We will see that this bound tends as a lower bound to the BER without iterative
decoding for high Eb/N0.

4.5. Simulation results
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Figure 4.12. BER for several cases of SCCCM in the AWGN channel. ’+’:
N = 10000, S = 23, Q = 5, ν = 4. ’x’: same parameters, but with convolutional
code of ν = 7. ’o’: N = 400, S = 11, Q = 5, ν = 4. ’▽’: same parameters as ’+’,
but without iterative decoding. Dashed lines: from left to right, bounds for the cases
with ν = 4 and Q = 5. ’*’: bound with d2

min for the non-iterative case. ’2’: same
parameters as ’+’, but with Q = 4.

In Fig. 4.12, we show the simulation results for the SCCCM system in the AWGN
channel with different sets of parameters. For the cases with iterative decoding, we
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Figure 4.13. BER and bounds for several cases of SCCCM in the fading
channel, with and without CSI. Continuous line: with CSI. Dashed line: without
CSI. In all cases, N = 10000, S = 23, Q = 5, ν = 4. From left to right, K = 20,
K = 5, K = 0. BER in the AWGN channel and same parameters is depicted with
’2’ for comparison. ’*’ with dash-dotted line: bound for K = 0 and CSI.
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Figure 4.14. BER and bounds for several cases of SCCCM in the ISI chan-
nel. In all cases, N = 10000, S = 23, Q = 5, ν = 4. ’o’: low ISI. ’x’: moderate ISI.
’+’: high ISI. BER in the AWGN channel and same parameters is depicted with
’2’ for comparison. Dash-dotted lines: bounds for low ISI (left) and moderate ISI
(right).
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Figure 4.15. EXIT chart and average trajectory of the mutual information
interchange in the AWGN channel, for the case with Q = 5, N = 10000 and S = 23.

performed 20 decoding iterations both to get the BER and to get the described
bound that uses the histogram over the log probability ratios. First of all, as pre-
dicted through the EXIT charts, the case with ν = 7 reaches the waterfall region
with an Eb/N0 threshold higher than the case with ν = 4, for the same size and
kind of interleaver and for the same quantization level in the BSM modulator. We
also show the BER for this same same sets of parameters with ν = 4, but without
decoding iteratively (i.e., only one decoding pass is performed). We see that the
decoding gain is dramatically linked to the iterative decoding of the SCCCM, just
as is was shown for other serially concatenated systems as SCTCM [Divsalar and
Pollara, 1997] or BICM [Li and Ritchey, 1997].

The results make evident the importance of a good interleaver design, since,
though the performance of the case with N = 400 and S = 11 without iterative de-
coding (not shown) is the same as the performance for the case with N = 10000 and
S = 23 without iterative decoding, when decoding iteratively there is a remarkable
difference in the behaviour of the BER: with N = 400, we have a much shallower
BER slope. This means that a high interleaver depth is necessary to get good results,
because a better interleaver design can provide a higher degree of uncorrelation be-
tween coded bits and chaotic samples and, as a consequence, more accurate a priori
information at the beginning of each decoding pass. We have also depicted in Fig.
4.12 the bounds for the cases with ν = 4. As expected, when Eb/N0 → ∞, the
bound of Eq. (4.27) for the non-iterative case converges as a union upper bound
to the final performance, and the bound that uses the EEP of Eq. (4.31) converges
as a lower bound. On the contrary, the bound for the N = 400 case and iterative
decoding is not very helpful. This is due to the fact that the BIOS assumption
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Figure 4.16. EXIT chart and average trajectory of the mutual information
interchange in the fading channel, for the case with Q = 5, N = 10000, S = 23,
K = 0 and perfect CSI at the decoder.

only holds for sufficient interleaving, and a low value of N does not guarantee the
needed symmetry. On the other hand, the bound for the N = 10000 case and itera-
tive decoding, though not extremely tight, at least gives accurate information about
the slope in the waterfall region. Note also that what was said about the Eb/N0

thresholds for the waterfall region through the EXIT charts is true: in the best case
(N = 10000), there is a difference between the expected value and the actual value
of around 1.0 dB, since the EXIT chart predicted a threshold of about 1.0 dB for
the convolutional code of ν = 4 and of about 2.0 dB for the convolutional code of
ν = 7. We can as well verify that the influence of Q is small, provided that it has
not a very low value (for example, for Q = 1 we would be in the BPSK case and
no chaotic dynamics would be involved): the BER for Q = 5 and Q = 4 is virtually
the same for the same set of parameters (see Fig. 4.12). The best results we have
for the AWGN case are similar to the BER results of BICM with iterative decoding
presented in [Narayanan and Stüber, 1999], which were drawn for a 4-state rate
R = 1/2 convolutional code and coded modulations of 2 and 4 states. Though our
system is more complex5, it will show real advantages in dispersive channels.

In Fig. 4.13 we have depicted the results for N = 10000, S = 23, ν = 4
in the fading channel with different degrees of fading, both when there is CSI at
the decoder and when there is no CSI. All the results have been taken after 20

5We have an 8-state convolutional code and a CCM with 25 = 32 states (Q = 5 in most of
the examples). The SISO module for CCM is also more complex than the SISO module used for
the inner modulation in iterative decoded BICM [Li and Ritchey, 1997], because it requires the
forward-backward MAP sequence decoding algorithm [Bahl et al., 1974].
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Figure 4.17. EXIT chart and average trajectory of the mutual information
interchange in the ISI channel with low ISI, for the case with Q = 5, N = 10000,
S = 23.

iterations. Again, there is a mismatch between the Eb/N0 threshold given by the
simulations with respect to the information given by the EXIT charts. While for the
Rayleigh fading case the expected thresholds were around 3.0 dB with CSI and 4.0
dB without CSI, the BER results show the thresholds at about 4.0 dB and 5.5 dB,
respectively. Since the Rayleigh fading is the worst case of Rician fading, it is not
surprising to see that it yields the worst results and the largest difference between
the CSI and non-CSI cases. On the contrary, the results tend to the BER in the
AWGN channel as K grows, both with CSI and without CSI. Even the worst case
(Rayleigh without CSI) still keeps the good properties in point of BER slope once
reached the waterfall region, though with a loss of about 3.0 dB with respect to the
non-dispersive AWGN case. For the Rayleigh fading and perfect CSI, the loss is
around 1.5 dB. These results are consistent with what was shown in [Yuan et al.,
2002] for serial concatenation of convolutional codes, and improves the results of
[Caire et al., 1998; Li and Ritchey, 1997], where the differences between the Eb/N0

needed to reach a given BER for the AWGN case and for the Rayleigh fading with
CSI case were higher in BICM systems whose complexity was not much lower than
the complexity of our SCCCM examples. We have also included the bound with
iterative decoding for the Rayleigh channel with CSI, and, as seen before for the
AWGN channel, when the interleaver depth is enough, the results can approximate
accurately the slope in the waterfall region. Note that the bound with fading is not
as tight as the bound with AWGN alone. This is due to the fact that Λ in the fading
channel is no longer well matched with a Gaussian density.

In Fig 4.14 we show the results for N = 10000, S = 23, ν = 4 after 20 iterations
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Figure 4.18. EXIT chart and average trajectory of the mutual information
interchange in the ISI channel with moderate ISI, for the case with Q = 5, N =
10000, S = 23.
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Figure 4.20. FER and BER in the ISI channel for two cases of SCCCM
with the convolutional code with ν = 4 and BSM with Q = 5, N = 10000, S = 23.
Continuous line: FER. Dashed line: BER. ’*’: low ISI. ’+’: moderate ISI.

in the case of the ISI channel. The channel with low ISI exhibits a very low loss with
respect to the non-dispersive case, while in the case of moderate ISI we lose about
0.5 dB. These values agree with what was seen through the EXIT charts, though the
exact values of the thresholds are again 1.5 dB above the results of these charts. In
the case of high ISI, the BER does not fall never below 4 · 10−1. This matches very
well with what was said during the convergence analysis. We have also depicted
the corresponding bounds for low and moderate ISI. For low ISI, the bound is as
tight as it was for the pure AWGN channel, and it gives reason again of the slope in
the waterfall region. For moderate ISI, as the received samples have a larger degree
of correlation due to the lower cutoff frequency of the filter, the bound is not as
tight and its slope differs remarkably from the results. Recall that this was also the
case for the fading channel. Apart from the examples mentioned, it is easy to verify
that the BER results of SCCCM in the channels under consideration are at least
comparable to the results of other related serially concatenated systems [Divsalar
and Pollara, 1997; Narayanan and Stüber, 1999; Li and Mow, 1999; Tullberg and
Siegel, 2001; Altunbas and Narayanan, 2001; Yuan et al., 2002; Pfister and Siegel,
2003; Tullberg and Siegel, 2005a; Tullberg and Siegel, 2005b; Schlegel and Pérez,
2004; Howard and Schlegel, 2006].

To shed further light on the behaviour of the iterative decoding process, we
have depicted in Figs. 4.15, 4.16, 4.17 and 4.18 several EXIT charts where we can
compare the predicted behaviour with the real evolution of the mutual information.
This evolution was calculated by averaging over the log probability ratios after each
iteration during the simulations performed to plot the BER results. In this way,
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we get the so called average trajectory of the mutual information [ten Brink, 2001].
As hinted when comparing the Eb/N0 thresholds of the waterfall region, there is
a mismatch between the theoretical curves and the real trajectory. We can see in
all the graphs that only the first step corresponds with the expected value, since
this is the case when we have no feedback from the other decoder. In the rest of
steps, there is always a lower value of the mutual information with respect to the
one calculated with the assumption of uncorrelated Gaussian distributed input log
probability ratios, and so the iterative decoding process does not achieve convergence
at the first Eb/N0 values where the calculated transfer curves do not intersect before
the (1, 1) point. Apart from the Gaussian density assumption, which only holds
approximately, there are other possible sources of mismatch, like an inappropriate
definition of mutual information [Cover and Thomas, 2006], or like an interleaver
design not providing enough uncorrelation between channel samples and encoded
bits. This could be overcome to some extent by increasing the interleaver size N at
the expense of a higher complexity and a longer processing delay, but in a channel
with ISI the correlation will subsist unless some equalization method is implemented.
Nevertheless, the losses in the Eb/N0 thresholds are almost the same for the AWGN
channel and for the dispersive channels considered, and this points towards the
SISO and interleaver structures as reasons for such mismatch, rather than towards
the differences in the channel distortion.

Finally, we have depicted in Figs. 4.19 and 4.20 the frame error rate (FER) and
the BER for several of the cases already commented. When there is no iterative
decoding, the FER is very high, and starts decreasing when the main error events
are of the dfree kind6, so that each frame on error contains only 1 error bit and then
BER ≈ (1/D) FER, with D = R ·N −ν = 4996. On the other hand, when decoding
iteratively, this situation is highly improved, since the FER for the interleaver with
N = 10000 in the AWGN channel follows the behaviour of the BER and exhibits
the same steep slope in the waterfall region (see Fig. 4.19). This means that there
are less frames on error, but, as a contrast, each frame on error contains around
1000 erroneous bits in the waterfall region, where thus BER ≈ (1/5) FER. For the
case with N = 400, the situation is the same, but now each frame on error contains
around 60 erroneous bits, and, as D = 196, BER ≈ (1/3) FER. So the gain in
BER and FER is made at the expense of having large bursts of errors, instead of
having the dominant low Hamming weight error events of the non-iterative case.
The situation for the fading channel is the same (Fig. 4.19), as shown through
the worst case, i.e., Rayleigh fading. In the waterfall region, the FER falls down
with the same slope as the BER and we have still that each frame on error contains
around 1000 erroneous bits, so that, again, BER ≈ (1/5) FER, both for the CSI and
non-CSI cases. The same holds for the ISI channel with low and moderate ISI (see
Fig. 4.20). Therefore, the iterative decoder behaves, at least in the waterfall region,
in the same way with independence of the kind of channel. The channel only seems
to affect the Eb/N0 threshold for this region, and this shows that SCCCM keeps

6This dfree is determined in the case of our non-recursive CC by binary input error events e

with Hamming weight w(e) = 1.
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the good properties of other serially concatenated systems in AWGN and dispersive
channels, uncoupling the channel state and the error correcting code capabilities
once we are above some threshold of channel distortion. It would be interesting
to study what happens on the error floor region, but, as we cannot reach it easily
through simulation, this will require developing much more complex performance
bounds based upon ML analysis.

4.6. Concluding remarks

In this chapter we have pushed further the analogy between traditional coded
modulated systems and CCM, according with the principle that the applicability of
chaos-based communications systems would arise from a close interaction between
well established digital communications theory and Chaos Theory. In this case,
we have extended the concept of serially concatenated trellis coded modulations by
replacing the usual bandwidth-efficient phase or phase-amplitude inner TCM with
a CCM system. Thanks to the principles shown in the previous chapters respecting
the chaotic encoder and the MAP SISO decoder, this new development has been
carried out pretty straightforwardly, with only the slight arrangement of allowing
feedback in the CCM encoder as required for any inner encoder in a concatenated
system [Narayanan and Stüber, 1999].

The analogy with SCTCM and BICM has allowed us to adapt other standard
tools, such as the EXIT charts in order to evaluate the iterative decoding process,
or such as the concept of BIOS channel in order to give a bound for the bit error
probability. The results have shown that, with a moderate mismatch due to the fact
that CCM does not meet exactly the assumptions taken from the TCM case, the
predicted behaviour is close enough to the simulations. Therefore, we are provided
with tools well suited to the design and evaluation of CCM’s other than the BSM
one and which may do still better. We have also shown in our analysis that the
chaotic properties of the modulator are the determining factor for the final behaviour
against the channel distortion with independence of the quantization level of the
CCM, at least down to a minimum value of the same. This establishes a new bridge
between digital communications theory and Chaos Theory, since the systems can be
implemented with limited complexity, while their properties and performance can
be potentially studied for the unquantized case.

