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F́ısica Aplicada Miguel Ángel Fernández Sanjuán, el cual ha sido el iniciador
y el incentivo constante para llevar a cabo el trabajo que aqúı presento. En el
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Preface

This Ph.D. thesis focuses on the modelling and simulation of various nonlin-
ear systems with complex behavior. One of the objectives of the work is to
give a different point of view on the study of a class of nonlinear dynamical
systems. We present several models that have been studied in detail with
both non-linear circuits and numerical simulations. Some models presented
here are biologically inspired, as it is the case in Chaps. 2 and 3, whereas the
other circuits presented exhibit a chaotic dynamics. The variety of subjects
discussed reflects the possibilities of this technique as a tool for the study of
complex systems. We briefly describe the contents of the chapters forming
this thesis.

• Chapter 1 introduces briefly the concept of electronic simulation of
complex dynamics. The concepts of dynamical systems and complex
dynamics are presented with simple examples, followed by a short dis-
cussion on the advantages of using electronic circuits for the modelling
of complex systems.

• In Chap. 2 the dynamics of a neuron model is described by means of
analog circuits. The Morris-Lecar model expresses the membrane volt-
age of a clam muscle fiber, which exhibits spiking oscillations under
the action of an external excitation. The model lies on the mathemat-
ical representation with differential equations of the dynamics of the
membrane ionic channels. The bifurcation structure of this model is
explored as the parameters of the model are spanned in a two dimen-
sional space. A complex bifurcation structure is found numerically and
experimentally. Furthermore this work investigates how the model can
be modified in order to obtain a bursting oscillatory pattern which is a
periodic repetition of brief spiking activity followed by a silent period.
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• Chapter 3 deals also with a biologically inspired model. The electronic
circuits are used in this chapter in order to reproduce the dynamics of
a coupled genetic oscillator. The oscillator, called the repressilator,
consists of three genes whose concentration of expressed proteins os-
cillates periodically. These oscillators can be coupled in such a way
that a global synchronization is obtained. We demonstrate that the
synchronization can be obtained with in-phase oscillations. It is also
shown that a periodical forcing can synchronize a population of repres-
silators. We propose a plausible biological model which is simulated
by the use of circuits. Finally, we discuss the simulation of other gene
networks. In particular we describe the model of a genetic oscillator
with delay whose oscillations are caused by the lag in the production
of the proteins and the self-repression. Another system described here
is a genetic switch made of two mutually repressive genes.

• In Chap. 4, the coupling of chaotic oscillators is treated and simu-
lated with circuits. When we dealt with coupled systems in Chap. 3,
we made the assumption about instantaneous transmission of the in-
formation which may not be true. We ask in this part about the role
of the delay in this kind of synchronization. As two oscillators are cou-
pled and synchronized, the introduction of a delay on the transmission
line may destabilize this synchronization. We use chaotic oscillators
in order to study the synchronization of two and three coupled units
with delay. Different scenarios arise depending on the type of cou-
pling. With two oscillators, synchronization is not possible. However
as a feedback with delay is added to the oscillators, both circuits syn-
chronize perfectly. When three units are coupled in a line, in some
particular configuration of coupling the synchronization of the outer
two is obtained whereas the central unit remains behind or in advance
compared with the other oscillators. An experimental verification of
this phenomenon is offered by using Chua’s circuits.

• Chapter 5 hints that it is possible to send an encrypted message as two
chaotic circuits are coupled bidirectionally with delay on a transmission
line. Moreover, the message can be sent and recovered by the two
coupled units at the same time. We describe how it is possible to send
and to receive a message with this experimental setup. This is the first
experimental setup of this kind at the moment of the writing of this
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Ph.D. thesis.

• In Chap. 6 we summarize the most relevant points of this thesis.
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Chapter 1

Introduction

The diversity of subjects presented in this Ph.D. thesis is the result of dis-
cussions with scientists with different backgrounds and points of view. The
interdisciplinary nature of the contents is a sign that a common methodol-
ogy can be used with different systems. We propose a different insight to the
modelling of complex dynamical systems by using analog electronic circuits.
The common aspect to all the work collected in this Ph.D. thesis is the study
of the dynamics of complex systems from different fields such as electronics,
neurodynamics or genetic engineering.

