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Abstract.

Ever since the pioneering work of Hodgkin and Huxley, biadagineuron models have consisted
of ODEs representing the evolution of the transmembrantageland the dynamics of ionic
conductances. It is only recently that maps — or differenpgations — have begun to receive
attention as valid conductance neuron models. They canmypbe computationally advantageous
substitutes of ODE models, but, since they accommodatetichdymamics in a natural way, they
may reproduce rich collective behaviors that we explore her
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SIMPLE MAP-BASED NEURON MODELS

One of the simplest conductance-based neuron models i®aékyg Integrate-and-fire
(LIF) model [1]. It represents the voltageacross a capacitor (the cell membrane)
that passively discharges through a resistor (the ioniaméla) and may be charged
by external currents (either injected or generated by fymapents). If voltage reaches
a threshold/g, the capacitor instantaneously discharges to a resetdeaatl the neuron
is said to have fired a spike. The equations that representihdel are:
Cut) = Y& +lexlt) 1)
vtt) = v« if v(t™) = vg (spike generation).

Observe that the model sets the resting potential of theoneatrv = 0. Resistanc®
may be dependent on giving rise to nonlinear LIF models. For most applicatioves
can integrate this model with the simplest Euler methodgiaitd appropriate time step
(less than the typical spike duration, that is, 1 ms) to olaaliscrete-time, or map-based
system:

(1-Kkv if v<vp,
v(t+1) = f(v(t))+rl wheref(v)=<¢ Vs if Vg <V< Vs, (2)
Vr if v=vs.

1 Euler integration needs extremely small time steps to asigjdificant errors with respect to the exact
solution of a network of ODE-based LIF neurons, especially t the round-off of the threshold crossing
time [2]; but never lose sight that the ODE-based LIF modis$edf a rough approximation to real neurons.
Time discretization is valid as long as it is significantlyefithan the highest frequency in the system.
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FIGURE 1. Response of a LIF neuron to a constant external curren) @efl a complex external
current (right). Parameters in Egs. (2) &re 0.01,r = 1,vg = 1,v; = 0.8 andvs = 5.

Parameter correspondencéis é—é andr = %, whereAt is the integration time step. A
slight modification with respect to continuous time is thas tdiscrete-time model ex-
plicitly represents spikes as a (high) voltage valyend that the spike occupies a finite
one time step interval. Observe that the mappitg) includes both the subthreshold
resistor and the spike generation; seamless incorporatitmeshold and reset mecha-
nisms is a convenient feature of map-based models.

Although simple, models of the LIF family are able to reproduhe response of
complex models and even real neurons to currents injectdteinsoma [3]. Although
the autonomous behavior of the LIF model (i.e., whas a fixed parameter) is either
a constant subthreshold voltage (quiescent or silent m&gonperiodic firing (regular
spiking regime), depending on whethers low or high, its response under complex
stimulation, as we can see in Fig. 1, looks rich and natunathSstimulation can be
generated by a large network of LIF neurons [4]. Thus, sinmpielels are often an
excellent choice for studying phenomena depending mostlpedwork effects rather
than single neuron properties.

But in many instances the autonomous dynamics of the mo@elsn® account for
phenomena such as oscillations below the firing threshekhnance or bursting. LIF
neurons cannot display these properties because they ardimensional. A second
variable can provide the necessary mechanism. The foltpwiuations describe a
generic simple two-dimensional map-based model:

vit+1) = f(v(t))+1—u(t), 3)
u(t+1) = u(t)+pu(avit)—bu(t)+o).

The voltage equation is that of a LIF model, ah@) includes thresholding to generate
spikes; the parameterof Eqs. (2) has been made 1 by appropriate scaling dhe
second variable enters the voltage dynamics simply as aitiadd current term (the
minus sign means that posititevalues have an inhibitory effect and viceversa, but
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FIGURE 2. Left: nullcline diagram of the Izhikevich neuron model [8he slow nuliclineS, and the
stable and unstable branch&gs,andF,, of the fast nullcline are represented, along with the (@ins)
fixed pointU. The dotted line marks the reset voltageArrows indicate the direction of the flow. Right:
time evolution of the system. Parameter values in Eqs. Bjar 0.02,a=0.25,b=1 andl = 1.

this is of little relevance). It represents the current duedltage-dependent channels
that evolve in the same or in a slower time scale than the geliself, as opposed to
channels embodied in the (possibly nonlinear) resistorchviespond instantaneously
to voltage changes. The time scale can be set by means of g@ramlf it is small, u

is a slow variable; this is typical of bursting models [5],iafwill be our main concern
in this paper. In the general case, witlas fast ay, we get the so-called resonate-and-
fire [6] or generalized integrate-and-fire [7] models, whestibit interesting frequency
responses.