Moreover, the BER results obtained point out that SCCCM keeps the good be-
haviour of SCTCM and BICM in dispersive environments even with the simplest
BSM CCM, and that the robustness against low or moderate ISI and fading without
CSI are greatly improved with respect to the results of BSM CCM alone as shown
in Chapter 3. Besides, we have verified that other facts known from SCTCM and
BICM seem to be valid for SCCCM, such as the extremely low BER error floor
and the better behaviour of low constraint length CC’s working as outer encoders.
Nevertheless, the resulting SCCCM system is more complex to decode than BICM
because the SISO module for the chaos coded modulation requires more computa-
tions due to the forward-backward MAP algorithm. On the other hand, SCCCM
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has the advantage that the chaos coded modulations are easy to generate and pro-
duce noise-like broadband signals suitable, among others, for multiuser environments
[Rovatti et al., 2001] where phase or phase-amplitude TCM based systems could be
severely distorted.



Chapter 5

Parallel Concatenated

Chaos Coded Modulations

5.1. Introduction

In Section 4.1 we considered the possibility of enhancing the CCM based systems
performance by using concatenated systems with interleavers, so that the dimension-
ality and redundancy of the systems were increased. We have explored accordingly
in Chapter 4 the extension of the paradigm of serial concatenation to systems in-
cluding chaos-based encoders and we have shown that the CCM encoder can work
in any scheme admitting a coded modulation with binary inputs. Other way of
managing the dimensionality of a system with CCM’s is the possibility of parallel
concatenation. If SCTCM was the traditional counterpart of the system analyzed
in Chapter 4, the parallel concatenation of two or more CCM’s linked by means of
a corresponding number of bit interleavers is the natural extension to chaotic mod-
ulations of the turbo TCM (TTCM) systems [Robertson and Wörz, 1995; Divsalar
and Pollara, 1997; Robertson and Wörz, 1998; Firmanto et al., 2002; Robertson and
Wörz, 2002; Schlegel and Pérez, 2004].

Parallel concatenated coding of any kind relies mainly on the results of the
leading work on parallel concatenated binary channel codes [Berrou et al., 1993],
also known as turbocodes, where the iterative decoding of the resulting code was
shown to achieve outstanding performance very close to Shannon’s limit. Turbo
TCM arised as a normal development in environments where binary modulation is
not desirable, and so we can think of performing another step forward and verify if
parallel concatenated CCM’s can be as good as their non-chaotic counterparts. In
fact, since the TTCM systems combining the bandwidth efficient TCM systems and
the philosophy of turbocoding [Robertson and Wörz, 1998] have shown good results
in AWGN and radio channels, we expect that new chaos-based systems built under
the same principles could lead at least to comparable results.

As a consequence, we address in this chapter the design of encoding and decoding
systems including two CCM’s parallel concatenated by means of a bit interleaver,
and show again that standard tools from digital communications theory can help to
look into the properties of such systems and evaluate their performance. According
to all this, the chapter is structured as follows. Section 5.2 is devoted to the design

97
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of the concatenated encoder and to the particularities of the individual chaotic
encoders, together with a revision of the channel models and of the iterative decoder.
Section 5.3 introduces the convergence analysis of the decoding algorithm by means
of the already exploited extrinsic information transfer charts device. Section 5.4
looks into the squared Euclidean distance properties of the resulting concatenated
coded modulation and proposes a bound for the bit error probability. Section 5.5 is
devoted to the simulation results and to the validation of the predictions of Sections
5.3 and 5.4. Finally, in Section 5.6 we give our concluding remarks.

5.2. System model

As mentioned, we will study here the possibility to get good chaos coded mod-
ulated systems by performing parallel concatenation of individual CCM’s linked by
means of a bit interleaver. According to this, we will call this system parallel con-
catenated chaos coded modulations (PCCCM). The scheme of the complete system
can be seen in Fig. 5.1, and we will describe it with some detail in the following
subsections.
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Figure 5.1. Block diagram of the parallel concatenated encoder, the channel
and the iterative decoder.

5.2.1. Parallel concatenated encoder

The concatenated encoder is shown on the left side of Fig. 5.1. It reproduces
the well known structure of the so called turbocodes [Berrou et al., 1993], which
consist originally on the parallel concatenation of two channel encoders fed with the
same input binary sequence bn, with the difference that the sequence is scrambled
before the second encoder by means of an interleaver Π. The encoding with CCM’s
instead of binary channel codes can also be seen as an instance of turbo trellis coded
modulation (TTCM) [Schlegel and Pérez, 2004; Robertson and Wörz, 1998]. As in
the case of SCCCM, the interleaver operation is performed over bit blocks of size
N . This means that now we will deal with an input alphabet of binary words of size
N , b = (b1, · · · , bN). The output words will have size 2N , x = (x1, · · · , x2N), with
xk, k = 1, · · · , 2N , taking values alternatively from each of the encoders: when k is
odd (k = 2n − 1, n = 1, · · · , N), the sample corresponds to the first encoder; when
k is even (k = 2n, n = 1, · · · , N), the sample corresponds to the second encoder
(see Fig. 5.1).
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As stated, the main difference with respect to a common turboencoder is the
presence of the chaos coded modulators on each branch, denoted as CCM 1 and CCM
2 in Fig. 5.1. From Chapter 3 and so far, we have limited ourselves to the study
of chaos coded modulations based on a chaotic map driven by small perturbations
with a setup which allowed the representation of the encoding process in terms of
a related trellis encoder. Moreover, the specific examples have been given for the
Bernoulli shift map, which has served us to illustrate with the simplest example the
potential coding gain of CCM when used alone in dispersive environments, or when
concatenated with a binary channel encoder and a bit interleaver.

Nevertheless, as we will verify throughout this chapter, the BSM does not offer
good properties for parallel concatenation, and so we propose and evaluate here
other CCM’s as well. We will use chaos-based encoders of two types. The first
sort is the encoder already seen and consisting on a chaotic map controlled by small
perturbations1 [Kozic et al., 2003a; Kozic, 2006], and the second is a chaos shift key-
ing (CSK) encoder [Lau and Tse, 2003], but combined with a small perturbations
setup. These encoders joining both switching map control and small perturbations
control provide better behaviour than pure CSK encoders or pure small perturba-
tions controlled one-dimensional maps [Kozic et al., 2003a]. That is the reason to
propose them here, together with the fact that such encoders provide a more com-
plex structure than the BSM based CCM and therefore potentially better results in
a concatenated scheme. The small perturbations control or the switching between
maps are determined by the binary input for each encoder, bn and cn as shown in
Fig. 5.1.
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Figure 5.2. The figure shows the tent map.

1See Section 3.2.1 in Chapter 3.
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Figure 5.3. The figure shows the multi-Bernoulli shift map. The continuous
line corresponds to bn = 0; the dotted line, to bn = 1.
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Figure 5.4. The figure shows the multi-tent map. The continuous line
corresponds to bn = 0; the dotted line, to bn = 1.

Both kinds of chaotic encoding systems can be described, for n = 1, · · · , N , by
a general recursion in the form:

zn = f (zn−1, bn) + g (bn, zn−1) · 2−Q, (5.1)

xn = 2zn − 1, (5.2)
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where f (·, 0) = f0(·) and f (·, 1) = f1(·) are chaotic maps that leave the interval [0, 1]
invariant. In addition, and according with which was said in Chapter 3, they are
piecewise linear maps with slope ±2 wherever it is defined. Recall that the natural
number Q indicates the number of bits to represent xn, and g (bn, zn−1) ∈ {0, 1}
is the small perturbations term. As denoted, g(·, ·) is a function which depends
on the input bit bn (or cn for the second encoder) and on the previous chaotic
sample zn−1; its expression and meaning were seen in Chapter 42. With these
definitions, it is easy to see again that the recursion of Eq. (5.1) leaves the finite set
SQ = {i · 2−Q|i = 0, · · · , 2Q − 1} invariant and, therefore, we can restrict Eq. (5.1)
to SQ. When Q → ∞, Eq. (5.1) becomes simply the recursion by the chaotic maps
f (·, 0) or f (·, 1), depending on the value of bn, but without small perturbations
control. The Eqs. (5.1) and (5.2) apply also for the non-CSK case: it is enough to
take the same map for bn = 0 and bn = 1, i.e., f0(·) = f1(·). This case of CCM
with small perturbations control alone is the same as described at the beginning of
Chapter 3.

Throughout this chapter, we shall consider the following pairs of maps f0(·) and
f1(·):

1. Bernoulli shift map (BSM). Recall that, in this case

f0(z) = f1(z) = 2z mod 1. (5.3)

This leads to the encoder already used in the examples of Chapters 3 and 4.

2. Tent map (TM), corresponding to equations

f0(z) = f1(z) =

{

2z 0 ≤ z < 1
2

2 − 2z 1
2
≤ z ≤ 1

. (5.4)

See Fig. 5.2.

3. The BSM and a shifted version of the same, following

f0(z) = 2z mod 1, (5.5)

f1(z) =







2z + 1
2

0 ≤ z < 1
4

2z − 1
2

1
4
≤ z < 1

2

2z − 3
2

3
4
≤ z ≤ 1

. (5.6)

We will call the resulting system multi-Bernoulli shift map (mBSM). The
corresponding maps are depicted in Fig. 5.3.

4. The tent map and a shifted version of the same, following (see Fig. 5.4)

f0(z) =

{

2z 0 ≤ z < 1
2

2 − 2z 1
2
≤ z ≤ 1

, (5.7)

2See Eq. (4.4) in Section 4.2.1 of said chapter.
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f1(z) =
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2
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4
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. (5.8)

According to what was said for the mBSM example, we will call this system
multi-tent map (mTM).
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In Chapter 3, we have seen how the map description of the BSM CCM as given
by Eqs. (5.1) and (5.2), when restricted to SQ, could be associated, under a trellis
encoder view, with a related trellis coded modulation, since the encoding process
resulted in a finite state machine. The system could be thus seen as consisting on
a finite size shift register, a number of multipliers and an adder (see Fig. 3.1). We
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also introduced in Chapter 4 the recursion given by g(b, z) (see Fig. 4.2), needed to
get a good interleaver gain in a serially concatenated encoder, and showed it could
just be considered a case of recursive precoding. In parallel concatenated coding,
the importance of this feedback connection has also been established as a needed
device to assure good performance [Benedetto and Montorsi, 1996], and so we keep
it throughout the developments of this chapter. The TM encoder, which can also
be restricted to SQ by choosing a suitable initial condition (e.g. z0 = 0), has an
associated finite state machine description, following

ri = ri−1 ⊗ rQ i = Q, · · · , 2,

r1 = g(bn, zn−1), (5.9)

zn =

Q
∑

i=1

2−(Q+1−i) · ri,

where g(bn, zn−1) = bn ⊗ rQ (see Section 4.2.1). The Eq. (5.9), corresponding
to the encoder structure shown in Fig. 5.5, is a quantized version of the binary
expansion of the related real-valued outputs when using the TM with symbolic
dynamics, just as the recursion of Eq. (4.5) gave also quantized samples from
the binary expansion of the real-valued outputs corresponding to the BSM with
symbolic dynamics [Schweizer and Schimming, 2001a; Schweizer and Schimming,
2001b]. The only particularity is, again, that restricting the output values to SQ

allows us to consider this chaotic map driven by small perturbations based encoder
as a case of TCM. With respect to the instances of CSK + small perturbations,
what we call here multi-map cases, the trellis encoder view keeps the same structure
as the encoders of the corresponding basic map, and only the value for rQ requires
a change, so that the recursion follows the maps f0(·) or f1(·) according to the value
of bn. If bn = 0, we just apply Eq. (4.5) for the mBSM, and Eq. (5.9) for the mTM.
But, if bn = 1, we have to follow the dynamics given by the shifted maps. It is
easy to see that f1(z) = (f0(z) + 1/2) mod 1, and so we can apply the recursions
of the bn = 0 case, but memory position rQ has to take the complementary value,
i.e., rbn=1

Q = rbn=0
Q ⊗ 1. That is to say, the recursions of Eqs. (4.5) and (5.9) are still

valid for the multi-map cases, with the exception that rQ = rQ−1 ⊗ bn for mBSM,
and rQ = (rQ ⊗ rQ−1) ⊗ bn for mTM. The related trellis encoder structures can be
seen in Figs. 5.6 and 5.7.

Though in all these explanations we have taken the sequence bn as the binary
input for the encoder, thus implicitly pointing towards CCM 1, the same applies to
CCM 2, just by changing bn by the interleaved sequence cn. Note that the four en-
coders described have rate R = 1 sample per bit, even the switched map ones (CSK
type), and this is a difference with other standard CSK encoders, where several sam-
ples are produced for each input bit by performing a number of recursions through
the corresponding map [Lau and Tse, 2003; Larson et al., 2006]. In this way, the
overall rate for a parallel concatenation of two CCM of the kind described will be
R = 1/2 samples per bit. It is also evident that we can concatenate two different
encoders and evaluate the potential advantages of using systems with different en-
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coding structures. The CCM’s described produce data xn uniformly distributed in
[−1, 1] for Q → ∞, so that the output sequences will have power P ≈ 1/3 [Sprott,
2003].