1.1 Simulation of complex dynamics

Dynamics and the study of dynamical systems could be described as the sci-
ence of motion. The word dynamics comes from the ancient Greek δυναµικóς,
which means power or force, and thus is related to the study of forces which
originate the movement. The efforts made since the 17th century in giving
a mathematical abstraction to these evolving objects gave the framework of
the dynamical systems theory.

A physical system, in general, can be represented by a model based on
a set of equations which is an abstraction of the reality. The study of this
set of equations can give information on the object without making any
further physical observations, in other words, we can draw conclusions on
the behavior of the system without experimentation. The method by which
the behavior of the system is studied through the set of equations is called
simulation. This powerful method of prediction can also be used in another
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2 Chapter 1. Introduction

context: the control of the dynamical system. The information on the system
allows to develop a method to control undesired behaviors or to maintain the
system in a desired dynamical regime.

These equations describing the model should be analyzed with some of the
multiple techniques available to the experimenter. Here we present a method
of simulation with electronic circuits that gives fruitful results in different
fields of applications. Analog simulations have been used in different contexts
such as chaotic dynamics [1], neuroscience [2, 3, 4], lasers [5], communication
systems [6] and recently for the study of stochastic phenomena [7]. In this
Ph.D thesis we introduce the simulation of complex systems by using analog
circuits.

There are several definitions of a complex system in the scientific com-
munity and there are different definitions of the complexity depending on
the subject of study. In our case, a complex system can be decomposed in
simple components which can be modeled and simulated individually. These
components can exhibit different dynamics, and even complex behaviors such
as chaotic oscillations, that can be studied with all the available tools of the
linear and nonlinear dynamics. However, these sub-units can interact with
each other in a very complex and nonlinear way. The sum of all the indi-
vidual behaviors can be dramatically different as they are connected into a
network. In that case the study of the entire system is also necessary since
new behaviors that were not present in the individual parts can now emerge
in a connected system.

The methodology followed in this Ph.D. thesis consists in first studying
the individual part and then growing in complexity by interconnecting dif-
ferent elements between them. This method is perfectly suited to the use of
electronic circuits since the first step is to construct the basic elements with
the available tools and studying them in order to characterize their behavior.
These basic elements are then reproduced and interconnected for the analysis
of the dynamics on different levels of complexity.

We must underline here that the method of studying a system from the
smallest part to the most complex and organized one is called the bottom-up
approach. This is the usual technique used in engineering during the design
process of any system. The traditional scientific procedure is on the opposite
side. It consists on studying an object from the highest level of detail to the
smallest one. We propose here a different approach that gave fruitful results
in different fields such as the synchronization of chaotic oscillators, neural
systems modelling or even the genetic engineering.
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1.2 Dynamical systems

The initial motivation of the study of dynamical systems comes from Classical
Mechanics, where the need for a mathematical formalism to study the time
evolution of the objects gave one of the most important theories in physics.
Dynamics is strongly linked to the study of the trajectory of objects in space.
However, it is now an abstract framework that can be applied to any evolution
problem.

First, a dynamical system is represented by a set of variables, continuous
or discrete, representing all the states of our system. This set is a description
of the relevant quantities that are evolving, such as the space, temperature,
speed or whatever. For convenience we will represent these variables in form
of a vector

x =









x1

x2

x3

. . .









. (1.1)

The number of variables and the set of definition depends on the system.
The set of all possible states of the system is called the phase space, and a
particular numerical value of this vector is a point of this space.

Now that the states are described by this set of variables, we need some
rules to find out the evolution. In all the examples proposed in this Ph.D.
thesis, we will refer to time evolution. This progression is determined by a
differential equation which is a function of time and x. It links the instan-
taneous variation of the system to its actual position x. In other words, the
position in the near future is a function of the actual position and eventually
the time. It means that if we know the position at the time t with an infinite
precision, we are able to reconstruct all the future states of the system. In
this case we talk of a deterministic system. In general, a dynamical system
can be written as:

dx

dt
= f(x, t) (1.2)

x(t0) = x0. (1.3)

The Eq. (1.2) determines the evolution of the system. The left term dx/dt is
the instantaneous temporal variation of the variable x, while the right term
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is a function of the variable x and time in the form:

f(x, t) =









f1(x1, x2, . . . , t)
f2(x1, x2, . . . , t)
f3(x1, x2, . . . , t)

. . .









