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This paper examines the robustness of isochronous synchronization in simple arrays of bidirection-
ally coupled systems. First, the achronal synchronization of two mutually chaotic circuits, which are
coupled with delay, is analyzed. Next, a third chaotic circuit acting as a relay between the previous
two circuits is introduced. We observe that, despite the delay in the coupling path, the outer
dynamical systems show isochronous synchronization of their outputs, i.e., display the same dy-
namics at exactly the same moment. Finally, we give here the first experimental evidence that the
central relaying system is not required to be of the same kind of its outer counterparts. © 2007
American Institute of Physics. �DOI: 10.1063/1.2737820�

During the past years there has been a great interest in
understanding the dynamics of chaotic systems and, spe-
cifically, how synchronization between them arises. The
way of introducing the coupling between chaotic systems
is crucial to obtain different kinds of synchronization. In
the current paper we show that not only the type of cou-
pling but the number of dynamical units is relevant in
order to observe two different types of synchronization,
namely, achronal and isochronous synchronization.
When two identical chaotic circuits are bidirectionally
coupled, it is possible to obtain synchronous behavior if
internal (and coupling) parameters are adequately tuned.
Nevertheless, there always exists a time delay between
both synchronized outputs, which corresponds to the
time taken by the signal to travel from one circuit to the
other. In the current work we show how it is possible to
obtain isochronous synchronization, i.e., both circuits
with the same output at exactly the same moment, by
introducing a third dynamical unit between both chaotic
circuits. Surprisingly, the relaying unit does not need to
be identical to those to be synchronized and even it can
be a completely different dynamical system.

I. INTRODUCTION

Chaos synchronization was initially focused in unidirec-
tionally coupled systems.1 The reason beyond this fact could
be that, for technical applications, it is interesting to repro-
duce the state of a certain chaotic system, no matter the
distance or the number of the replica systems. This kind of
configuration is commonly known as master-slave
configuration2 and is the most extended technique to syn-
chronize chaotic systems.3 Most of the applications were
achieved in the chaotic communications field, where a cha-
otic transmitter hides a secret message that is recovered at
the receiver when the latter synchronizes with the chaotic
part of the received input,4,5 i.e., reproducing the state of the
transmitter. Nevertheless, in nature, bidirectional coupling is
also present, as it can be seen in predator/prey networks,6

interactions between individuals in a social network,7 or
swarm dynamics.8 Recently, a combination of unidirectional

and bidirectional coupling has been proposed as a technique
of bidirectional communication with chaotic carriers.9

Without regard to the direction of the coupling, the in-
teraction between two chaotic systems has been deeply stud-
ied during the past decade, focusing on the ability of syn-
chronization even in the presence of noise or delay.3 More
recently, the study of complex networks has dealt with the
synchronization of large communities of chaotic systems,
where delay between interacting units is considered.10,11 Less
attention has been paid to the transition from the simplest
case, i.e., two bidirectionally coupled systems, to a broad
community of chaotic oscillators.

Here we depart from two bidirectionally chaotic systems
and show a counterintuitive phenomenon that arises when a
third chaotic element placed between them is considered: the
isochronous synchronization of the two outer chaotic sys-
tems. This fact has been recently reported in bidirectionally
coupled semiconductor lasers,12,13 where a third laser, in this
case, is also requested. The present work follows the path
opened by Fischer et al.12 and goes one step beyond. First,
we analyze the robustness of the phenomenon for different
delay times, showing that accurate values of the delay time
are not required. Second, we give the first experimental evi-
dence that the relaying system could be different from those
to be synchronized at zero-lag. The manuscript is organized
as follows: In Sec. II, we study the synchronization of two
mutually coupled chaotic circuits, with a certain delay in the
coupling path. We show that zero-lag synchronization is not
observed in this particular configuration. In Sec. III, we in-
troduce a relay system between the two chaotic circuits and
observe the appearance of isochronous �zero-lag� synchroni-
zation between the outer units. Finally, in Sec. IV we show,
with an example, that zero-lag synchronization holds even
when a different dynamical system is used as the relay sys-
tem, ending with some concluding remarks.