With respect to the interleaver which performs the scrambling between the se-
quences bn and cn, it will be a bit interleaver with size N , as mentioned at the
beginning of this section. Specifically, it will consist on an S-random interleaver
[Divsalar and Pollara, 1995], which has already been described in Chapter 3 for
SCCCM3. As we do not perform trellis termination for either of the encoders, the
importance of a good interleaver design is even higher than in the case of SCCCM,
where the outer convolutional encoder added at least some degree of structure to
the input data for the CCM. If we have a simple N = N1 × N2 block interleaver,
it is easy to see that the minimum squared Euclidean distance for all the possi-
ble CCM encoders whose values are limited to SQ will be associated with input
words b = (b1, · · · , bN−1, 0) and b′ = (b1, · · · , bN−1, 1), since π(N) = N , and these
sequences are interleaved as c = (c1, · · · , cN−1, 0) and c′ = (c1, · · · , cN−1, 1). There-
fore, the output words produced will have only two different values at the end of
the sequence, x2N−1, x2N and x′

2N−1, x′
2N . For two CSK + small perturbations

encoders, the differences between x2N−1 and x′
2N−1 (first CCM) and x2N and x′

2N

(second CCM) will be located only in the values of register positions r1 and rQ,
affected by weights 1/2Q and 1/2 respectively. In this way, the squared Euclidean
distance between such output sequences x and x′ would be

d2 (x,x′) =
2N
∑

k=1

(xk − x′
k)

2
= 4

(

2
1

2
+ 2

1

2Q

)2

= (2 +
1

2Q−2
)2. (5.10)

For encoders based only in small perturbations, the differences in the last values of
the output words will be associated to the value of r1, so that the squared Euclidean
distance between such words would be

d2 (x,x′) = 4

(

2
1

2Q

)2

=

(

1

2Q−2

)2

. (5.11)

See how in this case the concatenation of two non-CSK CCM’s lead to a very poor
minimum squared Euclidean distance, which vanishes to 0 when Q → ∞. Such min-
imum squared Euclidean distance error events associated with binary error events
of Hamming weight 1 can be easily avoided either by performing trellis termination
or by changing such simple interleaver design [Hokfelt et al., 2001]. We choose here
the second possibility.

Therefore, with an S-random interleaver with S> 1 (i.e., when the interleaver is
not a purely random interleaver), we avoid the possibility of having Hamming weight
1 binary error events of the type described leading to a low squared Euclidean
distance between the output words of the resulting code. Moreover, due to the
feedback connection given by g(b, z), the minimum squared Euclidean distance error

3See Section 4.2.1.
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events for each of the individual CCM’s seen cannot take place for an input binary
error event with Hamming weight 1. Therefore, their concatenation with an S-
random interleaver will determine binary error events leading to low output squared
Euclidean distances only for higher input Hamming weights. These facts have been
established for binary turbocodes and also hold here [Benedetto and Montorsi, 1996].
We will analyze the consequences of this in Section 5.4.

Recall that the mentioned encoders resemble Ungerboeck’s trellis coded mod-
ulation (TCM) [Ungerboeck, 1982], and so the turbo system thus built could be
thought as an instance of turbo trellis coded modulation (TTCM) [Robertson and
Wörz, 1998]. Nonetheless, there are some important differences, as the system pro-
posed here has as scope to have broadband chaotic (or at least chaotic-like) samples
in the channel, not to provide a bandwidth-efficient modulation. Therefore, as was
seen in Chapter 4 for SCCCM, the constituent encoders work at a rate of 1 bit per
symbol with amplitude modulation, instead of using phase shift keying (PSK) or
other more complex modulations. One advantage over TTCM is that we do not
require m-wise interleavers (m being the bits per symbol in the TTCM setup) or
symbol interleavers [Wu and Ogiwara, 2004], and we can work with simpler bitwise
permutations.

5.2.2. Channel

The channels considered will be the same introduced in Chapter 3. They were
also employed in Chapter 4 to assess the performance of SCCCM in the presence
of different kinds of distortion. We review them here briefly for clarity’s sake. As
mentioned before, the samples xk are sent to the channel in baseband. In the
channel, shown in Fig. 5.1 as a black box, xk is subjected at least to the effects
of additive white Gaussian noise (AWGN) and possibly other sources of distortion.
We will have three kinds of channels with the following outputs, for k = 1, · · · , 2N :

1. AWGN channel. The sequence arriving at the decoder side, r = (r1, · · · , r2N),
will be

rk = yk + nk = xk + nk, (5.12)

where yk = xk, and nk are iid samples of a Gaussian RV with zero mean and
power σ2. Recall that x2n−1, n = 1, · · · , N are the chaotic symbols from the
first chaos coded modulator, and x2n, n = 1, · · · , N are the chaotic symbols
from the second chaos coded modulator.

2. ISI channel. It is described by a normalized FIR filter of length 2M + 1, with
impulse response h = (h−M , · · · , hM). rk can be thus written as

rk = yk + nk =
M
∑

m=−M

hmxk+m + nk. (5.13)

The filter coefficients will be again those of Table 3.1. It is worth noting
that this ISI channel, according with the alternating order in which the sam-
ples from each encoder are placed in the transmitted sequence, correlates the
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chaotic samples from both constituent encoders. This will be of consequence
in the final performance.

3. Fading channel. In this case, the chaotic signal will be affected by frequency-
non selective (flat) uncorrelated fading. The fading amplitude samples ak

follow uncorrelated Rician RVs with parameter K and unit power. rk can be
written as

rk = yk + nk = akxk + nk. (5.14)

As the joint PCCCM system proposed has rate R = 1/2 for two CCM of the kind
described, then the relationship between the power of the noise and the signal to
noise ratio in terms of bit energy to noise spectral density will be

σ−2 = 2
R

P

Eb

N0
=

1

P

Eb

N0
, (5.15)

where P is the power of the chaos coded modulated signal and R = 1/2.

5.2.3. Iterative decoder

The decoder, shown on the right hand side of Fig. 5.1, consists on two SISO de-
coding blocks working iteratively over each set of received samples (the ones coming
from the first encoder, r2n−1, and the other ones coming from the second one, r2n,
n = 1, · · · , N). These SISO modules that perform sequence MAP decoding over
the chaos coded modulated signal correspond to the modules already described in
Chapter 3, Section 3.2.2. The soft outputs from the first decoder, in the form of
log probability ratios, Λ (bn; O), conveniently interleaved, act as a priori inputs for
the second decoder, Λ (cn; I), whose a posteriori outputs Λ (cn; O) act in turn, when
deinterleaved, as a priori values for the first one, Λ (bn; I). After a certain number of
iterations, a decision may be drawn over the sum of soft outputs coming from both
decoders (see Fig. 5.1) [Benedetto et al., 1996]

Λ (bn) = Λ (bn; O) + Π−1 [Λ (cn; O)] , (5.16)

where Π−1 denotes the operation of the deinterleaver. We obtain thus the estimated
received sequence b̂n, n = 1, · · · , N . As usual, I stands for input and O, for output.
This process is analogous to the iterative decoding process of SCCCM, with the
exception that here both concatenated encoders are inner encoders and so both
SISO decoders work on the output channel samples rk. The output log probability
ratios can be thus expressed as

Λ (bn; O) = log
p
(

bn = 1|rb,Θ
)

p (bn = 0|rb,Θ)
, (5.17)

Λ (cn; O) = log
p (cn = 1|rc,Θ)

p (cn = 0|rc,Θ)
, (5.18)
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for n = 1, · · · , N . Vectors rb and rc contain the channel samples corresponding
to each CCM encoder / SISO decoder pair, i.e., rb = (r1, r3, · · · , r2N−1) and rc =
(r2, r4, · · · , r2N). As usual, the dummy vector Θ denotes the channel parameters
known to the decoders. Note that both decoders work on non-terminated trellises,
and, as usual, this has to be taken into account when initializing the SISO decoding
algorithm in the backward pass.

We shortly review the particularities for each kind of channel. The AWGN
channel and the ISI channel employ the same metrics, calculated as functions of
(rk −xk)

2, and so the extrinsic information at the output of the first SISO is simply
written as

Λ (bn; O) = log
P (bn = 1|rb)

P (bn = 0|rb)
. (5.19)

In the fading channel without CSI, the metrics are functions of (rk − ηaxk)
2 [Hall

and Wilson, 1998] and so the first SISO module produces the log probability ratios

Λ (bn; O) = log
P (bn = 1|rb, ηa)

P (bn = 0|rb, ηa)
, (5.20)

Finally, for the fading channel with perfect CSI, the metrics are functions of (rk −
akxk)

2, so that the extrinsic information is expressed as

Λ (bn; O) = log
P (bn = 1|rb, ab)

P (bn = 0|rb, ab)
, (5.21)

where ab = (a1, a3, · · · , a2N−1) is the vector of fading amplitudes affecting the sam-
ples from the first CCM. The same expressions hold for the second CCM, but with
cn instead of bn, rc instead of rb, and ac = (a2, a4, · · · , a2N ) instead of ab.

5.3. Convergence analysis

We saw in Section 4.3 that the EXtrinsic Information Transfer (EXIT) charts
were useful to predict the general behaviour of the iterative decoding process of a
SCCCM system. The EXIT charts have also been successfully employed TTCM sys-
tems [Chen and Haimovich, 2004; Schlegel and Pérez, 2004; Kliewer et al., 2006], and
therefore we expect that they will also provide us here with information about the
possibilities of the parallel combination of CCM encoders under iterative decoding.
The main difference with respect to what was seen in Section 4.3 is that here both
encoders send samples to the channel, and so both transfer curves will be affected by
the channel distortion level. The procedure to get these transfer curves is the same
as seen in the mentioned section: for each Eb/N0 in the channel and each additional
impairment process (fading with or without CSI, or ISI, or just nothing else in the
case of simple AWGN), we have run 100 simulations with blocks of N = 10000 input
bits. We have fed again into the SISO modules Gaussian distributed log probability
ratios following Eq. (4.18), and we have calculated numerically the integral of Eq.
(4.19) to give the input value I(I). The output values I(O) have been calculated by
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Figure 5.8. EXIT chart for two BSM CCM with Q = 5 in the AWGN
channel. The Eb/N0 goes from left to right (lower curves) and from bottom to top
(upper curves) from −1.0 dB to 2.5 dB in 0.5 dB steps. Marked with ’*’: Eb/N0

threshold at about 1.5 dB.
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Figure 5.9. EXIT chart for two mBSM CCM with Q = 5 in the AWGN
channel. The Eb/N0 goes from left to right (lower curves) and from bottom to top
(upper curves) from −1.0 dB to 2.5 dB in 0.5 dB steps. Marked with ’*’: Eb/N0

threshold at about 0.0 dB.
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Figure 5.10. EXIT chart for two TM CCM with Q = 5 in the AWGN
channel. The Eb/N0 goes from left to right (lower curves) and from bottom to top
(upper curves) from −1.0 dB to 2.5 dB in 0.5 dB steps. Marked with ’*’: Eb/N0

threshold at about 0.5 dB.
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Figure 5.11. EXIT chart for two mTM CCM for Q = 5 in the AWGN
channel. The Eb/N0 goes from left to right (lower curves) and from bottom to top
(upper curves) from −1.0 dB to 2.5 dB in 0.5 dB steps. Marked with ’*’: Eb/N0

threshold at about 0.0 dB.
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integrating Eq. (4.16) numerically after computing the histogram of Λ at the output
of each SISO. Finally we have averaged over the ensemble of runs.

In Figs. 5.8, 5.9, 5.10 and 5.11, we can see the EXIT charts in the AWGN channel
for a combination of two equal CCM’s of the kind described in Subsection 5.2.1. The
lower curves correspond to the second CCM and the upper ones to the first CCM
(see right hand side of Fig. 5.1), so that axis I1 is the input mutual information and
axis I2 is the output mutual information for the first SISO (and viceversa for the
second SISO). The iterative decoding process works as seen in Section 4.3, with a
series of hops between the upper and lower curves for a given Eb/N0, starting from
the point where the upper curve intersects the vertical axis I1 = 0. In said figures,
we have also highlighted the curves representing the approximate Eb/N0 threshold
where the decoding process can theoretically converge to the (1, 1) point. Apart
from the fact that the thresholds suggest differences in the final BER performance,
the shape of the curves and the evolution of the fixed point as the Eb/N0 evolves
from −1.0 dB to 2.5 dB will provide us with valuable information about the general
behaviour of the iterative decoding process.

Following Fig. 5.8, we can see that the fixed point where the lower and upper
curves intersect for a given Eb/N0 tends gradually to the (1, 1) point, so that the
threshold highlighted at 1.5 dB is only a visual approximation and we could be
in fact very near it, but still not at (1, 1). As a consequence, we can guess that
there will be no distinct waterfall region with a steep slope in the BER curve for
this concatenation of two BSM CCM’s. On the contrary, we can think of the BER
tending gradually with a smoother slope to the final error floor. The simulations will
illustrate the accurateness of this prediction. With respect to Figs. 5.9, 5.10 and
5.11, we can see in all the cases that the fixed point changes abruptly from a point
near (0.5, 0.5) to the (1, 1) point, so that most probably we will have a waterfall
region in the BER curves with a steep slope where the error rate changes fast from
a high value to a value near the final error floor.

There are other differences to take into account. Though Figs. 5.9 and 5.11
have almost the same Eb/N0 threshold, we can see that the value chosen for two
concatenated mBSM CCM’s is more conservative, so that it is to expect a slightly
better behaviour from this concatenated encoder with respect to the two mTM
CCM’s case. Regarding the two TM CCM’s case (see Fig. 5.10), we can also guess
that, once reached the thresholds Eb/N0, this concatenated system would require
more decoding iterations to get a given BER than the rest of concatenated systems
considered. The initial decoding gain grows almost nothing with growing Eb/N0 and
we would always need at least 4 or 5 iterations just to reach the rightmost upper
quadrant delimited by I1 = 0.5 and I2 = 0.5.

In Figs. 5.12, 5.13, 5.14 and 5.15, we have plotted the EXIT charts for the
combination of two equal CCM’s in the ISI channel. We may expect some deviation
from the behaviour shown here with respect to the simulations, since the mutual
information transfer functions have been drawn with only the samples from one
encoder on the channel, while in the system described in Section 5.2 every other
sample comes from the other decoder. This means, by one side, that the samples
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Figure 5.12. EXIT chart for two BSM CCM with Q = 5 in the ISI channel
with different levels of distortion. ’x’: low ISI, Eb/N0 = 1.5 dB. ’o’: moderate ISI,
Eb/N0 = 2.0 dB. ’▽’: high ISI, Eb/N0 = 7.5 dB.

rk simulated to get the EXIT charts are affected by a higher degree of correlation
from the own chaotic samples of the testing encoder, but, on the other side, they are
not correlated with the samples from the other decoder. Since this is not the real
situation in the ISI channel, we foresee further mismatches between the predictions
and actual values for the thresholds in this case.