. (1.4)

This function and the initial condition x(t0) = x0 contain all the behavior
of the system, this is the model of the system. A particular trajectory x(t)
with the precedent initial condition is called a solution of the differential
equation (1.2). This is the first type of differential equation that we will
study in this work. The function f generally depends on a set of parameters
µ = {µ1, µ2 . . . } that links the variable {x1, x2, . . . , t} in a linear or nonlinear
manner. This set of parameters can strongly influence the dynamics of the
system. The dynamics in function of a parameter is studied through the
bifurcation diagram. This diagram represents the different possible regimes
of the system as one or several parameters are varied. These plots provide
a substantial knowledge on the system if we are looking for a particular
dynamical regime. In Chap. 2, we present such diagrams as two parameters
of the system are varied. In this case oscillatory regimes can appear or vanish.

The differential equations will appear where an evolution problem has to
be solved. Solving this equation analytically in most cases is an impossible
task. This is one of the purposes of the presented work to propose methods
to obtain such solutions.

Later on in this thesis, we show how to simulate differential equations
when a delay is present in the problem. In the case of the equation with
delay the instantaneous variation of the variable depends on the present
state and also from the past states at an previous time τ . The differential
equation becomes:

dx

dt
= f(x(t),x(t − τ), t) (1.5)

x0 = {x(t) for − τ ≤ t ≤ 0}. (1.6)

The initial conditions of Eq. (1.6) in this case should be defined for the values
of the trajectory during the time t ∈ [−τ, 0]. This dependence on the past
states can have a dramatic effect on the evolution of the system. To illustrate
these effects we will take a very simple example of differential equation:

dx

dt
= −ax + b, (1.7)
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0 5 10 15 20
t (arb unit)

0
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2

3

4

x(
t)

Delay equation

0

1

2

x(
t)

Normal ODE

a)

b)

Figure 1.1: Time evolution of two differential equations. (a) The solution of
the equation without delay is plotted. (b) The solution of the same equation
with delay is shown. In this second case the oscillations appears due to the
effect of the delay.

with x(0) = 0. The solution of this equation is straightforward:

x(t) =
b

a
(1 − e−at). (1.8)

The time evolution of this equation is shown in the Fig. 1.1 (a). Now suppose
that the system has a memory of its past state and the system depends on a
delay:

dx

dt
= −ax(t − 1) + b. (1.9)

The time evolution of this equation is no longer so simple. In Fig. 1.1 we
show the difference for the time evolution of the two equations. When a
delay is introduced in the system, the trajectory oscillates before stabilizing
to the steady state value. Different tools are necessary to find the solution
of this kind of equation. The electronic circuits are good candidates for the
implementation of differential equations with delay.

Nevertheless, the use of electronic circuits as a tool of simulation can
be questioned for such systems, and specifically, which are the advantages
of using this particular kind of simulation technique. A short discussion
about the benefits and the inconveniences is necessary before starting the
description of any particular system. In the section (1.3), we expose the
main arguments of the discussion.
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1.3 Why to use electronic circuits?

Here we give a small discussion about the possible advantages and drawbacks
of using electronic circuits:

1. First of all, an analog circuit is a physical system. It means that the be-
havior of the system, which is reflected by the electrical variable, can be
observed with a measurement. The system ceases to be a mathematical
object and becomes a physical object.

2. The fact that the system can be implemented in a electronic circuit
means that it is robust to small parameter changes. The components
are not perfect and their nominal values change from component to
component which implies that if the circuit works the model is not
sensitive to these small differences.

3. The mathematical models of the components are not perfect, they may
be subjected to nonlinearities and influenced by external factors such as
the temperature. The noise is present in all the variables of the circuit
and it may affect the dynamics of the circuit in one way or another.
The resistance to noise is another kind of robustness. The noise due
to the thermal agitation of the carriers is present in every electronic
component and increases with the number of parts.

4. For the practical benefits of using electronic circuits, we can comment
that building an electronic circuit from a theoretical model can lead
to interesting applications. The most striking example is perhaps the
electronic circuits which interact with real systems, e.g., neurons by
reproducing their behavior [2], or even neurocomputers which are in-
spired by the information processing of real neurons.

