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Abstract.
Ever since the pioneering work of Hodgkin and Huxley, biological neuron models have consisted

of ODEs representing the evolution of the transmembrane voltage and the dynamics of ionic
conductances. It is only recently that maps – or difference equations – have begun to receive
attention as valid conductance neuron models. They can not only be computationally advantageous
substitutes of ODE models, but, since they accommodate chaotic dynamics in a natural way, they
may reproduce rich collective behaviors that we explore here.
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SIMPLE MAP-BASED NEURON MODELS

One of the simplest conductance-based neuron models is the leaky integrate-and-fire
(LIF) model [1]. It represents the voltagev across a capacitor (the cell membrane)
that passively discharges through a resistor (the ionic channels) and may be charged
by external currents (either injected or generated by synaptic events). If voltage reaches
a thresholdvθ , the capacitor instantaneously discharges to a reset levelvr and the neuron
is said to have fired a spike. The equations that represent this model are:

Cv̇(t) = −
v(t)
R + Iext(t)

v(t+) = vr if v(t−) = vθ (spike generation).
(1)

Observe that the model sets the resting potential of the neuron atv = 0. ResistanceR
may be dependent onv, giving rise to nonlinear LIF models. For most applicationswe
can integrate this model with the simplest Euler method using and appropriate time step1

(less than the typical spike duration, that is, 1 ms) to obtain a discrete-time, or map-based
system:

v(t +1) = f (v(t))+ rI where f (v) =







(1−k)v if v < vθ ,
vs if vθ < v < vs,
vr if v = vs.

(2)

1 Euler integration needs extremely small time steps to avoidsignificant errors with respect to the exact
solution of a network of ODE-based LIF neurons, especially due to the round-off of the threshold crossing
time [2]; but never lose sight that the ODE-based LIF model isitself a rough approximation to real neurons.
Time discretization is valid as long as it is significantly finer than the highest frequency in the system.
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FIGURE 1. Response of a LIF neuron to a constant external current (left) and a complex external
current (right). Parameters in Eqs. (2) arek = 0.01,r = 1, vθ = 1, vr = 0.8 andvs = 5.

Parameter correspondence isk = ∆t
RC andr = ∆t

C , where∆t is the integration time step. A
slight modification with respect to continuous time is that this discrete-time model ex-
plicitly represents spikes as a (high) voltage valuevs, and that the spike occupies a finite
one time step interval. Observe that the mappingf (v) includes both the subthreshold
resistor and the spike generation; seamless incorporationof threshold and reset mecha-
nisms is a convenient feature of map-based models.

Although simple, models of the LIF family are able to reproduce the response of
complex models and even real neurons to currents injected intheir soma [3]. Although
the autonomous behavior of the LIF model (i.e., whenI is a fixed parameter) is either
a constant subthreshold voltage (quiescent or silent regime) or periodic firing (regular
spiking regime), depending on whetherI is low or high, its response under complex
stimulation, as we can see in Fig. 1, looks rich and natural. Such stimulation can be
generated by a large network of LIF neurons [4]. Thus, simplemodels are often an
excellent choice for studying phenomena depending mostly on network effects rather
than single neuron properties.

But in many instances the autonomous dynamics of the model needs to account for
phenomena such as oscillations below the firing threshold, resonance or bursting. LIF
neurons cannot display these properties because they are one-dimensional. A second
variable can provide the necessary mechanism. The following equations describe a
generic simple two-dimensional map-based model:

v(t +1) = f (v(t))+ I −u(t),
u(t +1) = u(t)+ µ(av(t)−bu(t)+σ).

(3)

The voltage equation is that of a LIF model, andf (v) includes thresholding to generate
spikes; the parameterr of Eqs. (2) has been made 1 by appropriate scaling ofI . The
second variable enters the voltage dynamics simply as an additional current term (the
minus sign means that positiveu values have an inhibitory effect and viceversa, but
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FIGURE 2. Left: nullcline diagram of the Izhikevich neuron model [8].The slow nullclineS, and the
stable and unstable branches,Fs andFu, of the fast nullcline are represented, along with the (unstable)
fixed pointU . The dotted line marks the reset voltagevr . Arrows indicate the direction of the flow. Right:
time evolution of the system. Parameter values in Eqs. (3) are µ = 0.02,a = 0.25,b = 1 andI = 1.

this is of little relevance). It represents the current due to voltage-dependent channels
that evolve in the same or in a slower time scale than the voltage itself, as opposed to
channels embodied in the (possibly nonlinear) resistor, which respond instantaneously
to voltage changes. The time scale can be set by means of parameterµ. If it is small, u
is a slow variable; this is typical of bursting models [5], which will be our main concern
in this paper. In the general case, withu as fast asv, we get the so-called resonate-and-
fire [6] or generalized integrate-and-fire [7] models, whichexhibit interesting frequency
responses.