First of all, it is clear that none of the parallel concatenated systems will cope
with the high ISI case regardless of the noise power in the channel, since the mutual
information transfer functions exhibit an early crossing point and the lower transfer
function I1 = T2(I2, Θ) (second SISO) is never confined below the I2 = I1 line,
nor the upper transfer function I2 = T1(I1, Θ) (first SISO) over this same line.
The information available from the channel is so severely distorted that there is no
possibility of convergence.

On the other hand, the low and moderate ISI cases show a slight degradation
in the convergence thresholds. The TM and the mTM cases have a loss of about
0.5 dB for low ISI and about 1.0 dB for moderate ISI. In the mBSM case, there
seems to be no loss for low ISI and only 0.5 dB for moderate ISI. Nevertheless, the
window between the mutual information transfer functions for mBSM in AWGN
was taken slightly more conservative (bigger) than the other two cases mentioned.
Therefore, it is to expect that, since the convergence of the concatenation of two
mBSM CCM in AWGN would be a bit below the threshold for two mTM CCM
(they are the same following Figs. 5.9 and 5.11), there will also be similar losses
for low and moderate ISI. In the case of the concatenation of two BSM CCM’s,
there seems to be the same situation as for the concatenation of two mBSM CCM’s.
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Figure 5.13. EXIT chart for two mBSM CCM with Q = 5 in the ISI channel
with different levels of distortion. ’x’: low ISI, Eb/N0 = 0.0 dB. ’o’: moderate ISI,
Eb/N0 = 0.5 dB. ’▽’: high ISI, Eb/N0 = 7.5 dB.

Nevertheless, the convergence characteristics of the BSM, with the crossing point of
the transfer functions evolving smoothly to the (1, 1) point both for the AWGN and
the ISI channels (excepting the high ISI case), will not determine a distinct BER
waterfall region and very little we can say about the Eb/N0 for which the error floor
is reached.

In Figs. 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21, we show the EXIT charts for the
concatenation of two identical CCM’s in the fading channel, both with CSI and
without CSI. We do not consider the BSM CCM, since the information that we
can draw from its EXIT charts is very limited. In the Rayleigh fading channel
(K = 0), there will be for all the cases a loss of about 1.0 dB when there is side
information at the decoder (CSI case), and around 2.0 dB when said side information
is not available (case without CSI). As already seen with the SCCCM system, the
degradation in the threshold Eb/N0 tends to vanish as we approach the K → ∞
case (AWGN channel) and the differences respecting the CSI and the non-CSI case
also tend to collapse to the values in AWGN alone (see Figs. 5.17, 5.19 and 5.21).
Specifically, when K = 5, the case of two mTM CCM’s shows that the losses are
reduced to 0.5 dB (CSI) and to 1.0 dB (without CSI).

Though not shown, we have verified that the EXIT charts seem to be unaffected
when changing the quantization level4 Q, and so we have taken the value Q = 5 for
all cases. This value is not too low to lose the chaotic properties of the signal xn in the
channel, and not too high to make decoding unfeasible. Note also that the EXIT

4Recall what was seen in Chapter 4.
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Figure 5.14. EXIT chart for two TM CCM with Q = 5 in the ISI channel
with different levels of distortion. ’x’: low ISI, Eb/N0 = 1.0 dB. ’o’: moderate ISI,
Eb/N0 = 1.5 dB. ’▽’: high ISI, Eb/N0 = 7.5 dB.

charts for the distorting channels have been drawn again under the assumption
of Gaussian distributed input log probability ratios, and therefore we expect to
get some mismatch between the predicted thresholds and the actual ones got by
simulation. We have to take into account as well that these EXIT charts assume
perfectly uncorrelated input and output mutual information in each SISO decoder,
and therefore the use of a real and finite size interleaver will introduce the usual
degradation in the Eb/N0 thresholds. We will verify this in Section 5.5 with plots
of the actual average trajectory of the mutual information.

5.4. Minimum squared Euclidean distance analysis

In Chapter 4 we saw that, for SCCCM, it was easier to give an estimation of the
bit error probability in the waterfall region thanks to the reasonable assumption of a
BIOS channel, but the ML analysis for the Eb/N0 → ∞ case needed to give a bound
for the bit error probability in the error floor region was hindered by the nonlinear
structure of the CCM. This same happens with PCCCM, since we cannot rely either
on the ML analysis and use a transfer function bound approach as is usually made
with turbocodes [Divsalar et al., 1995; Babich et al., 1998]. Nevertheless, we are
going to see that it is easier to provide a bound for the error floor region, even though
we are working with two nonlinear CCM’s. We are also specially interested in the
error floor with parallel concatenation, since it is a known fact that the parallel
concatenated systems, while having lower Eb/N0 thresholds for the BER waterfall
region in comparison to analogous serially concatenated systems, are affected by a



114 Chapter 5. Parallel Concatenated Chaos Coded Modulations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
1

I 2

Figure 5.15. EXIT chart for two mTM CCM with Q = 5 in the ISI channel
with different levels of distortion. ’x’: low ISI, Eb/N0 = 0.5 dB. ’o’: moderate ISI,
Eb/N0 = 1.0 dB. ’▽’: high ISI, Eb/N0 = 7.5 dB.

higher BER in the error floor region [Garello et al., 2001]. Thus, estimating this
error floor and its nature can help us to get a good understanding of the system and
the way to design better alternatives.

Let us denote as b and b′ two binary input words of size N , and x and x′ the
resulting PCCCM encoded codewords of size 2N . The difference between b and b′

is an input binary error event e = b⊗b′ with Hamming weight w(e) and length L,
and the resulting difference between x and x′ is a pairwise error event with squared
Euclidean distance d2

E =
∑2N

n=1(xn − x′
n)2. Note that b and b′ only differ in L

bits, and that x and x′ may or may not differ in all the 2N possible samples. Let
us denote as dH(x,x′) the Hamming distance between codewords, defined as the
number of positions where xn 6= x′

n.
The good results of the turbocode structure resulting from the parallel concate-

nation through a bit interleaver rely in the fact that, with a good interleaver design,
the input binary error events with low Hamming weight susceptible to produce on
any of the individual encoders a pairwise error event with low squared Euclidean
distance are conveniently broken, so that the possibility of having the same low
Hamming weight error events simultaneously on both sequences never arises. Nev-
ertheless, good candidates for the minimum squared Euclidean distance events are
normally to be found among some combination of the low Hamming weight binary
error events, which are difficult to spread efficiently in both binary input words
b and c [Schlegel and Pérez, 2004]. Due to this, just before proceeding with the
minimum squared Euclidean distance analysis for PCCCM, we will characterize the
error events of all the individual CCM’s considered in Subsection 5.2.1. While the



5.4. Minimum squared Euclidean distance analysis 115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
1

I 2

Figure 5.16. EXIT chart for two mBSM CCM with Q = 5 in the fading
channel for K = 0 (Rayleigh fading). ’x’: with CSI, Eb/N0 = 1.0 dB. ’o’: without
CSI, Eb/N0 = 2.0 dB.

searching of the minimum squared Euclidean distance for a CCM could be a tough
task [Kozic, 2006], and the recursive connection does not allow us to apply here
the approach of [Kozic et al., 2003b] based upon the dynamics of the maps, it will
result easier to rely on the examination of the error events of lowest input Hamming
weight w(e) and lowest length L. Though no formal proof is given for the statements
made in the following regarding the distances and error events, the results are easily
verified by considering the finite state machine nature of these CCM’s.

1. In the case of the BSM CCM with the recursive input g(z, b), we saw in
Subsection 4.2.1 of Chapter 4 that the lowest Hamming weight binary in-
put error event was given by · · · bn−1, bn, bn+1 · · · , bn+Q−1, bn+Q, bn+Q+1, · · · vs
· · · bn−1, b

′
n, bn+1 · · · , bn+Q−1, b

′
n+Q, bn+Q+1, · · · , corresponding to a binary error

event e = b ⊗ b′ = (0, · · · , 0, 1, (Q − 1 0′s), 1, 0, · · · , 0) of length L = Q + 1
and Hamming weight w(e) = 2. This error event produces a codeword error
event with Hamming distance dH(x,x′) = Q. The BSM CCM is a special case
of CCM due to its almost linear structure, since it complies with the uniform
error property (UEP) [Biglieri and McLane, 1991], and the resulting squared
Euclidean distance between the associated codewords x and x′, besides being
the minimum squared distance of the code, does not depend on the values of b

and b′, or on the previous value5 of xn−1 = x′
n−1, but only on the binary error

event e itself. Recall that this minimum squared Euclidean distance could be

5Which is equivalent to the starting state of the error event in the finite state machine description
of the CCM.
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Figure 5.17. EXIT chart for two mBSM CCM with Q = 5 in the fading
channel for K = 20. ’x’: with CSI, Eb/N0 = 0.0 dB. ’o’: without CSI, Eb/N0 = 0.0
dB.

calculated as

d2
min =

L+m−1
∑

n=m

(xn − x′
n)2 = 4

Q
∑

i=1

1

4i
=

4

3

(

1 − 1

4Q

)

, (5.22)

and that we could approximate it without great error by the value correspond-
ing to Q → ∞, d2

min = 4/3, when Q ≥ 4. There are also other possible error
events with Hamming weight 2 and length Lp = p(L − 1) + 1 = pQ + 1, with
p > 1, p ∈ N, but their associated squared Euclidean distance would be around
p times the distance of Eq. (5.22).

2. For the TM CCM, the situation is slightly different. In this case, we have a
first binary error event e = (0, · · · , 0, 1, (Q−1 1′s), 1, 0, · · · , 0) with Hamming
weight w(e) = Q + 1 and Hamming distance dH(x,x′) = Q. The exact value
of the squared Euclidean distance between codewords depends on the previous
value of xn−1 = x′

n−1 and on the exact binary patterns in b and b′, but it has
an absolute minimum value of

d2
min =

L+m−1
∑

n=m

(xn − x′
n)2 = 4

Q
∑

i=1

(

1

2Q−1

)2

= Q · 1

4Q−1
, (5.23)

which tends to zero as Q → ∞. This is one of the reasons why the TM
CCM works so poorly when used alone [Kozic et al., 2003b], and so led us to
consider only antisymmetric maps in Chapter 2. Nevertheless, this error event
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Figure 5.18. EXIT chart for two TM CCM with Q = 5 in the fading
channel for K = 0 (Rayleigh fading). ’x’: with CSI, Eb/N0 = 2.0 dB. ’o’: without
CSI, Eb/N0 = 3.0 dB.

has Hamming weight w(e) = Q and so, for values of Q ≥ 4, it will not be
a good candidate for the most probable BER error events in the error floor
region of the PCCCM system.

There is another error event with Hamming weight w(e) = 2, length L = Q+2
and Hamming distance dH(x,x′) = Q + 1, with structure e = b ⊗ b′ =
(0, · · · , 0, 1, (Q 0′s), 1, 0, · · · , 0). In this case the UEP does not hold either
and the squared Euclidean distance depends as well on xn−1 and on b, b′.
The minimum squared Euclidean distance for this set of events is

d2
min =

L+m−1
∑

n=m

(xn − x′
n)2 =

1

4Q−1
+

Q
∑

i=1

1

4i−1
=

1

4Q−1
+

4

3

(

1 − 1

4Q

)

, (5.24)

which tends to 4/3 as Q → ∞.

If these are the error events we have to consider in our parallel concatenated
system, we see that we get a big improvement with respect to the use of this
TM CCM alone, where the dominant error events would be the ones described
previously with Hamming weight w(e) = Q and very low squared Euclidean
distance. Note that this TM used alone is a catastrophic encoder, since two
input sequences differing virtually in an infinite number of bits for Q → ∞ can
generate two output sequences with an squared Euclidean distance tending to
0 [Andersson, 1998]. In any case, though the UEP does not hold for these error
events with Hamming weight 2, it is true that the set of all possible squared
Euclidean distances for different xn−1, b and b′ is limited to 2Q−1 values. This
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Figure 5.19. EXIT chart for two TM CCM with Q = 5 in the fading channel
for K = 50. ’x’: with CSI, Eb/N0 = 0.5 dB. ’o’: without CSI, Eb/N0 = 0.5 dB.

can be verified in the histogram of Fig. 5.22, taken after generating all the
2Q ·2Q+1 different possibilities6. Let us denote as DL

2 the set of all the possible
squared Euclidean distances produced by the weight 2 error event with length
L, that is to say

DL
2 =

{

d2
E = d2(x,x′)

∣

∣x ↔ b,x′ ↔ b′, bm 6= b′m, bm+L−1 6= b′m+L−1

}

. (5.25)

Note also that each of the 2Q−1 patterns would appear equiprobably for an
iid binary input sequence under the presence of the related binary error event,
since xn−1 and b will have equiprobable values. As seen with the BSM CCM,
the TM CCM will also have in general binary error events of Hamming weight
2 with length Lp = p(L − 1) + 1 = p(Q + 1) + 1, p > 1, p ∈ N, but with
increasing squared Euclidean distances.