How does a bursting model work? First observe the voltagatemuin (3): wheru is
high, the total current term is low and the neuron is silentbel is low, the opposite
is true and the neuron is spiking. But according to g equation, ifa > 0 ando is
appropriately chosen, the low valuewf) in the quiescent state may decreagslowly
sinceu is small) until the neuron begins to fire. And, converselg kiigher average
value ofv(t) during spiking may increaseuntil it draws the neuron back into silence.
This alternation of spiking and silent phases is what we lmaisting. The mechanism
can be seen at work in Fig. 2, where the nullcline diagram hadiine evolution of the
well-known map-based neuron model proposed by E. M. Izltke8] are depicted. See
how u builds up during the spiking phase to a value where the redttge (, = —55
in this example) is below the unstable branch of the fasthné F;; this terminates the
burst, and them relaxes back to trigger the next one.

As with one-dimensional LIF modeld$ v) can be chosen in many different ways to
give as many different models. Two interesting choices amvs in Fig. 3 as return
maps ofv(t). The first one is a typical nonlinear integrate-and-fire naayo, corresponds
to a model proposed by N. Rulkov [9]. The two fixed points of nn@p, one stable and
the other unstable, would appear as paftgdndF, in a nullcline diagram such as that
of Fig. 2. Increases in the external currérdr decreases in displace this return map
upwards and may eliminate the fixed points altogether, priogurepetitive spiking.
Observe the threshold and reset mechanism embodied in timotial parts of the
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FIGURE 3. Fast variable return maps (below) and examples of burstom) {or two different choices
of f(v) in Egs. (3): left, the Rulkov map [9]; right, the chaotic Rotkmap [11].0, stable fixed pointJ,
unstable fixed point. Note the irregular length of the bue$the chaotic map.
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FIGURE 4. Left: sensitivity of the I1zhikevich model [8] as a functiohgarameteb in Egs. (3). Right:
impedance curves for different valuestofFor details, see [12].

return map. The second example interestingly substithess twith a unimodal chaotic

map. The reset level now varies with each spike and the raseilthaotic bursts. The

possibility of such simple chaotic bursting neurons is hapadvantage of map-based
models [10, 11].

Finally we point out the relevance of parametam@ndb in Egs. (3). They determine
the slopep/a, of the slow nulicline. Ifb/a = 0, the nullcline is horizontal and is a
neutrally stable variable. The neuron is most insensitivihis state to steady changes
in external current. This can be understood noting that tieeteof | is to shift the fast
nullcline horizontally; if the slow nullcline is horizoritano change results in the steady
state of the system. In return, the smaller the valub/af the sharper the frequency
selectivity of the neuron. Thusandb allow us to tune the neuron between integrator
and resonator behaviors [5]. This flexibility is not avaliaim one-dimensional models.
Figure 4 shows how sensitivity grows with growibgwhile resonance is enhanced for
low b values [12].



FROM NEURONSTO NETWORKS

When neurons form networks, the firing activity of each ohthieduces currents in their
postsynaptic targets. Synapses are either electricalamiclal. Electrical synapses are
usually modelled by straightforward resistive couplindgpe@ical synapses are instead
varied and complex. In keeping with the spirit of simplificat of our models, we will
use instantaneous thresholded coupling of the voltages. Migians that, whenever the
voltage of the presynaptic neuron is above a certain thtéslitowill induce in its
postsynaptic targets an ohmic current. Thus we arrive atdth@wing equations for

a network ofN map-based neurons with electrical and chemical connection

Vn(t+1) = fa(Va(t)) +1 = u(t) + 31 gn[Vim(t) = Va(t)] + 31 GeH (Vin(t) — Bmn)
Un(t+1) = u(t)+ tn(anv(t) —bpu(t) + on). @

HereH (x) is the Heaviside step function afigy, is the voltage threshold for chemical
synaptic interaction from neuranto neurom; this threshold is usually taken just below
spike initiation voltage. The coefficient§,, andgs,, are the strengths of electrical and
chemical synapses. Electrical coupling satisfigs > 0 andg,, = gq, and directly
adds another current term to the voltage equation. Cheroozglling coefficients can
be both positive (excitatory synapses) or negative (inbipi synapses), are usually
asymmetrical, and may exert their influence in any of the teyoations; the choice
in Egs. (4) means that chemical synapses act on fast ion elgrbut if we want to
model slower synaptic dynamics we may include this term énethuation fou.