5. In order to explore the dynamics of the model, the electronic circuits
can have several advantages compared with the numerical simulations.
For example, the numerical integration of complex models may last
minutes, or even hours, while it is really faster with the electronic
circuits.

6. Another interesting point is that it is possible to change the parameter
directly. For example, if a resistor controls the time constant of an inte-
grator, a simple variation of this resistor changes the dynamics in real
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time. In many cases, the exploration of the parameter space is faster
than using numerical simulations, however the analysis of the corre-
sponding time series may be longer. To overcome this difficulty, it is
possible to develop electronic tools, useful when the dynamical system
has a chaotic dynamics, such as automatic analysis of the bifurcation
diagram and the Poincaré sections [8].

7. The construction of the circuit by itself is a very instructive process.
One can see how the dynamics of the system appears as the elements are
connected. Moreover, as the parameters are changed the experimenter
can see unexpected results in the dynamics. Seeing chaos in a electronic
circuit and observing the route to chaos is a wonderful experience.

On the other hand, the realization of electronic circuits may be subject
to several criticism. The inconveniences can also be separated in two parts,
mainly practical and theoretical.

1. Often, there is nothing that you see in the circuit that you cannot see
with the numerical simulation. In this case, the electronic circuit is
nothing more than a practical confirmation of the theoretical results.
One can say that this is not a “real experiment”, that it is just an
analog integrator of a mathematical model. This is in part true, but
we stress on the fact that it remains an experiment in a physical system.

2. The robustness to noise mentioned before can also be regarded as a
problem if we are looking for a particular behavior in a small range of
parameters. These mismatches may be a problem if we want to observe
this particular dynamical regime.

3. Constructing circuits may have also some inconveniences on the prac-
tical aspects. Building a circuit may be a hard task of design and
assembly. The time spent to construct the circuit may be longer than
programming the numerical simulations. as long as some systems are
difficult to implement. For example when they include multipliers the
complexity of the design may increase.

Still, the analog circuits are a good tool for the simulation of certain equa-
tions, such as systems with delay, since they can integrate accurately very
complex equations in a very short time. The use of circuits is a potential
alternative, or at least a complement, to the numerical simulation of complex
systems.
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1.4 Modelling with circuits

Before describing the models which are at the core of this work, we present the
motivations of the use of the analog circuits for the simulation and modelling.

The basic components used in analog electronic circuits, such as resistors,
capacitors and transistors, can be described with the laws of electromag-
netism. Deduced from these fundamental laws, a model of the component
describes its macroscopic behavior which is the relation between current and
voltage. The model consists, in general, in a linear (or nonlinear) differential
equation. An association of these components would represent a set of dif-
ferential equations which can be solved by letting the circuit evolving freely,
after setting the initial conditions.

Fairly simple models are used for these components in order to express
the relation between the voltage and the current. In the case of the transistor
the models are rather more complex, which will be treated later on. Here we
present the simplest components (resistors and capacitors) needed to simulate
a differential equation. The resistor from the point of view of dynamical
systems is a simple linear gain, more precisely, it can be considered from a
physical point of view as a disipative device. The equation of a simple resistor
expresses the relation between the current and the voltage in function of the
resistance R by using Ohm’s law:

V = Ri. (1.10)

We have a linear relation between the current and the voltage which depend
on the physical characteristics of the resistance. The second elementary
component that is commonly used is the capacitor. A simple model of the
capacitor is two conductive plates opposed to each other and connected to a
different electric potential.

In this configuration charges are accumulated on each plate. More gener-
ally, the relation between the voltage difference between plates and the flow
of charges, which is the current, is

C
dV

dt
= i. (1.11)

The current that flows across the device is the derivative of the voltage and
C is the capacity of the capacitor which is a physical property of the device.
The capacitor can also be viewed as a current integrator:

V (t) =
1

C

∫ t

−∞

i(x)dx. (1.12)
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(a)

(b)

Figure 1.2: Normalized schemes of a resistance and a capacitor, the voltage
across the component is Vab and the current is i. (a) represents a resistor
and (b) a capacitor.