3. The mBSM CCM also exhibits a minimum length error loop with L = Q,
w(e) = Q and dH(x,x′) = Q − 1. As in the previous case, the exact d2

E

depends on the initial state of the encoder when the loop starts (i.e., on the
value of xn−1) and on the specific values of b and b′. For this error event,
the minimum squared Euclidean distance is higher than 2. The next loop in
length, with L = Q + 1, is the one that interests us, since it has w(e) = 2.
It also exhibits the known structure e = (0, · · · , 0, 1, (Q − 1 0′s), 1, 0, · · · , 0),
and a Hamming distance dH(x,x′) = Q. Again the exact value of d2

E depends

6There are 2Q different starting states and 2Q+1 different possibilities for b and b
′ such that

e = b⊗ b
′ without repeating the patterns of length L = Q + 2.
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Figure 5.20. EXIT chart for two mTM CCM with Q = 5 in the fading
channel for K = 0 (Rayleigh fading). ’x’: with CSI, Eb/N0 = 1.5 dB. ’o’: without
CSI, Eb/N0 = 2.5 dB.

on xn−1 and on the binary sequences, and the minimum squared Euclidean
distance is

d2
min =

L+m−1
∑

n=m

(xn − x′
n)2 =

Q−1
∑

i=1

1

4i
+

(

Q−1
∑

i=1

1

2i

)2

=
1

3

(

1 − 1

4Q−1

)

+

(

1 − 1

2Q−1

)2

, (5.26)

which tends to 4/3 as Q → ∞. Nevertheless, as in the case of the TM
CCM, the number of possible squared Euclidean distances in DL

2 is far less
than 2Q · 2Q, as shown in Fig. 5.23, where we can see that there are only 8
possible different values when Q = 5. Error events of weight 2 and lengths
Lp = p(L − 1) + 1 = pQ + 1, p > 1, p ∈ N, are also possible, but they have

higher distances and offer a higher cardinality for D
Lp

2 .

4. In the case of the mTM encoder, the analysis of the error events corresponding
to low loop lengths L is more involved, since there are different possibilities
depending on whether Q is odd or even, and we could have in some cases
minimal loops with L = Q− 1 or L = Q, but always with w(e) > 2. We have
in any case the error event with L = Q+1, w(e) = Q+1 and dH(x,x′) = Q, but
this time it does not exhibit a minimum squared Euclidean distance tending
to 0 when Q → ∞ as in the TM case. For our purposes, the interesting error
event is the one with L = Q + 2, w(e) = 2 and dH = Q +1, e consisting again
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Figure 5.21. EXIT chart for two mTM CCM with Q = 5 in the fading
channel for K = 5. ’x’: with CSI, Eb/N0 = 0.5 dB. ’o’: without CSI, Eb/N0 = 1.0
dB.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

50

100

150

200

250

300

d
E
2

Figure 5.22. Histogram of the possible output squared Euclidean distances
for the Hamming weight 2 binary input error events in the case of a TM encoder
with Q = 5 for different starting states in the encoder and different binary input
sequences corresponding to said input error event.
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Figure 5.23. Histogram of the possible output squared Euclidean distances
for the Hamming weight 2 binary input error events in the case of a mBSM encoder
with Q = 5 for different starting states in the encoder and different binary input
sequences corresponding to said input error event.
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Figure 5.24. Histogram of the possible output squared Euclidean distances
for the Hamming weight 2 binary input error events in the case of a mTM encoder
with Q = 5 for different starting states in the encoder and different binary input
sequences corresponding to said input error event.
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in two ones separated by Q zeroes. The minimum squared distance for this
error events is lower than, but very close to, 2, and tends to it when Q → ∞.

As we can see in the histogram of Fig. 5.24, the d2
E values depend very much

on the different possibilities of xn−1, b and b′ and the cardinality of DL
2 is very

high. While this distance spectrum structure will complicate the error floor
analysis, it will provide us with an explanation of the good BER properties
of the resulting turbo system. We can finally consider also the error events
of Hamming weight 2 and lengths Lp = p(L − 1) + 1 = p(Q + 1) + 1, p > 1,
p ∈ N, but their importance for the following developments is very limited due
to their associated increasing squared Euclidean distance.

In the context of binary turbocodes and assuming ML decoding, whenever the min-
imum squared Euclidean distance of the code can be found, and taking into account
the principle of rare error events [Proakis, 2001], the limit BER in the error floor
region could be approximated in the case of the AWGN channel as [Benedetto et al.,
1998]

Pbfloor
≈ Nminwmin

2N
erfc





√

d2
min

4P
R

Eb

N0



 , (5.27)

where Nmin is the number of binary input error events which lead to output words
whose distance is the minimum squared Euclidean distance, wmin is the mean value of
the Hamming weight of the input binary error events leading to these output words,
N is the size of the interleaver, d2

min is the minimum squared Euclidean distance, P
is the power of the signal in the channel, and R is the overall code rate. For the
binary turbocodes with antipodal signalling, d2

min = 4dfree and P = 1, and so the
bound of Eq. (5.27) is a function of the free distance of the parallel concatenated
binary code. Recalling what was seen in Chapter 3 with respect to the bounding of
the bit error probability, in the case of the PCCCM system the Eq. (5.27) would
take the general form

Pbfloor
≈ βmin

∑

x,x′|d2
min

Pe(x → x′|x), (5.28)

where Pe(x → x′|x) is the error event probability corresponding to error events with
minimum squared Euclidean distance d2

min and which, in general, would depend on
x and x′. The parameter βmin is the bit enumerator factor and will be related to
the same parameters as seen in the binary turbocode case. Note that the expression
in Eq. (5.28) is general and could be applied to channels other than the AWGN
one, just by redefining the meaning of minimum squared Euclidean distance (see
Chapter 3), and applying the corresponding error event probability as a function of
the channel distortion. In the AWGN channel, the error event probability takes the
known form

Pe(x → x′|x) =
1

2
erfc





√

d2
E

4P
R

Eb

N0



 . (5.29)
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We have seen that the error event probability could be given as Eq. (3.29) in the
ISI channel, as Eq. (3.49) for the fading channel with CSI, and as Eq. (3.66) for the
fading channel without CSI. A more accurate bound than the one of Eq. (5.28) could
be established using the union bound techniques, as is done in [Tullberg and Siegel,
2005a] for TCM, but this would require to compute the transfer functions of these
encoders [Lin and Costello, Jr., 2004], which is almost an unfeasible task in general
due to the fact that the UEP is not applicable. For the purposes of calculating the
error floor, Eq. (5.28) will be enough.

There exist a number of methods to search for the minimum squared Euclidean
distance of a parallel concatenated binary or non-binary code, mainly based upon
the uniform interleaver assumption which makes the evaluation of the bit enumerator
factor feasible regardless of the size of the interleaver N [Perez et al., 1996; Garello
et al., 2001; Schlegel and Pérez, 2004]. These methods also rely on the uniform
error property, so that for them it is enough to search for the binary error events e

leading to the free (or minimum) distance. In our case, with the constituent CCM’s
not accomplishing the UEP (with the exception of BSM), the analysis could be very
cumbersome, even assuming the uniform interleaver device to avoid considering the
specific structure of the interleaver.

Nevertheless, taking into account what was said before about the error events
with Hamming weight 2 for the constituent CCM’s, there are some hints that we
can employ to give a possible bit error probability bound in the error floor region
based on the structure of the interleaver itself. We assume the S-random interleaver
as mentioned in Subsection 5.2.1, so that we avoid the possible error events with
Hamming weight 1 of the simple N1 × N2 block interleaver when the trellis is not
terminated in neither of the constituent encoders [Hokfelt et al., 2001]. Even with
trellis termination, though the N1×N2 block interleaver could have a large spreading
factor leading to a high minimum squared Euclidean distance, the multiplicities of
the error events can be potentially very high due to its regularity [Schlegel and Pérez,
2004]. Regularity itself is one of the reasons we will see for the poor behaviour of
the PCCCM system with BSM CCM’s as constituent encoders.

With the S-random interleaver, it is clear that the error events with Hamming
weight 2 that can occur simultaneously in both constituent encoders have to be those
meeting the restrictions of the S-random algorithm (see Subsection 4.2.1). Let us
denote as L1 the minimum loop length for which one of such error events can take
place in the CCM. When S ≤ L1, there exists the possibility of having the minimal
loop error event in both encoders, and so the absolute minimum squared Euclidean
distance could be

d2
min = 2 · min

d2
E

DL1
2 . (5.30)

To avoid this, we will always try to choose for S a value higher than L1, because
a weight 2 error event of length L1 < S could be mapped at most as a weight 2
error event for the second encoder with length Lp > S, p > 1, and so we can avoid
the kind of undesirable minimum squared Euclidean distance events of Eq. (5.30).
Note that the maximum possible value for S is limited by the size of the interleaver
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N , since S <
√

N/2. This also puts a limit on the value of Q once we have a pair
S and N , because L1 = Q + a, a ∈ N, and we require that L1 < S to avoid low
squared Euclidean distance weight 2 error events in the concatenated code.

In Section 5.5 we will use in many of the simulations S-random interleavers with
S = 23 for CCM’s with Q = 5, so that, regardless of the kind of CCM, S > L3,
and so a Hamming weight 2 binary error event would have a possible minimum
squared Euclidean distance higher than the sum of the minimum squared Euclidean
distances for loops with L = L1 and loops with L = L3, and therefore

d2
min > 4 · min

d2
E

DL1
2 . (5.31)

In this case, we will verify that the minimum squared Euclidean distance is given
by the association of two binary error events with Hamming weight 2, since no
restriction is made in the S-random interleaver respecting the concatenation of error
loops. If the structure of the permutation chosen semi-randomly allows it, we could
have two loops of minimal length L1 with Hamming weight 2 starting at i and j,
and ending respectively in i + L1 − 1 and j + L1 − 1, mapped into indexes π(i),
π(j), π(i + L1 − 1) and π(j + L1 − 1) and leading to two minimal length loops with
Hamming weight 2 given by, for example

|π(i) − π(j + L1 − 1)| = L1 |π(j) − π(i + L1 − 1)| = L1, (5.32)

and any other possibility not violating the restrictions of the S-random algorithm. In
case this possibility exists, the absolute minimum for the squared Euclidean distance
will be

d2
min = 4 · min

d2
E

DL1
2 , (5.33)

and the corresponding BER error floor could be approximated in the AWGN channel
by

Pbfloor
≈ wminN4

2N
erfc





√

4 · mind2
E

DL1
2

4P
R

Eb

N0



 , (5.34)

where wmin = 4 is the Hamming weight of the input binary error event and N4 is the
loop multiplicity, i.e., the total number of combinations of the kind of Eq. (5.32)
allowed by the interleaver structure. This expression is specially useful when the
UEP holds, as in the case of BSM, since DL1

2 has only one element an the error events
of the kind described with Hamming weight 4 will always have the same squared
Euclidean distance. Conversely, in the case of the parallel concatenation of mBSM,
TM or mTM CCM’s, there could be a very low probability of having simultaneously
4 Hamming weight 2 binary errors with a squared Euclidean distance taking the
absolute minimum value in DL1

2 , specially for TM and mTM (see histograms 5.23,
5.22 and 5.24). This is a consequence of the their non-UEP structure, and so the
squared Euclidean distances depend on the specific value of the input words b and
c. For this situation, a better approximation to the BER error floor can be given
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following a combinatorial approach if we average over all the possible combinations
with repetition of the elements of DL1

2 taken 4 by 4. Note that this is only valid for
mBSM and TM CCM’s, since for these encoders the frequencies of the individual
Hamming weight 2 binary error events for each of the elements in DL1

2 are the same
(see Figs. 5.22 and 5.23). If we denote the number of elements in DL1

2 as t, the
number of combinations to take into account is

(

t + 4 − 1

4

)

=
(t + 3)!

(t − 1)!4!
=

(t + 3)(t + 2)(t + 1)t

24
. (5.35)

With these definitions, the average bound for mBSM and TM in the AWGN channel
could be given as

Pbfloor
≈ wminN4

2N

24

(t + 3)(t + 2)(t + 1)t

∑

d2
E=d2

1+d2
2+d2

3+d2
4

d2
i ∈D

L1
2

erfc





√

d2
E

4P
R

Eb

N0



 , (5.36)

where the distances d2
i take values from DL1

2 as combinations with repetition re-
gardless of the order. wmin and N4 have the meaning seen in Eq. (5.34). We
see that the multiplicity of the absolute minimum of d2

E is now decreased by
24/((t + 3)(t + 2)(t + 1)t) with respect to the concatenation of two BSM CCM’s,
and so it is to expect a better behaviour of the systems with mBSM or TM CCM’s
in the error floor region. This average with equal multiplicity for each combination
of error events with weight 2 and minimal length is a good approximation if we
can suppose that all possibilities for b and c are equiprobable at the input of each
encoder, and this condition is met reasonably when the binary input sequence is iid
and the interleaver is large enough to sufficiently uncouple b and c.

In the case of two mTM CCM’s, the spectrum of squared Euclidean distances
for the Hamming weight 2 binary error events prevents us from applying the same
combinatorial approach. A possible tight average bound for the BER error floor
could be given by taking the histogram of the distribution p(d2

E) over d2
E = d2

1 +
d2

2 + d3
2 + d2

4, d2
i ∈ DL1

2 , and numerically integrating [Abramowitz and Stegun, 1965]

Pbfloor
≈ wminN4

2N

∫ d2
Emax

d2
Emin

p(v) · erfc
(

√

v

4P
R

Eb

N0

)

dv, (5.37)

where we have replaced d2
E by the dummy variable v. In Fig. 5.25, we can see

the corresponding histogram of d2
E for an mTM CCM with Q = 5 and for the

binary error events considered. Only for low values of Q we can compute easily
such histogram. See that the histogram is approximately Gaussian and that the
minimum and the mean values for d2

E are high. This expanded and richer structure
of the lowest Hamming weight input binary error events allows us to foresee a lower
error floor with mTM CCM’s than with the mBSM or TM CCM’s.



126 Chapter 5. Parallel Concatenated Chaos Coded Modulations

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

d
E
2

Figure 5.25. Histogram of the possible output squared Euclidean distances
when the binary error events consist on 2 individual binary input error events with
Hamming weight 2 in the case of a concatenation of two mTM encoders with Q = 5.

These bounds also allow us to estimate the frame error probability in the error
floor region Pefloor

through the relationship

Pbfloor
≈ wmin

N
Pefloor

, (5.38)

where it has been taken into account that, for each frame on error, there will be
wmin bit errors over a total of N information bits. This Pefloor

can also be seen as
the average pairwise error probability E [Pe(x → x′|x)] in the error floor region.