How does a bursting model work? First observe the voltage equation in (3): whenu is
high, the total current term is low and the neuron is silent. Whenu is low, the opposite
is true and the neuron is spiking. But according to theu(t) equation, ifa > 0 andσ is
appropriately chosen, the low value ofv(t) in the quiescent state may decreaseu (slowly
sinceµ is small) until the neuron begins to fire. And, conversely, the higher average
value ofv(t) during spiking may increaseu until it draws the neuron back into silence.
This alternation of spiking and silent phases is what we callbursting. The mechanism
can be seen at work in Fig. 2, where the nullcline diagram and the time evolution of the
well-known map-based neuron model proposed by E. M. Izhikevich [8] are depicted. See
how u builds up during the spiking phase to a value where the reset voltage (vr = −55
in this example) is below the unstable branch of the fast nullclineFu; this terminates the
burst, and thenu relaxes back to trigger the next one.

As with one-dimensional LIF models,f (v) can be chosen in many different ways to
give as many different models. Two interesting choices are shown in Fig. 3 as return
maps ofv(t). The first one is a typical nonlinear integrate-and-fire map,and corresponds
to a model proposed by N. Rulkov [9]. The two fixed points of themap, one stable and
the other unstable, would appear as part ofFs andFu in a nullcline diagram such as that
of Fig. 2. Increases in the external currentI or decreases inu displace this return map
upwards and may eliminate the fixed points altogether, producing repetitive spiking.
Observe the threshold and reset mechanism embodied in the horizontal parts of the
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FIGURE 3. Fast variable return maps (below) and examples of bursting (top) for two different choices
of f (v) in Eqs. (3): left, the Rulkov map [9]; right, the chaotic Rulkov map [11].O, stable fixed point;U ,
unstable fixed point. Note the irregular length of the burstsof the chaotic map.
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FIGURE 4. Left: sensitivity of the Izhikevich model [8] as a function of parameterb in Eqs. (3). Right:
impedance curves for different values ofb. For details, see [12].

return map. The second example interestingly substitutes them with a unimodal chaotic
map. The reset level now varies with each spike and the resultare chaotic bursts. The
possibility of such simple chaotic bursting neurons is another advantage of map-based
models [10, 11].

Finally we point out the relevance of parametersa andb in Eqs. (3). They determine
the slope,b/a, of the slow nullcline. Ifb/a = 0, the nullcline is horizontal andu is a
neutrally stable variable. The neuron is most insensitive in this state to steady changes
in external current. This can be understood noting that the effect of I is to shift the fast
nullcline horizontally; if the slow nullcline is horizontal, no change results in the steady
state of the system. In return, the smaller the value ofb/a, the sharper the frequency
selectivity of the neuron. Thusa andb allow us to tune the neuron between integrator
and resonator behaviors [5]. This flexibility is not available in one-dimensional models.
Figure 4 shows how sensitivity grows with growingb, while resonance is enhanced for
low b values [12].



FROM NEURONS TO NETWORKS

When neurons form networks, the firing activity of each of them induces currents in their
postsynaptic targets. Synapses are either electrical or chemical. Electrical synapses are
usually modelled by straightforward resistive coupling. Chemical synapses are instead
varied and complex. In keeping with the spirit of simplification of our models, we will
use instantaneous thresholded coupling of the voltage. This means that, whenever the
voltage of the presynaptic neuron is above a certain threshold, it will induce in its
postsynaptic targets an ohmic current. Thus we arrive at thefollowing equations for
a network ofN map-based neurons with electrical and chemical connections:

vn(t +1) = fn(vn(t))+ I −u(t)+∑N
1 ge

mn[vm(t)−vn(t)]+∑N
1 gc

mnH(vm(t)−θmn)
un(t +1) = u(t)+ µn(anv(t)−bnu(t)+σn).