These are the basic necessary elements to construct a circuit that simulates
a differential equation. In order to illustrate the method to simulate such
equations, we present a very simple example of a first order differential equa-
tion:

dy

dt
= −αy + β. (1.13)

The equivalent circuit of this equation is presented in Fig. 1.3. The capacitor
integrates the current i as written in Eq. (1.11). By using the Kirchhoff law
and the Ohm law we deduce that the current is proportional to the voltage
drop in the resistance:

i =
(E − V )

R
. (1.14)

The complete differential equation of the circuit can now be written as:

RC
dV

dt
= E − V. (1.15)

To simulate the Eq. (1.15) it is now necessary to identify the constants β
and α:

α = 1
RC

,

β = E
RC

.
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Figure 1.3: Simple example of the simulation of a first order differential
equation. The circuit is composed of a resistor, a capacitor and a DC voltage
source.

The initial conditions of the equation are more delicate to choose. However it
is easy to start with the capacitor discharged and the voltage source turned
off, that is, with V = 0 and i = 0.

The voltages and currents in the circuit simulate the variables that can
later be observed, recorded and analyzed by using a standard laboratory
equipment. Several classes of differential equations can be simulated by this
mean:

• Ordinary differential equations (ODEs).

• Non autonomous differential equations.

• Delay differential equations.

For each class of equation we propose several examples along this work, as for
instance, the ODEs which are simulated in Chap. 3, correspond to a small
genetic network. The non autonomous equations with a forced oscillator and
the delay equations are treated in Chap. 5.

1.5 The models

The first work presented in this Ph.D. thesis is centered in the neuroscience
context. The nervous system is a typical example of a complex system where
the interconnection of the basic units (which are the neurons) gives birth to
very complex dynamics and behaviors.
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The purpose of this first work is the exploration of the parameter space
of a simple neuron-model. The Morris-Lecar model expresses the membrane
voltage of a clam muscle fiber, which exhibits spiking oscillations under an
external excitation. The spiking activity is a typical electrical activity of
the neurons by which the information is transmitted and it travels along the
axons, which are the links between the neurons. The spikes are brief pulses
of current that circulate along the membrane of the neuron. The modelling
of the neuron is based on differential equations which describe accurately
the dynamics of the system. The dynamical properties of the system are
explored with circuits and later on used to construct a new neuron type: a
burster, which is a neuron with periodic repetition of brief spiking activity
followed by silenced period. This is an example of how the circuits can be
useful to construct a system with a different dynamics.

In the following chapters a different biological system is studied. In Chap.
3 we deal with the simulation of a genetic process. In this chapter, we propose
a new approach for the simulation of a genetic network with the modelling of
a biological oscillator with analog circuits. A single oscillator is constructed
with electronic components, as an analogy to the genetic one. Next, this
unit is connected to similar circuits in order to observe the effects of the
coupling in a population of oscillators. As in biological clocks, which consist
in coupled oscillators with an external forcing due to environmental changes,
we introduce a periodical forcing in the coupled system and we determine the
conditions in which the system is entrained. Several other genetic systems
can be modeled as shown in Chap. 3, where we also analyse the influence of
the delay on the dynamics of the system.

The coupling between oscillators has been extensively investigated during
many years and it is still a hot topic. As we mentioned before the coupling of
oscillators appears not only in many biological processes but also in mechan-
ical/electronic/physical/social phenomena. Chapter 4 deals with the study
of the synchronization of oscillators when the coupling is not instantaneous,
i.e., when a delay is present in the transmission of the information. The
classical concept of synchronized state is modified in this context. When two
chaotic oscillators are coupled with delay, there is a case where the system
is alternatively forcing and forced by its counterpart. This state is called
achronal synchronization. Chaotic circuits are used in order to measure the
effect of this peculiar synchronization, however the conclusions can be ex-
tended to any other system. When a feedback is introduced in the oscillator,
another kind of synchronization appears, the isochronous state. In this case
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we observe exactly the same dynamics at the same moment despite the delay
on the transmission line. This isochronous state is observed not only in two
coupled systems but also in an array of three coupled oscilllators. We give
an experimental observation of the isochronous synchronization between two
circuits with a third relaying circuit in the middle.