In the ISI channel, a possible bound based upon these principles would be ex-
tremely cumbersome to calculate, as the developments seen in Chapter 3 to calcu-
late the error event probability of Eq. (3.26) are based on a combinatorial approach
whose complexity would grow a lot when considering the PCCCM and the combi-
nation of several input binary error loops, apart from the fact that the task to find
the events with minimum equivalent Euclidean distance for the new encoders is not
itself an easy task (see Section 3.3). Recall also that now the samples from both
constituent encoders are mingled in each rk.

On the other hand, the evaluation of bounds in the fading channel, both with
CSI and without CSI, is not so complicated given the error event probabilities of
Eqs. (3.49) and (3.66), and if we assume that the kind of error events in PCCCM
occurring in the error floor region in these channels is the same as in AWGN. The
only change would be the need to calculate the set of possible sequences of (xn−x′

n)2

or x2
n(xn − x′

n)2 for the error events, the corresponding multiplicities and then to
average in the same way with the specific expressions of the error event probability.
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We will not perform these calculations here and will limit ourselves to show the
validity of the proposed error floor bounds in the AWGN channel.

In the next section, we will introduce the simulation results for several PCCCM
and we will see to what extent the predictions made through the EXIT chart analysis
and the minimum squared distance analysis are close to the actual behaviour of the
parallel concatenation of equal chaos coded modulation systems with a bit S-random
interleaver.

5.5. Simulation results
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Figure 5.26. BER and corresponding error floor bounds for different parallel
concatenation of two equal CCM’s in the AWGN channel, Q = 5, N = 10000 and
S = 23. Bounds are depicted with dash-dotted lines. ’x’: PCCCM with two BSM
CCM’s. ’o’: PCCCM with two TM CCM’s. ’*’: PCCCM with two mBSM CCM’s.
’△’: PCCCM with two mTM CCM’s.

In this section we present some simulation results which will be interpreted on
the light of the previous analysis. In all the simulations, 20 decoding iterations were
performed and the BER results were recorded after finding 20 frames on error. In
Fig. 5.26, we have depicted the BER results for the parallel concatenation of two
equal CCM’s with S-random bit interleavers of length N = 10000 and S = 23. All
the CCM’s have a quantization factor of Q = 5. The general behaviour for each of
the encoders is as predicted through the EXIT charts, but with a shift in the Eb/N0

threshold for the BER waterfall region. For example, in the mBSM case the turbo
cliff is not at Eb/N0 = 0.0 dB as suggested by Fig. 5.9, but well after Eb/N0 = 0.5
dB. The systems based on the TM, for which the thresholds were taken with Eb/N0

allowing narrower windows for the progression of the mutual information trajectory,
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Figure 5.27. BER and corresponding error floor bounds for the parallel
concatenation of two equal mBSM CCM’s in the AWGN channel, with different Q
and N parameters. Bounds are depicted with dash-dotted lines.
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Figure 5.28. BER and FER for different parallel concatenation of two equal
CCM’s in the AWGN channel, Q = 5, N = 10000 and S = 23. BER: continuous
line. FER: dashed line. Upper thick continuous lines correspond to the relation
FER= (N/wmin)BER (not depicted for the mTM case).
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show a degradation of more than 1.0 dB with respect to the expected value. Note
that what we foresaw about the concatenation of BSM CCM’s is true: there is no
real turbo cliff and the BER proceeds smoothly from the high BER region to the
BER error floor.

In Fig. 5.26 we also show the bounds for the BER at the error floor region calcu-
lated according to the principles and expressions seen in Section 5.4. Though they
only take into account the kind of error events mentioned there, they are reasonably
tight. In the case of BSM and mBSM, the interleavers employed allowed a total
of N4 = 5 possible composition of pairs of Hamming weight 2 binary error events
with L = L1 = Q + 1, and the interleavers of the TM and mTM cases allowed a
total of N4 = 4 of such compound events. It is remarkable the fact that the theo-
retical error floor, together with the error floor shown by the simulations, decreases
as the regularity in the spectrum of the squared Euclidean distances associated to
the individual Hamming weight 2 binary error events decreases. In fact, the mTM
case, which has the most complex squared Euclidean distance spectrum as seen in
Fig. 5.24, exhibits a behaviour very close to the serial concatenated case, and even
the simulations have not been able to reach the error floor region and validate the
proposed value. The rest of cases agree well with the principles of parallel concate-
nation [Schlegel and Pérez, 2004]: a general good behaviour for low Eb/N0, but a
relatively high BER error floor for Eb/N0 → ∞.

In Fig. 5.27 we show the BER and the error floor bounds for the mBSM PCCCM
with different values of N , S and Q. The difference between Q = 5 and Q = 6 is
small, and only seems to affect the turbo cliff, determining a slightly steeper slope
for the Q = 6 case. Nevertheless, the error floor is the same: though for Q = 6 there
are some important changes in the binary error events (the minimal loop length is
L1 = 7 and the corresponding Hamming distance is dH(x,x′) = 6), the values of
the squared Euclidean distances are practically the same, since the changes in such
values are small as Q → ∞ when Q > 4. This makes it clear that the dynamics
of the map, which determines the spectrum of the squared Euclidean distances
between pairs of chaotic sequences, is a more determining factor in the error floor
region than the ad-hoc quantization level Q. On the other hand, when we change
the value of N , we can appreciate in Fig. 5.27 that the interleaver gain in the error
floor region changes as N−1 as expected for any parallel concatenated system with
interleavers [Schlegel and Pérez, 2004]. There is not even a noticeable improvement
in the Eb/N0 threshold for the waterfall region with growing N with respect to the
case N = 10000. Only when N < 10000 (see the N = 1000 case), the situation
is clearly worse and the behaviour starts resembling the pure BSM case. In fact,
with N = 1000 the interleaver requires a lower value for S, and, since it takes now
the value S = 12, the dominant error events in the error floor region are those
with overall Hamming weight 2 (instead of 4) and given by one individual binary
error loop with L = L1 in one encoder and L = 3(L1 − 1) + 1 = 16 > S on the
other. These error events have associated squared Euclidean distances lower than
the squared Euclidean distances for the compound Hamming weight 4 error events
of the cases with S > 3(L1 − 1) + 1.
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Figure 5.29. BER for two BSM CCM’s in the ISI channel, Q = 5, N =
10000 and S = 23.

0 1 2 3 4 5 6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

AWGN channel

low ISI

moderate ISI

high ISI

Figure 5.30. BER for two mBSM CCM’s in the ISI channel, Q = 5,
N = 10000 and S = 23.

The oscillation seen in the tails of the BER for the mBSM and TM cases of the
Figs. 5.26 and 5.27 is due to the fact that 20 frames on error are not enough to
accurately estimate the BER in the transition region between the turbo cliff and
the error floor, since, for the values of Eb/N0 involved, the SISO decoders are on a
somewhat unstable point where the erroneous frames have either only 4 bit errors
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Figure 5.31. BER for two TM CCM’s in the ISI channel, Q = 5, N = 10000
and S = 23.
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Figure 5.32. BER for two mTM CCM’s in the ISI channel, Q = 5, N =
10000 and S = 23.

(the kind of error events seen), either error events with different number of bit
errors and squared Euclidean distances not so near the minimum values. Therefore,
the correct error rate could only be well estimated with a larger number of frames
with errors. This is related to the fact that some of the wmin = 4 error events of
Section 5.4, depending on the values of xn−1 and bn, · · · , bn+L−1 for each error loop
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with L = L1, can sometimes have larger distances than other error events with, for
example, wmin = 2 and loop lengths L < S for one decoder and L > S on the other.
Nevertheless, as we can see in Fig. 5.28, the BER and the FER in the error floor
region are well related through BER= (wmin/N)FER, with wmin = 4 and N = 10000.
For the mTM case, unfortunately, we do not have any information about the error
floor region and we cannot compare, though we can foresee a very low value for the
BER in such region.
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Figure 5.33. BER for two mBSM CCM’s in the fading channel, Q = 5, N =
10000 and S = 23. Line with ’*’: same system in the AWGN channel. Continuous
lines with ’+’: cases with CSI. Dashed lines with ’+’: cases without CSI. From right
to left: K = 0, 5, 20, 50.

Following what was done in previous chapters, we have also evaluated the BER
in dispersive channels. The results in the case of the ISI channel are shown in
Figs. 5.29, 5.30, 5.31 and 5.32. We saw in Fig. 5.26 that the BSM PCCCM was a
poor performing parallel concatenated system, and in the ISI channel it does not do
better. In the case of low ISI, there is a loss of about 3.0 dB, and the behaviour with
moderate ISI is almost as catastrophic as with high ISI. This could seem surprising,
since, according to the results of Figs. 3.7 and 3.8 seen in Chapter 3 for an individual
BSM CCM, the losses with respect to the AWGN case were around 1.0 dB with low
ISI and 4.0 dB with moderate ISI for a BER of 10−7, and the overall results offered
some degree of protection against these levels of ISI as compared with the uncoded
BPSK case. Moreover, the simulations of PCCCM show that the dominant error
events for Eb/N0 → ∞ in the case of low ISI are the same as for BSM in the
pure AWGN channel, but the system behaves worse because the equivalent squared
Euclidean distance spectrum related to these error events (and so to the error event
probabilities of Eq. (3.26)) is dramatically changed. For moderate ISI, the filtering
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Figure 5.34. BER for two TM CCM’s in the fading channel, Q = 5, N =
10000 and S = 23. Line with ’*’: same system in the AWGN channel. Continuous
lines with ’+’: cases with CSI. Dashed lines with ’+’: cases without CSI. From right
to left: K = 0, 5, 20, 50.
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Figure 5.35. BER for two mTM CCM’s in the fading channel, Q = 5, N =
10000 and S = 23. Line with ’*’: same system in the AWGN channel. Continuous
lines with ’+’: cases with CSI. Dashed lines with ’+’: cases without CSI. From right
to left: K = 0, 5, 20, 50.
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Figure 5.36. EXIT chart for the parallel concatenation of two BSM CCM’s
with Q = 5 and average trajectories for an N = 10000, S = 23 S-random interleaver.

of the data establishes such a level of correlation among the samples from one encoder
and the samples from the other that the turbo principle fails to work, attained in one
of its main pillars: the relative independence between the samples of both encoders.
This is the reason why these results have nothing to do with what could be deduced
from the EXIT chart of Fig. 5.12 (i.e., no degradation with low ISI and 0.5 dB
degradation with moderate ISI), since in this chart we did not take into account the
extra level of correlation introduced by the FIR filter.

According to all this, the rest of the cases, though not so badly affected by
ISI (excepting the high ISI case, which always will require equalization), show mis-
matches with respect to the predictions of the EXIT charts more important than
those simply due to the failure of the Gaussian assumption for density evolution,
or to an unperfect relative uncorrelation given by the finite size interleaver. This
penalty will be far more remarkable for the moderate ISI case. In fact, the EXIT
charts of Figs. 5.13, 5.14 and 5.15 pointed towards a loss of less than 0.5 dB for
low ISI, and less than 1.0 dB for moderate ISI. According to Figs. 5.30, 5.31 and
5.32, with low ISI the predictions approximately hold because the distortion is kept
very low7. In the moderate ISI case, with the exception of the mTM PCCCM, the
increasing in the Eb/N0 threshold for the turbo cliff are far higher than 1.0 dB. The
better behaviour of the mTM case could be related to its non-regularity, which has
already proved useful in the error floor BER for the AWGN channel. The lacking of
uniformity between the mapping of binary messages into encoded chaotic codewords
seems to provide an extra level of immunity against frequency selective channel im-

7Note nevertheless how the low ISI channel left almost unaffected the BSM SCCCM system of
Chapter 4 (see Fig. 4.14).
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Figure 5.37. EXIT chart for the parallel concatenation of two mBSM
CCM’s with Q = 5 and average trajectories for an N = 10000, S = 23 S-random
interleaver.

pairment. This is also coherent with the fact that the PCCCM with constituent
BSM CCM’s, being almost linear, leads to the worst behaviour8.

Proceeding with the dispersive channels, we represent in Figs. 5.33, 5.34 and
5.35 the behaviour of the proposed systems under Rician and Rayleigh frequency-
non selective fading, with and without CSI. We have dropped the BSM case because,
though it has served us to gain more insight into the BER results, it adds no rel-
evant additional information now. The BER results follow more closely now the
predictions of the EXIT charts in Figs. 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21, with
the exception of the usual differences in the Eb/N0 thresholds due to the unaccu-
rateness of the Gaussian assumption and of the limited capacities of the interleaver
to uncorrelate the binary data and the chaotic samples of the different CCM’s. We
see that, as expected, the differences between the CSI and the non-CSI cases tend
to vanish fast as K grows, and it can be appreciated how the cases with K = 20
and K = 50 show marginal losses with respect to the BER in AWGN. For the
worst and most interesting case, i.e., Rayleigh fading (K = 0), the differences in
the Eb/N0 threshold for the waterfall region is 1.0 dB for Rayleigh fading with CSI
in the BSM and mTM PCCCM cases, and 1.5 dB for the TM PCCCM one. This
is in good agreement with Figs. 5.16, 5.18 and 5.20. In the Rayleigh case without
CSI, the BER takes additionally some tenths of dB to reach the turbo cliff with
respect to what can be seen in the EXIT charts. Again, the best result is given by

8According to this, in the case of SCCCM with a BSM CCM, the reason for the better behaviour
under ISI could be related to the fact that the convolutional code together with the interleaver
adds the required level of non-uniformity.
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Figure 5.38. EXIT chart for the parallel concatenation of two TM CCM’s
with Q = 5 when Eb/N0 = 1.0 dB in the low ISI channel, and three average trajec-
tories for an N = 10000, S = 23 S-random interleaver.

the mTM PCCCM, where the overall loss in the worst situation (Rayleigh fading
without CSI) is in practice limited to a bit more than 2.0 dB. We can compare this
with our SCCCM example, where the loss was a little higher than 3.0 dB (see Fig.
4.13).