In Fig. 5 aring of chaotic Rulkov neurons can be seen in achN@nghbors are coupled
through uniform electrical synapses of strength- 0 and inhibitory chemical synapses
of strengthg® < 0. When a neuron begins to fire, the electrical coupling digssilent
neighbors towards higher voltages and causes them to Busthen the inhibitory
chemical coupling becomes active and hinders the neighbarsts. Thus the two
couplings are antagonic. Linear analysis techniques shatyih any regular network of
this kind of neurons, i§° > |g°| neurons will end up bursting synchronously [13].

If g® < |g%|, a bursting neuron prevents its neighbors from burstind, as depicted
at the top part of Fig. 5, antiphase synchronization may apfBt, the neurons being
chaotic, other configurations are possible, including pgapion of waves at different
speeds and directions. If electrical and chemical strengtk almost balanced, these
configurations alternate unpredictably as shown in theobotpart of Fig. 5. This
phenomenon is called chaotic itinerancy [14].

Obviously, the structure of the network is at least as inguras the properties of
individual neurons and synapses in determining the pattefmeuronal activity that
will set in. The relationship between network topology agdchronization, clustering
or information processing has been subject of extensiveareh, and all the tools that
have been developed in the frame of ODE-based systems, sutiean-field theory
[15], master stability functions [16] or the connectiongranethod [17], are available
for our maps. Particulary interesting situations ariseatworks of mutually inhibitory
bursting neurons such as those of central pattern gener@dt8}, [19]. A simple but
nontrivial example is shown in Fig. 6, where the activity in a4 bidimensional lattice
of inhibitory Rulkov neurons [9] is depicted for differenéiwes of inhibitory chemical
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FIGURES. Top: aring of chaotic Rulkov neurons [11] with electricatlanhibitory chemical coupling.
The evolution of the voltage of 8 neurons is shown in the cdservelectrical synapses are stronger (left)
or weaker (right) than chemical synapses. Note the irredeiteyth of the bursts. Bottom: with chemical
inhibition g° = 0.02 and electrical coupling® = 0, a ring of 32 neurons presents rich itinerant dynamics.
Parameters for Egs. (3) ate=0.001,a=1,b=0andl =0; f(v) as in [11] witha = 4.3.

couplingg® (the coupling enters in this case the slow variable equati®bhserve how
the coupling strength selects the pattern of active neusioosrding to the symmetries
of the network, and that intermediate inhibition valuesvelrthe whole system into
silence. Thus neurons form dynamic patterns of activity tha be selected by synaptic
parameters.

FURTHER DIRECTIONS

The map-based neurons we have presented here fall into dse of conductance-
based models. They are fast simplified counterparts of thesidal ODE models of
the Hodgkin-Huxley type based on ionic conductances. We Baen how considering
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FIGURE 6. Patterns of synchronization of a homogeneowusattice of Rulkov neurons for different
values of chemical inhibitory couplingf




the threshold-and-reset mechanism as a discontinuous raap suggested using other
maps for spike generation (see Fig. 3) and opened the do@waauron models. We
have not addressed non-conductance-based neuron madlsissthe one proposed by
Aihara [20], that focus on the effects of refractoriness gradded response on spike
sequence generation. They are an interesting bridge bethiedogical and formal
neurons, but have never been used in modelling of biologigatems. In addition,
the effect of symmetry-breaking phenomenon on the gemerathd synchronization
of bursts has been discussed in our recent work [21].

We have mentioned the computational advantage of map-lwasetlictance neuron
models only in passing. One may certainly use these modgteiorm large scale
simulations in modest computers, gaining some edge ovér shever ODE-based
counterparts [22]. This has only marginal importance. Maped models should be
taken into consideration for modelling in neuroscience nvtieey capture the features
that are thought to be essential to the issue under studgtigfactory explanations of
phenomena are obtained, then they should be checked withawourate models.
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