II. MUTUALLY COUPLED CHAOTIC CIRCUITS

Unidirectional synchronization of chaotic circuits and
specifically, Chua circuits, have been deeply studied during
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the past years. From two circuits to a chain of many of them,
synchronization has been reported under different experi-
mental setups. In a general framework, we can distinguish
between different types of synchronization if we consider the
system that is leading the dynamics along with the delay
between the outputs of the synchronized systems. In lag
synchronization,15 for example, the receiver system follows
the evolution of the transmitter with a delay � due to a pa-
rameter mismatch. In achronal synchronization, there is a
time lapse between the output of the synchronized systems,
which is a consequence of a certain delay in the transmission
line. More recently, a counterintuitive phenomenon has been
reported, the anticipated synchronization, where the receiver
system advances in time the signal of the transmitter.16,17

In all cases where unidirectional injection is considered,
a leader and follower role can be distinguished, being that it
is the former in the system that sends the signal to the other.
However, this reasoning does not apply for the case of mu-
tually �bidirectional� coupled systems. In this condition, the
leader and follower roles can only be inferred from the
analysis of the circuit outputs. When two system are consid-
ered, both circuits affect each other and eventually synchro-
nize, which leads any of them to assume the role of the
leader �or follower�.

Here we are interested in the synchronization between
two chaotic electronic circuits when bidirectional coupling
with delay is considered. Several works have dealt with mu-
tually coupled chaotic circuits;18–22 nevertheless, less atten-
tion has been paid to electronic circuits coupled with delay.
For the case of two chaotic systems, lasers have been the
paradigmatic example of coupled systems with delay.24–27

The seminal work of Heil et al.24 has shown the influence of

the non-negligible coupling time between two mutually
coupled lasers. In particular, synchronization between two
chaotic lasers was observed with a time delay �c, correspond-
ing to the time for the output signal to travel between the two
dynamical systems. Furthermore, an alternation between the
leader and the follower was observed, i.e., there was not a
clear leader �follower� in the dynamics.

The experimental setup studied here is schematically
represented in Fig. 1. The output of two chaotic Chua circuits
is connected bidirectionally through a transmission line with
a delay �c, which means that the output signal needs some
time to arrive to the other circuit. Details of the Chua circuit
and electronic connections between them are given in Ap-
pendices A and C, respectively. The output of both circuits
are chaotic when uncoupled and keep their dynamics for low
to moderate coupling strengths. Nevertheless, when the cou-
pling strength crosses a certain threshold, synchronization
arises. Figure 1�a� shows the output voltage of both circuits
for a coupling resistance of Rc=47 k�, which corresponds to
a moderate coupling. We can observe how both signals show
a relatively good synchronization. The quality of the syn-
chronization is measured with the cross-correlation function,
which gives an estimate of the similarity between two time
series shifted with a time lag �t. The cross-correlation func-
tion between two output voltages VA and VB is defined as

C��t� =
��VA�t� − �VA���VB�t + �t� − �VB���
���VA�t� − �VA��2���VB�t� − �VB��2�

, �1�

where �t is a temporal shift introduced in VB and the brack-
ets represent time averaging. This tool helps to find the delay
between two time series, which corresponds to the �t with

FIG. 1. �Color online� �Upper� Quali-
tative description of the experimental
setup. Two similar chaotic systems �A
and B� are coupled through a bidirec-
tional channel with a time delay �c.
�Lower� In �a� we plot the output volt-
age V1

A �above� and V1
B �below�, which

has been vertically shifted to ease
comparison. In �b� the cross-
correlation function is plotted, show-
ing two maxima of similar value at a
time delay �t= ±�c. For this particular
example, the internal coupling param-
eters are Rcoup=47 k� and �c

=1.1625 ms.
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the highest correlation �−1�C��t��1�. In Fig. 1�b� we plot
the cross correlation between the output voltage of both cir-
cuits, which have two maxima at precisely the coupling time
±�c. It is worth mentioning that both maxima have similar
values �C�0.77� indicating that there is not a clear leader or
follower in the dynamics, i.e., both circuits alternate their
role.

At this point we make a systematic study of the influence
of the coupling time in the synchronization of both circuits,
since phenomena such as amplitude death,28 symmetry
breaking,24 or periodic regimes26 have been previously re-
ported in experiments with mutually coupled systems. With a

fixed coupling strength, we sweep the coupling time �c and
check the quality of the synchronization between both cir-
cuits. Figure 2 shows the cross correlation as a function of �c.
We observe how the highest cross correlation is always ob-
tained at ±�c, which indicates, first of all, that the delay be-
tween both outputs matches the coupling time and, second,
that the switching of the leader-follower role is independent
of �c. Therefore, we can say that the phenomenon is robust
against the coupling time and, furthermore, that isochronous
synchronization, i.e., zero lag between circuit outputs, is not
observed in two bidirectionally coupled circuits with delay, a
fact previously reported in chaotic lasers.24