Note that the previous figures illustrate that we can get BER results on any
of the channels considered that are comparable with the results attainable with
turbocodes or TTCM systems of not very different complexity and rate [Benedetto
and Montorsi, 1996; Divsalar and Pollara, 1997; Schlegel and Pérez, 2004].

We finally compare the trajectories of the mutual information during the iterative
decoding process when using a finite length specific interleaver with respect to the
theoretical transfer functions of Section 5.3. In Fig. 5.36, we can see how it is true
that the mutual information, and so the BER, proceeds smoothly to the error floor
limit with the BSM CCM’s. Even when the road seems wide open to the (1, 1) point
for Eb/N0 = 2.5 dB, 1.0 dB above the proposed theoretical threshold, the average
mutual information trajectory gets stuck at a point where the BER is still above
10−3 (see Fig. 5.26). For mBSM (Fig. 5.37), the situation is better and at 1.0
dB above the theoretical threshold we can consider to have reached the error floor
region. In Figs. 5.38 and 5.39 we have plotted the EXIT charts and the average
trajectories for two specific examples of PCCCM in the dispersive channels. Fig.
5.38 shows that, for low ISI, the convergence is in fact reached almost 2.0 dB over
the expected value. A similar result can be observed in Fig. 5.39 for the fading
channel with K = 0 and perfect CSI, though here the difference with the expected
value is only 1.0 dB. This stresses the fact that the mismatch will always be higher
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Figure 5.39. EXIT chart for the parallel concatenation of two mTM CCM’s
with Q = 5 when Eb/N0 = 1.5 dB in the fading channel with CSI and K = 0, and
three average trajectories for an N = 10000, S = 23 S-random interleaver.

in the ISI channel due to the problems already mentioned.
Note how in all the figures the only value of the average trajectory approaching

the theoretical one corresponds to the first decoding step through the first SISO
module, i.e., when there is no input mutual information from the other decoder. In
the rest of steps, it is evident that the EXIT chart assumptions for such input mutual
information only hold approximately and we deviate progressively from what could
be expected. However, we can say that the EXIT charts themselves, taken with the
needed reserve, can be usefully managed to analyze the PCCCM system.

5.6. Concluding remarks

We have continued here with the building of concatenated systems based on
CCM’s with the aim of improving their performance by increasing the system di-
mensionality, but without going out from standard digital communications theory.
Therefore, we have extended the concept of turbocoding and proposed the parallel
concatenation of two CCM’s linked by means of a bit interleaver. While for the
purposes of illuminating the possibilities of the described systems, the BSM CCM
has served us well in Chapters 3 and 4, we have proposed here other CCM encoders
based on the same principles, because the PCCCM built with BSM CCM’s was
a firm candidate for bad performance. Apart from adapting the tent map to the
CCM system based on small perturbations, we have incorporated the class of CCM
systems with switched maps and small perturbations control [Kozic et al., 2003a].

Again, the EXIT charts device has helped us to get useful hints about the per-
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formance of the different kinds of PCCCM designed with two equal CCM’s, though
for the ISI channel the results are not very reliable since the assumption of uncorre-
lation between the data from both encoders is far from met. Besides, an analysis of
the error events of the constituent CCM’s has allowed us to draw a bound for the
BER in the error floor region. This has improved our knowledge respecting how we
can arrange the interleaver structure for lowering the error floor.

Most important, apart from verifying again the relative independence of the
results from the chaotic signal quantization level, we have seen that the best per-
formance, at least in the error floor region, is to be achieved by the CCM’s that are
furthest from meeting the uniform error property. In PCCCM, the regularity in the
CCM behaviour seems to be a severe drawback, and this explains the uselessness of
the BSM CCM. Other surprise has been the finding that the TM CCM, which indi-
vidually yields a very poor BER, can improve greatly its performance when parallel
concatenated. This was well explained again by the lack of regularity in the mapping
between the most probable input binary error events and the corresponding output
squared Euclidean distances, thanks to the complex interaction between the CCM’s
and the bit interleaver.

On the other hand, the behaviour of PCCCM, while comparable with TTCM in
the AWGN channel, has shown a high degree of robustness in the flat fading channel.
However, the BER in the ISI channel claims for the need of express equalization even
with low-moderate ISI, since PCCCM does not tolerate very well the correlation
between the samples of both encoders arising from frequency selective distortion.
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Conclusions

We enumerate in what follows the general conclusions of this PhD thesis.

1. We have verified that, when encoding initial conditions, the design of a com-
munications system based on a one-dimensional piecewise nonlinear map using
as design criterion the invariant density of the chaotic data leads to poor re-
sults. In fact, the invariant density can give reason of the general behaviour of
the bit error rate, but it cannot explain the details, so that the map dynamics
remain the main factor to be taken into account. Moreover, we have seen that
in the AWGN channel, piecewise nonlinear maps are worse performing than
their piecewise linear counterpart for the kind of symmetry studied.

2. When the decoding of the chaotic sequence relies on initial condition estima-
tion, we have seen that the performance is dominated by the reference samples
that lie outside the definition interval after the addition of the noise. The best
way to overcome this is to perform sequence estimation, with MAP or ML
algorithms, or by using recursively the decoding based on initial condition es-
timation. The reason for this was that, with such methods, the redundancy
implicitly present in the whole chaotic sequence is conveniently propagated
and can thus be fully exploited. It is a known fact that decoding locally leads
to the appearance of a threshold effect.

3. The poor results of the encoding and decoding systems based on both piece-
wise linear and piecewise nonlinear maps lead us to consider the kind of chaos
coded modulations that, based on piecewise linear maps driven by small per-
turbations, had produced already more efficient chaos-based communications
systems. Nevertheless, we limited ourselves initially to a bad performing case
in the AWGN channel in order to show that the coded properties of the chaos-
based system can be usefully exploited in dispersive channels. In fact, after
proposing a MAP decoding module suited to the small perturbations setup, we
have shown that the effects of frequency selective impairment (intersymbol in-
terference) and frequency non-selective time-varying impairment (flat fading)
can be attenuated with such a poor performing chaos coded modulation.

139
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4. To build good performing encoders in non-dispersive (AWGN) or dispersive
environments, one can resort to the increasing of the redundancy provided
when the system rate is R < 1. To do this, we have exploited the analogy
that chaos coded modulated systems provide with convolutional encoders or
trellis coded modulations, and considered the possibility of building serially
and parallel concatenated systems. In both cases, the objective was to get
a more complex mapping between the input binary message and the output
chaotic samples as a way to effectively increase the robustness and the available
redundancy in the system.

5. The serial concatenation with a convolutional encoder as outer encoder, a bi-
nary interleaver and a chaos coded modulation as inner encoder resulted in a
system analogous to a serially concatenated trellis coded modulation system.
We have shown that practical concatenated encoders and iterative decoders
can be employed with the chaos-based setup, and that the results can be an-
alyzed with standard tools borrowed from the digital communications field.
The convergence and bit error analysis, together with the simulation results,
have shown that the final performance is greatly enhanced and that these new
chaos-based systems can compete with standard serially concatenated systems.
In fact, the results were specially promising in channels with intersymbol in-
terference.

6. The parallel concatenation of two chaos coded modulations with a binary in-
terleaver resulted in a system analogous to a turbo trellis coded modulation
system. We described again the possibility to get practical concatenated en-
coders and iterative decoders, and showed that the analysis of the system is
possible with known tools taken from digital communications as well. The
results show once again that we can design chaos-based systems competitive
with their non-chaotic counterparts. Moreover, the parallel concatenation of
chaos coded modulations has provided us with very good results in flat fading
channels.

7. The analysis of the parallel concatenated systems has shown that their best re-
sults are associated with encoding setups that are far from meeting the uniform
error property. These systems exhibit a complicated mapping between input
binary error events and output squared Euclidean distance. This can be seen
as an equivalent instance of what happens in the serially concatenated sys-
tem thanks to the addition of the channel encoder and the binary interleaver.
These facts proved that the conjecture about the need for a higher complexity
in the relationship between input binary message and output chaotic samples
is in fact true, and that it can be implemented without special or totally new
developments.

8. The examples analyzed have shown how the growing analogy between digital
communications systems and chaos coded modulations can be managed to
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design and evaluate good chaos-based communications systems. This analogy
allowed the use of devices like the EXIT charts, the BIOS channel assumption,
the evaluation of bounds based on input binary error events related to output
chaotic error loops, and so on. This is a most important achievement, since
in this way the evaluation and design tasks of the related chaos-based systems
can be addressed in known and controlable ways. Nevertheless, we have found
out that such devices are not always fitted to the chaos-based systems without
some mismatch because of their special characteristics, and this points towards
the need of more accurate developments. On the other hand, all the examples
have shown that the discretization of the chaotic sequence seems to have a
limited effect in the properties of the system. They have proved to be more
related to the dynamical properties of the underlying map than to the value
of the quantization factor.

As a final conclusion, we can say that we have demonstrated how, following a
recently opened path that conveniently links digital and chaos-based communica-
tions, it is possible to build efficient chaos-based systems both in non-dispersive and
dispersive channels in a pretty straightforward way. Now that we can have chaotic
signals in the channel without the penalty of a severe degradation in performance,
we foresee the real starting of practical chaos-based communications.
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Location and Date: Bologna, Italy, 6-8 September, 2004

153



154 Curriculum Vitae

Conference: Eighth IEEE International Symposium on Signal Processing
and its Applications (ISSPA)
Poster Presentation: ‘Iteratively Decoding Chaos Encoded Binary Signals’
Authors: Francisco J. Escribano, L. López and M. A. F. Sanjuán
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Resumen

Introducción

Desde su introducción y posterior desarrollo a lo largo del siglo XX, la Teoŕıa
del Caos ha logrado trascender el dominio de lo puramente matemático para irse
convirtiendo en una herramienta potencialmente útil en el estudio de multitud de
fenómenos f́ısicos o qúımicos, como ciertas reacciones, flujos turbulentos, sistemas
f́ısicos no lineales, osciladores y fenómenos de resonancia, etc. Pero también esta
teoŕıa ha encontrado aplicación en el estudio de sistemas complejos, sobre los que
se puede modelar una gran variedad de fenómenos que atañen, no ya sólo a ciencias
como la f́ısica, la matemática y la qúımica, sino también a la socioloǵıa, a la inge-
nieŕıa, o a la economı́a, entre otros campos. De esta forma, dentro del mundo de
la ingenieŕıa, encontramos que los sistemas caóticos se están usando ampliamente
como herramientas de modelización en procesado de señal, aśı como en aplicaciones
prácticas dentro del ámbito de los conversores analógico-digitales, los conversores de
potencia, etc.

En este contexto en el que se ha ido empleando la Teoŕıa del Caos como provee-
dora de modelos o como ayuda para el estudio de fenómenos complejos o sistemas no
lineales, también han merecido especial atención las señales mismas generadas por
los sistemas caóticos y sus propiedades espećıficas. Dadas las caracteŕısticas de las
señales caóticas, fáciles de producir mediante procedimientos recursivos pero dota-
das de una elevada complejidad, no sorprende que pronto se aventurara su aplicación
en los sistemas de telecomunicaciones. En tal sentido, a lo largo de los años 90 se
intensificaron las investigaciones y los desarrollos que buscaban introducir este tipo
de señales en las llamadas tecnoloǵıas de la información, bien formando parte de
nuevas formas de transmisión y modulación dentro de sistemas de comunicación,
por ejemplo en sistemas de espectro ensanchado, o como posibles veh́ıculos para
encriptación y protección de datos. Las propiedades que hacen deseables las señales
caóticas en este tipo de aplicaciones son su aspecto ruidoso, su carácter de señales
de banda ancha, su baja autocorrelación y su facilidad de generación.

Sin embargo, a un comienzo prometedor no le siguió un desarrollo inmediato
en el que las modulaciones caóticas mostraran una especial aptitud para competir
con los sistemas habituales de transmisión digital, situación que se prolongó con
altibajos hasta que, a partir de principios de la presente década, se fueron abriendo
nuevas v́ıas que, mediante el establecimiento de una base común para los sistemas
de comunicación digital y los sistemas de modulación codificados basados en señales
caóticas, permit́ıan contemplar su incorporación en sistemas de comunicación digi-
tales bajo fundamentos bien establecidos más allá de desarrollos ad-hoc no siempre
bien justificados. Esta aproximación entre ambos campos permite que puedan es-
tudiarse bajo un mismo esquema conceptual, con las mismas herramientas con las
que se desarrollan los sistemas de comunicación, y que se pueda por fin afrontar el
problema de su diseño dentro de los mismos parámetros que aquéllos. Además, a lo
largo de este breve tiempo se han logrado proponer sistemas basados en caos con
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complejidad y rendimientos que van convergiendo con éxito creciente hacia los de
los sistemas en uso, con lo que podemos decir que nos hallamos en la antesala de la
aplicación directa de las comunicaciones caóticas.

Antecedentes

Las primeras aproximaciones que pretend́ıan emplear las señales caóticas de for-
ma práctica en las tecnoloǵıas de la información se basaban fundamentalmente o
bien en desarrollos teóricos dif́ıcilmente verificables y poco abordables dentro de
los parámetros habituales de las tareas de evaluación y diseño de los sistemas pro-
pios de dichas tecnoloǵıas, o bien recurŕıan, ya de forma más práctica, a sistemas
de generación analógicos dif́ıcilmente controlables o sincronizables y en los que la
información no era sencilla de introducir. Una posibilidad de transmisión directa
que obviaba estas dificultades y que marcó un hito al ampliar el concepto tradicio-
nal de modulaciones por desplazamiento binario, fue la propuesta de sistemas con
aplicaciones caóticas alternadas por desplazamiento binario, en los que los bits iban
determinando con qué aplicación, de entre dos posibilidades, se iba generando un
cierto bloque de muestras, de forma que, en el receptor, se pod́ıan ir decodificando
dichos bits mediante la identificación de la aplicación con la que se hab́ıa generado
cada uno de los bloques. Sin embargo, estos sistemas no mostraron en principio un
buen comportamiento, y siempre estaba el problema de estimar convenientemente
en el receptor, a partir de un conjunto de muestras distorsionadas, la aplicación
generadora. El inconveniente principal resid́ıa en que, si se recurŕıa a algoritmos de
estimación sencillos, el resultado era una degradación importante, mientras que la
evaluación de la presencia de la apliación o del valor de la muestra inicial mediante
algoritmos más complejos tampoco aseguraba un resultado satisfactorio.