(4)
HereH(x) is the Heaviside step function andθmn is the voltage threshold for chemical

synaptic interaction from neuronm to neuronn; this threshold is usually taken just below
spike initiation voltage. The coefficientsge

mn andgc
mn are the strengths of electrical and

chemical synapses. Electrical coupling satisfiesge
mn > 0 andge

mn = ge
nm, and directly

adds another current term to the voltage equation. Chemicalcoupling coefficients can
be both positive (excitatory synapses) or negative (inhibitory synapses), are usually
asymmetrical, and may exert their influence in any of the two equations; the choice
in Eqs. (4) means that chemical synapses act on fast ion channels, but if we want to
model slower synaptic dynamics we may include this term in the equation foru.

In Fig. 5 a ring of chaotic Rulkov neurons can be seen in action. Neighbors are coupled
through uniform electrical synapses of strengthge > 0 and inhibitory chemical synapses
of strengthgc < 0. When a neuron begins to fire, the electrical coupling drawsits silent
neighbors towards higher voltages and causes them to burst.But then the inhibitory
chemical coupling becomes active and hinders the neighbors’ bursts. Thus the two
couplings are antagonic. Linear analysis techniques show that, in any regular network of
this kind of neurons, ifge > |gc| neurons will end up bursting synchronously [13].

If ge < |gc|, a bursting neuron prevents its neighbors from bursting, and, as depicted
at the top part of Fig. 5, antiphase synchronization may appear. But, the neurons being
chaotic, other configurations are possible, including propagation of waves at different
speeds and directions. If electrical and chemical strengths are almost balanced, these
configurations alternate unpredictably as shown in the bottom part of Fig. 5. This
phenomenon is called chaotic itinerancy [14].

Obviously, the structure of the network is at least as important as the properties of
individual neurons and synapses in determining the patterns of neuronal activity that
will set in. The relationship between network topology and synchronization, clustering
or information processing has been subject of extensive research, and all the tools that
have been developed in the frame of ODE-based systems, such as mean-field theory
[15], master stability functions [16] or the connection graph method [17], are available
for our maps. Particulary interesting situations arise in networks of mutually inhibitory
bursting neurons such as those of central pattern generators [18], [19]. A simple but
nontrivial example is shown in Fig. 6, where the activity in a4×4 bidimensional lattice
of inhibitory Rulkov neurons [9] is depicted for different values of inhibitory chemical
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FIGURE 5. Top: a ring of chaotic Rulkov neurons [11] with electrical and inhibitory chemical coupling.
The evolution of the voltage of 8 neurons is shown in the case when electrical synapses are stronger (left)
or weaker (right) than chemical synapses. Note the irregular length of the bursts. Bottom: with chemical
inhibition gc = 0.02 and electrical couplingge = 0, a ring of 32 neurons presents rich itinerant dynamics.
Parameters for Eqs. (3) areµ = 0.001,a = 1, b = 0 andI = 0; f (v) as in [11] withα = 4.3.

couplinggc (the coupling enters in this case the slow variable equation). Observe how
the coupling strength selects the pattern of active neuronsaccording to the symmetries
of the network, and that intermediate inhibition values drive the whole system into
silence. Thus neurons form dynamic patterns of activity that can be selected by synaptic
parameters.

FURTHER DIRECTIONS

The map-based neurons we have presented here fall into the class of conductance-
based models. They are fast simplified counterparts of the classical ODE models of
the Hodgkin-Huxley type based on ionic conductances. We have seen how considering
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FIGURE 6. Patterns of synchronization of a homogeneous 4×4 lattice of Rulkov neurons for different
values of chemical inhibitory couplinggc



the threshold-and-reset mechanism as a discontinuous return map suggested using other
maps for spike generation (see Fig. 3) and opened the door to new neuron models. We
have not addressed non-conductance-based neuron models, such as the one proposed by
Aihara [20], that focus on the effects of refractoriness andgraded response on spike
sequence generation. They are an interesting bridge between biological and formal
neurons, but have never been used in modelling of biologicalsystems. In addition,
the effect of symmetry-breaking phenomenon on the generation and synchronization
of bursts has been discussed in our recent work [21].

We have mentioned the computational advantage of map-basedconductance neuron
models only in passing. One may certainly use these models toperform large scale
simulations in modest computers, gaining some edge over their slower ODE-based
counterparts [22]. This has only marginal importance. Map-based models should be
taken into consideration for modelling in neuroscience when they capture the features
that are thought to be essential to the issue under study; if satisfactory explanations of
phenomena are obtained, then they should be checked with more accurate models.
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