III. ISOCHRONOUS SYNCHRONIZATION

Arriving to this point the question about if it is possible
to obtain zero-lag synchronization in mutually coupled cha-
otic circuits when a delay is considered in the coupling path
is still open. A recent work by Fischer et al.12 has shown that
the addition of a relay system between two chaotic lasers can
lead to isochronous synchronization between the outer sys-
tems. With this idea in mind, we introduce a third Chua
circuit between the two previous ones, keeping the bidirec-
tional coupling and the delay in the transmission channels.
Figure 3 shows the experimental setup, where the intermedi-
ate Chua circuit, which acts as the relay system, is drawn in
red since it has different internal parameters from those of
the outer Chua circuits �see Fig. 3 for details�. The coupling
time and the coupling strength are set to be equal at all paths,
leading to a symmetrical system. In Fig. 3�a� we plot the
output voltages V1 of the three circuits for intermediate cou-
pling �Rc=1.2 k��. We can observe how circuits A and C are
synchronized at exactly the same time despite the delay in
the coupling lines, which is the typical signature of isochro-
nous synchronization.

FIG. 2. �Color� Cross-correlation plot of Chua circuits A and B, as a func-
tion of the time shift �t between both series and the time delay �c. We can
observe how the highest correlation �Cmax�0.64� always occurs at �t
= ±�c, which indicates that we have lag synchronization with exchanges in
the leader-follower roles between both circuits.

FIG. 3. �Color online� �Upper� Quali-
tative description of the experimental
setup. A third �B� Chua circuit is intro-
duced between A and C. We adjust the
internal parameters of the Chua circuit
B to be different from those of the
outer Chua circuits: For the circuit A
and C, Rexc=1.85 k� and Lo=14 mH,
whereas for circuit B, Rexc=1.76 k�
and Li=10 mH. The three circuits are
tuned in the double scroll chaotic re-
gime. �Lower� In �a� we plot the V1

variable of the circuits �vertically
shifted�. We can observe how Chua
circuits A and C show isochronous
synchronization �zero delay� while the
central one �B� is lag synchronized
with its outer counterparts. �Left� The
cross-correlation function between �b�
A-C, �c� A-B, and �d� C-B is plotted.
We can observe how A and C synchro-
nize with zero delay, while B follows
the outer circuits with a delay corre-
sponding to the coupling time �c.
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An interesting point arises when looking at the output of
the relaying system. We can observe how the Chua circuit B
is also synchronized with the other two, but in this case it is
delayed with a time corresponding to �c. In this way, the
central system is following the dynamics of the outer circuits
and therefore it is not driving them.

Figures 3�b�–3�d� show the cross-correlation function
between pairs of circuits. We can observe how for the case of
Chua circuits A and B the correlation peak is obtained at zero
delay, indicating isochronous synchronization. As expected,
correlations of the external circuits �A and C� with the central
one �B� show the achronal synchronization, with a peak at
exactly the coupling time �c. In this case, there is no alterna-
tion between the leader role, and the central Chua circuit is
always the follower.

In order to show the robustness of the phenomenon ver-
sus the coupling time, we repeat the experiment with differ-
ent delay times from values ranging from near to zero until
�c�3 ms. The cross-correlation function shows in all cases
the zero-lag synchronization for the outer circuits �see Fig. 4,
upper plot� and achronal synchronization with regard to the
central one �see Fig. 4, bottom plots�. It is worth mentioning
that the central circuits do not necessarily need to be
matched with the outer ones. In fact, as mentioned before,
internal parameters of the relay Chua circuit were deliber-
ately detuned.

IV. REPLACING THE RELAY SYSTEM

Since the isochronous synchronization seems to be de-
pendent on the symmetry of the system, it would be reason-
able to obtain the same results with a different dynamical
system acting as a relay, since symmetry would be preserved
�as long as the outer circuits are identical�. With this aim, we
replace the central Chua circuit by a Sprott circuit,23 which is
a different chaotic electronic circuit. Details of the circuit are
given in Appendix B. In Fig. 5 we show a schematic descrip-
tion of the experimental setup, where we can see that, despite
the different central unit, the system maintains the symmetry.
Figure 5�b� shows the time series of the circuit outputs. We
observe how the zero-lag synchronization holds for the Chua
circuits. At the same time, the Sprott circuit also synchro-
nizes, in this case, advancing the dynamics of the outer ones
a time equal to �c. Cross-correlation functions between pairs
of circuits quantifies the phenomenon observed in the time
series, circuits A and B have a maximum at zero delay, while
correlations with the central circuit show that, in this case,
the relaying system is leading the dynamics.