El establecimiento de los conceptos de la dinámica simbólica para el análisis de
las señales caóticas vino a añadir un peldaño más al facilitar la propuesta de nuevas
formas de manejar y transferir la información dentro de las órbitas caóticas. Además,
la aplicación de la dinámica simbólica sobre muestras caóticas cuantificadas permit́ıa
identificar el sistema de codificación basado en caos con codificadores convoluciona-
les o, más concretamente, con moduladores codificados de tipo enrejillado, en los que
el sistema se asimila conceptualmente con una cadena de Markov en la que existe
una correspondencia uno a uno entre un rango de muestras caóticas y un estado del
codificador y en el que los bits de la información inducen transiciones binarias, uńıvo-
cas e identificables dentro del conjunto finito de estados posibles. De esta forma, en
el lado del decodificador se habilitaba el uso de técnicas estándar de decodificación
de sistemas descritos por enrejillados, con lo que se han ido acumulando en la li-
teratura multitud de formas de transmitir y recuperar la información transportada
en una señal caótica que no requieren de especiales desarrollos en el codificador o
en el decodificador, y sin que se pierdan esencialmente, aparte de cierto grado de
cuantificación, las propiedades de la señal caótica en el canal de comunicación.

Aśı pues, a d́ıa de hoy estamos en condiciones de enfrentar la tarea que suscitó en
su momento el interés por las señales caóticas en sistemas de comunicaciones, que
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era su potencial frente a determinado tipo de canales, pues en gran medida se ha
superado la fase de diseño de codificadores y decodificadores realizables en el ámbito
de la transmisión digital de datos. En este sentido, nos centraremos en las llamadas
modulaciones caóticas codificadas y en sus posibilidades de diseño a partir de apli-
caciones unidimensionales, mientras se evalúa realmente qué tipo de canales son los
más adecuados para esta forma de aplicación del caos en las telecomunicaciones.

Objetivos

1. Ĺımites de las modulaciones caóticas basadas en aplicaciones discretas.

En este apartado se revisarán las posibilidades de las aplicaciones caóticas uni-
dimensionales para transmitir la información de forma fiable en canales donde
la única fuente de distorsión es el ruido blanco gaussiano aditivo (RBGA). A
este fin, se examinará la posibilidad de usar la función de densidad de proba-
bilidad invariante como un posible criterio para el diseño de aplicaciones de
este tipo, y se evaluará asimismo qué tipo de propiedades se pueden esperar
para las modulaciones codificadas construidas sobre tales aplicaciones en el
canal RBGA. También se tratará de encontrar métodos de decodificación de
baja complejidad para estas modulaciones basados en el criterio de máximo a
posteriori (MAP), a fin de ampliar las posibilidades de los módulos de decodi-
ficación de señales caóticas, ya que este criterio minimiza la tasa de error de
bit. Este estudio es necesario porque las propuestas MAP realizadas hasta el
momento no constituyen alternativas válidas a los métodos de decodificación
de señales caóticas basados en el criterio de máxima verosimilitud (MV), debi-
do sobre todo a su elevada complejidad y a sus escasas posibilidades prácticas.
Una vez establecidas estas propuestas de diseño de moduladores codificados
basados en caos y de decodificadores MAP, se evaluarán sus prestaciones en
el canal RBGA mediante los métodos habituales en los sistemas de comunica-
ciones, tanto por medio de simulaciones como por medio de cotas, en el caso
en que sea posible.

2. Modulaciones caóticas codificadas en canales dispersivos.

Normalmente la evaluación de las modulaciones caóticas codificadas se ha rea-
lizado sólo en canales RBGA, en entornos monousuario y multiusuario (usando
aqúı señales caóticas como secuencias ensanchadoras, o aplicaciones diversas
como medio para discriminar el usuario) y en otras situaciones relacionadas,
pero falta realizar un estudio comprensivo sobre las posibilidades de estas mo-
dulaciones en entornos dispersivos en los que la fuente de distorsión principal
sea la interferencia intersimbólica o los desvanecimientos. En tanto en el canal
RBGA las modulaciones caóticas codificadas basadas en aplicaciones unidi-
mensionales no han logrado habitualmente ofrecer ganancias de codificación
en comparación con la simple señalización binaria sin codificación de canal, es
de esperar que las propiedades de las señales caóticas en el canal dispersivo
ofrezcan una mejora de esta situación. Para ello, se examinarán los modelos
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de estos canales dispersivos y se evaluará el rendimiento de las modulaciones
caóticas codificadas basadas en aplicaciones unidimensionales por medio de
simulaciones y de cotas, siempre que sea posible, de forma que se manifies-
ten sus ventajas potenciales y se puedan ofrecer métodos y criterios de diseño
tentativos.

3. Modulaciones caóticas codificadas concatenadas mediante entrelazadores bi-
narios.

Recientes resultados apuntan a la necesidad de añadir otro tipo de redun-
dancia a las modulaciones caóticas codificadas, de forma que se incremente
la dimensionalidad del sistema dinámico involucrado y se ofrezca una mayor
robustez frente a las distorsiones del canal. Mientras una v́ıa explorada con
cierto éxito ha sido la ampliación directa de las aplicaciones unidimensionales
a aplicaciones n-dimensionales, o la creación de sistemas que alternan apli-
caciones unidimensionales bajo el control de la información binaria, nosotros
trataremos de conjugar los buenos resultados de los sistemas de codificado-
res de canal concatenados o de moduladores codificados concatenados con las
posibilidades de las señales caóticas en los canales dispersivos. Para ello, se
propondrán dos tipos de sistemas, en los que la concatenación se realizará, por
un lado, en paralelo y con entrelazado binario, al estilo de los turbocódigos, y,
por otro, en serie, al estilo de la concatenación en serie de modulaciones codi-
ficadas de tipo enrejillado. Los sistemas propuestos se examinarán en el canal
RBGA y en los canales dispersivos evaluados con anterioridad. Asimismo, se
comprobarán sus prestaciones, tanto mediante simulación como mediante co-
tas cuando sea posible, en comparación con los sistemas análogos habituales
en transmisión digital de complejidad parecida, a fin de verificar su idoneidad
como alternativas realizables frente a dichos sistemas.

Conclusiones

Las conclusiones generales de la presente tesis se presentan a continuación.

1. Hemos verificado que, en el caso de emplear el tipo de codificación con condi-
ciones iniciales, el diseño de un sistema de comunicaciones bajo el criterio de
la densidad de probabilidad invariante de las muestras caóticas no conduce a
buenos resultados. De hecho, la densidad de probabilidad invariante puede ex-
plicar el comportamiento general de la tasa de error de bit, pero no da cuenta
de los detalles, de forma que la dinámica impĺıcita en la aplicación se mantiene
como el factor principal que hay que tener en cuenta. Además, hemos visto
que en el canal RBGA las aplicaciones no lineales a trozos se comportan peor
que su contrapartida lineal a trozos para el tipo de simetŕıa y de sistemas
estudiados.

2. Cuando el proceso de decodificación de la secuencia caótica se basa en la esti-
mación de las condiciones iniciales, hemos visto que el rendimiento está domi-
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nado básicamente por las muestras de referencia que caen fuera del intervalo
de definición después de la adición del ruido. La mejor forma de superar esta
situación es realizar la estimación sobre la secuencia completa, con algorithmos
MAP o MV, o usar de forma iterativa la decodificación basada en la estimación
de las condiciones iniciales. La razón para esto reside en que, a través de di-
chas posibilidades, la redundancia presente de manera impĺıcita en la secuenca
caótica completa se propaga convenientemente y se puede aprovechar aśı de
forma más eficiente. Además, es conocido el hecho de que la decodificación
local lleva a la aparición de un efecto de umbral.

3. Los malos resultados de los sistemas de codificación y decodificación basados
en aplicaciones lineales a trozos o no lineales a trozos nos condujo a considerar
la clase de modulaciones caóticas codificadas que, basadas en aplicaciones li-
neales a trozos controladas por pequeñas perturbaciones, ya hab́ıan conducido
previamente a sistemas caóticos de comunicaciones más eficientes. Sin em-
bargo, nos limitamos en principio a un caso de bajas prestaciones en el canal
RBGA a fin de mostrar la potencial utilidad de las propiedades de codificación
del sistema caótico en canales de tipo dispersivo. De hecho, después de propo-
ner un módulo de decodificación MAP adecuado para el sistema de control por
pequeñas perturbaciones, mostramos que los efectos de distorsión selectiva en
frecuencia (interferencia intersimbólica) y de distorsión no selectiva en frecuen-
cia y variante en el tiempo (desvanecimiento plano) pueden verse atenuados
incluso con una modulación caótica codificada tan poco prometedora.

4. Para constuir codificadores con mejores prestaciones tanto en entornos no dis-
persivos (RBGA) como en entornos dispersivos, se puede recurrir al incremento
de la redundancia que se obtiene cuando la tasa de transmisión del sistema
es R < 1. Para realizar esto, decidimos explotar la analoǵıa que los sistemas
de modulación caótica codificada poseen con los codificadores convolucionales
o con las modulaciones codificadas de tipo enrejillado, y consideramos la po-
sibilidad de diseñar sistemas concatenados en serie y en paralelo. En ambos
casos, el objetivo era conseguir una relación más compleja entre el mensaje de
entrada binario y las muestras caóticas a la salida como forma de incrementar
de forma efectiva la robustez y la redundancia disponible en el sistema.

5. La concatenación en serie con un codificador convolucional como codificador
exterior, un entrelazador binario y una modulación caótica codificada como
codificador interior condujo a un sistema análogo al de concatenación en se-
rie de moduladores codificados de tipo enrejillado. Mostramos que se pueden
diseñar con el esquema caótico codificadores concatenados y decodificadores
iterativos prácticos, y que los resultados potenciales pueden analizarse a través
de herramientas usuales tomadas del campo de las comunicaciones digitales.
El análisis de la convergencia y del error binario, junto con los resultados de las
simulaciones, mostraron que el rendimiento final mejora enormemente y que
estos nuevos sistemas caóticos pueden competir con las modulaciones codifi-
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cadas con entrelazado binario y con la concatenación en serie de moduladores
codificados de tipo enrejillado. De hecho, los resultados fueron especialmente
prometedores en canales con interferencia intersimbólica.

6. La concatenación en paralelo de dos modulaciones caóticas codificadas con un
entrelazador binario dio como resultado un sistema análogo al de turbo mo-
dulación codificada de tipo enrejillado. Describimos de nuevo la posibilidad de
conseguir codificadores concatenados y decodificadores iterarivos prácticos, y
mostramos que el análisis del sistema es también posible a través de herramien-
tas ya conocidas de las comunicaciones digitales. Los resultados mostraron una
vez más que se pueden diseñar sistemas caóticos competitivos con sus contra-
partidas no caóticas. Además, la concatenación en paralelo de modulaciones
caóticas concatenadas ha proporcionado muy buenos resultados en canales con
desvanecimiento plano.

7. El análisis de la concatenación en paralelo mostró que los mejores resultados
se relacionaban con los sistemas codificadores que están más lejos de cumplir
la propiedad de uniformidad de errores. Estos sistemas exhiben una relación
muy complicada entre los eventos de error binario a la entrada y la distancia
eucĺıdea a la salida, lo cual también sucede con el sistema concatenado en serie
gracias al añadido del codificador de canal y del entrelazador binario. Esto
prueba que la conjetura acerca de la necesidad de una mayor complejidad en
la relación entre mensaje binario a la entrada y muestra caóticas a la salida
era cierta, y que se puede llevar a cabo sin desarrollos especiales o totalmente
novedosos.

8. Los ejemplos de los Caṕıtulos 3, 4 y 5 han mostrado cómo se puede explotar
de forma muy útil la analoǵıa entre los sistemas de comunicación digital y
las modulaciones caóticas codificadas. Esto ha permitido el uso de recursos
tales como los diagramas de intercambio de información extŕınseca, el modelo
de canal simétrico con entrada/salida binaria, la evaluación de cotas basadas
en eventos de error binario a la entrada relacionados con bucles de errores
caóticos a la salida, etcétera. Esto es de la mayor importancia, dado que, de esta
forma, las tareas de evaluación y diseño de los sistemas caóticos involucrados
se pueden abordar con herramientas conocidas. Sin embargo, hemos hallado
que tales expedientes no se adecúan siempre a los esquemas caóticos sin un
cierto desajuste debido a sus especiales caracteŕısticas, y esto apunta hacia
la necesidad de refinar los desarrollos. Por otro lado, todos los ejemplos han
mostrado que la cuantificación de la secuencia caótica parece tener un efecto
limitado en las propiedades del sistema, que demostró estar más relacionada
con las propiedades dinámicas de la aplicación subyacente.

Como conclusión final, podemos decir que hemos demostrado cómo, siguiendo
una v́ıa de reciente apertura que une convenientemente las comuniaciones digitales
y caóticas, es posible construir de una forma bastante inmediata sistemas caóticos
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eficientes tanto en canales no dispersivos como en canales dispersivos. Ahora que
podemos tener señales caóticas en el canal sin la penalización de una degradación
muy severa en el rendimiento, nos permitimos aventurar el comienzo real de las
comunicaciones caóticas codificadas prácticas.