We have done several experiments where the central cir-
cuit was modified in order to check the influence of the char-
acteristic frequency of the relaying system. Specifically,
Chua circuits, Sprott circuits, and Rössler circuits �i.e., a cir-
cuit that implements the Rössler equations� were tested, all
of them with different internal parameters �in order to
modify their frequency�. We have observed that isochronous
synchronization appears only if the central circuit has a fast
enough characteristic frequency �in the absence of coupling�,
which must guarantee that the transmitted signal is not fil-
tered. Furthermore, we have seen that this kind of synchro-
nization is very sensitive to a mismatch in the coupling in the

FIG. 4. �Color� Cross-correlation plots of Chua circuits A and C �upper�, A
and B �bottom left�, and C and B �bottom right�, as a function of the time
shift �t between both series and the delay in the transmission line �c. We can
observe isochronous synchronization between A and C, since the best cor-
relation is always reported at zero lag �upper figure�. The bottom plots show
lag synchronization between the central and outer circuits, since the best
correlation is always observed with a delay of �c, no matter what its value is.
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sense that, when we introduce an asymmetry in the coupling
time or coupling strength, zero-lag synchronization is lost.
Interestingly, similar phenomena have been reported in inter-
connected cortical areas of the brain, where simulations
based on realistic properties of the neural architecture have
shown the appearance of time lags when the symmetry of
certain parameter values is lost.29

V. CONCLUSIONS

This work is focused on the phenomenon of synchroni-
zation in mutually coupled circuits with delay in the coupling
connections. First, we analyze the synchronization of two
chaotic circuits as a function of the delay time. We observe
that despite both circuits are synchronized when they are
similar, a time delay between both outputs appears. The de-
lay is equal to the coupling time between both circuits �c,
i.e., the time needed by the signal to travel from one circuit
to the other. Furthermore, the roles of leader and follower in
the dynamics are exchanged continuously between both cir-
cuits, a phenomenon previously reported in coupled semi-
conductor lasers.24 Next, we include a relay circuit between
the two chaotic circuits, keeping the bidirectional coupling
between all units. Under this configuration, switching in the
leader/follower role disappear and the two outer circuits syn-
chronize with zero lag. This phenomenon, known as isoch-
ronous synchronization, holds when the relay circuit is re-
placed by a different dynamical unit; in this case, a Sprott
circuit. In parallel experiments, not shown here, we have
observed that the symmetry is the key ingredient of isochro-
nous synchronization, and is lost when asymmetries are in-
troduced in the coupling time or the coupling strength.
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APPENDIX A: THE CHUA CIRCUIT

Figure 6 shows a detailed description of the Chua circuit
used in this work. A nonlinear resistor is connected to a set of
passive electronic components �R,L,C�. We have systemati-
cally studied the dynamical ranges of the circuit when Rexc is
modified, observing stable, periodic, excitable, and chaotic
dynamics. Among all of them, we drive the circuit to have

FIG. 5. �Color online� �Upper� Quali-
tative description of the experimental
setup. Two similar chaotic systems A
and C �Chua circuits� are coupled
through a different chaotic system B
�Sprott circuit�. In �a� we plot the out-
put voltage of the three circuits show-
ing that despite being different dy-
namical systems all of them
synchronize their dynamics. Further-
more, the two outer circuits keep the
zero-lag synchronization, as can be
observed both in the time series �a�
and in their cross-correlation plots �b�.
The central circuit B synchronizes
with the outers with a delay equal to
the coupling time �c, despite being a
completely different dynamical sys-
tem. �c� and �d� show the cross corre-
lation between the central and outer
circuits, where the central circuit is ad-
vanced a time interval equal to the
coupling time �c.

FIG. 6. Description of the Chua circuit, which is built with two TL082
operational amplifiers and passive electronic components of values Vcc

=15 V, R1=222 �, R2=22 k�, R3=2.2 k�, R4=3.3 k�, RL=23 �, C1

=10 nF, C2=100 nF, L=10 mH. We set Rexc=1.85 k� in order to have
chaotic dynamics. V1 and/or V2 correspond to the outputs of the circuit,
which are coupled to the other circuits through a voltage follower as shown
in the experimental setup. Note that all the components have a 5% tolerance
on their values.
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chaotic dynamics by setting Rexc=1.73 k�. Under these con-
ditions, the dynamics of the circuit in the phase space given
by �V1 ,V2� lies in a double-scroll chaotic attractor.14 The
output of the circuit �V1 or V2� is sent to the other circuits
�with the same characteristics� via a voltage follower, in or-
der to guarantee unidirectional injection �see Appendix C for
details on the coupling implementation�.

The dynamics of the circuit is described by the
equations,14

C1
dV1�t�

dt
=

V2�t� − V1�t�
Rexc

− g�V1,Vcc� , �A1�

C2
dV2�t�

dt
=

V1�t� − V2�t�
Rexc

+ IL +
Vext�t − �c� − V2�t�

Rc
, �A2�

L
dIL�t�

dt
= − V2�t� − RLIL�t� , �A3�

where the function g�V1 ,Vcc� represents the characteristic
curve of the nonlinear resistor, which is piecewise linear and
contains a region of negative resistance. The last term of Eq.
�A2� accounts for the external coupling, which depends on
the voltage of the coupled circuit Vext �introduced after a
delay �c� and the coupling strength, regulated by the cou-
pling resistance Rc.

APPENDIX B: THE SPROTT CIRCUIT

The second chaotic circuit, named after J. C. Sprott,23 is
a simple circuit composed of three linear integrators with a
nonlinear feedback loop. We adjust the parameters of the
circuit to show a chaotic double scroll structure. The sche-
matic representation is shown in Fig. 7. The circuit simulates
a third-degree differential equation, called a “jerk.” The
equations modeling the circuit are

V1�t�
dt

= V2�t� +
Vext�t − �c� − V2�t�

Rc
, �B1�

V2�t�
dt

= V3�t� , �B2�

V3�t�
dt

= − A1V3�t� − A2V2�t� − A3V1�t� + A4sign�V1�t�� ,

�B3�

where the last term of Eq. �B1� accounts for the external
coupling. The coefficients A1, A2, A3, and A4 depend on the
circuit parameters in the following way:

A1 =
1

C2
	 1

R1
+

1

R2
+

1

R3

 ,

A2 =
1

R1C2R2C1
,

A3 =
1

R6C1R1C2R3C3
,

A4 =
− V0

C1R7R1C2R3C3
.

The numerical values of the components of the circuit
are shown in the caption of Fig. 7.

APPENDIX C: COUPLING AND DELAY

The coupling between each circuit is introduced by a
digital delay line, which samples and buffers the signal be-
fore restoring it �c ms later. The circuits are coupled with
different input/output variables, depending on the direction
of the signal. V1 is the output variable, whereas the input
signal is injected into variable V2. This mechanism of asym-
metric coupling prevents feedback loops in the circuits, and
therefore the signals are completely decoupled. The Sprott
circuit is coupled in a similar way, the variable V1 is sent to
the other circuits while the variable V2 receives the incoming
signals through the coupling resistance. Details of the cou-
pling scheme are shown in Fig. 8. Each signal is buffered
with an “op-amp” in order to preserve the dynamics of the
circuit.

FIG. 8. �Color online� Experimental setup used for the coupling of the
circuits. The output voltage V1 of each signal is sampled in the microcon-
troller ADu7660 and then buffered into a digital memory before being re-
turned to the circuits. Each triangle represents a signal conditioner in order
to adapt the signal to the specification of the ADC inputs. The blue line
represents the injected signal and the red lines are the delayed signals rein-
troduced into the circuit. The central circuit receives the sum of the signals
of the outer circuits. Each signal is reintroduced into variable V2 through a
resistance Rc. Note that this resistance might be different for the central
circuit.

FIG. 7. �Color online� Description of the Sprott circuit. The circuit is com-
posed of a linear integrator �lower part� and a nonlinear feedback loop �red
square�. The nonlinear function can be written as f�x�=−A3x+A4sign�x�.
The numerical values of the components are R3=R4=R5=1 k�, R1

=220 �, R2=1 M�, R6=10 k�, R7=31 k�, C1=10 nF, C2=22 nF, C3

=10 nF.
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The experimental setup is made up of several blocks.
The first part consists of the chaotic circuit. Each circuit is
connected to the digital delay line and to the Analog-to-
Digital Converter �ADC� acquisition board �see blue lines in
Fig. 8�. The digital delay line is composed of an autonomous
microcontroller with on-board memory and a Digital-to-
Analog Converter �DAC� and ADC. The microcontroller is
an ADu7660 development board from Analog Devices. The
signal is first converted to digital signal and then stored into
a FIFO �i.e., First In First Out� buffer in order to introduce
the delay. After a number of clock ticks, the signal is then
converted into analog. These converters sample signals up to
50 Khz with 12-bit precision and the delay can be chosen up
to 128/ fe, with fe being the chosen sampling frequency. In
the experiments the sampling frequency of the microcontrol-
ler is chosen to be fe=50 KHz.

The analog signals from the circuits are then sampled
with an ADC sampling board connected to a computer and
the signals are later analyzed with Matlab software. The vari-
able V1 of each circuit is sampled at ten times their mean
frequency, that is, above 40 Khz, and with a precision of
12 bits.
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