As a possible application of this peculiar synchronization, we demonstrate
experimentally that a message can be transferred between two peers with a
chaotic masking scheme. The message is sent along with a chaotic carrier
that hides the information within the broad spectrum of the chaotic signal.
The bidirectional communication is possible in the sense that the message
can be sent in both senses at the same time. This configuration may be used
in some particular application as for example the negotiation of secret keys.
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Chapter 2

The electronic simulation of a
neuron model

2.1 Introduction

Nowadays the interface between electronic circuits and biological systems is
attracting a great deal of research due to the enormous variety of potential
applications of electronic devices to the general field of biomedical sciences.
Even a connection of an electronic circuit with biological neurons is now
possible [1, 2]. As a consequence of this fact, new disciplines such as biomed-
ical engineering or bionics are reviving. From a theoretical viewpoint, the
modelling of neurons is becoming more and more accurate, and the elec-
trical behavior of neurons is well reproduced at a quantitative level by the
increasingly complex mathematical models that are used in computational
neuroscience. In this context, the modelling of neurons by means of electronic
circuits is a steady growing field that presents rich potentialities for the de-
sign of specific hardware that is able to display some useful characteristics
for the processing of information in real time.

Experimentation on real neurons is a hard and expensive task, neverthe-
less part of these difficulties can now be solved to some extent with the help
of artificial neurons. Computational neuroscientists can profit from the use
of electronic devices as a tool for the exploration in real time of the behavior
of neuron models [3, 4]. As a consequence, a network of artificial neurons
can be emulated this way and tested in a real time environment. The devices
connecting such circuits with biological neurons are called hybrid networks

15
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[5, 6], and the achievements of these tools in the biomedical sciences are
immense. Artificial vision and audition [7] or spinal cord stimulation for
hemiplegic patient are some examples.

Neurons are cells forming part of the nervous system of the evolved mul-
ticellular living being. This particular cells are capable of the processing
and the transmission of the information by mean of electric impulses which
are called spikes. Depending on the kind of animal we are looking at, the
neurons will have different shapes and properties. However most of them
are composed of three main sections. The soma is the main part of the cell
which contains the nucleus and the components necessary for the survival of
the cell within the body. Joint to the soma, the dendrites are the receptor of
the nervous activity of other neurons. These received signals are processed,
and if the condition are matched then a nervous response is produced. This
response takes the form of a electrical pulse, called a spike, transmitted along
the axon which is the afferent ending of the neuron. This spikes will then ac-
tivates other neurons and so forth. The information is processed through this
large amount of connections among neurons. The shape and the frequency
of the spikes can be very different from one neuron to another. In the general
case, the duration of this pulses is of a few milliseconds of duration and a few
milivolts of amplitude. They can be generated individually (with a resting
time before the following spike), or in burst of several spikes with a silent
period before the next burst of pulses. The cell generating these patterns are
called bursters. Bursters are a class of neurons which are present in many
areas of the brain and whose autonomous activity displays periods of fast
spiking alternated with resting or silent intervals. Furthermore, an external
current can modulate the bursting response of those neurons and the cou-
pling between bursters can lead to very complex synchronization patterns
[8]. An extensive review on the dynamics of the neurons can be found in [9].

In this chapter we propose an electronic implementation of a simple model
of the giant barnacle muscle fiber developed by Morris and Lecar in 1981 [10].
The Morris-Lecar model is a characteristic example of a simple dynamical
system presenting a rich and wide variety of dynamical behaviors (see for
instance [10] and [11]). It uses only two dynamical variables to describe the
state of the neuron and thus allows us a straightforward observation of the
phase plane. In fact, with the help of an oscilloscope it is possible to visu-
alize the attractors in real time. Moreover, depending on the parameters of
the model, it presents Hopf (subcritical and supercritical), saddle-node and
tangent bifurcations which can be easily observed. By examining these bi-
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furcations, when two parameters are varied, we can observe some interesting
codimension-2 bifurcations taking place in the system. A similar experimen-
tal work with electronic circuits has been achieved by [12] with a modified
FitzHugh-Nagumo neuron model and in [13] in which a bifurcation diagram
varying only one parameter for the Morris-Lecar neuron model is carried out.
The phase plane of the Morris-Lecar model has been extensively explored in
[14] with bifurcation analysis and numerical simulations. This work investi-
gates the bifurcations in a five-dimensional space. Nevertheless the method
proposed here is experimental.

We have analysed the Morris-Lecar phase plane to develop a method to
obtain bursting behavior. The rather complex behavior of a burster is due to
the coexistence of multiple attractors so that the phase point passes through
a succession of different pseudo-attractors as it traces a closed orbit through
the phase space [15]. By finding out regions showing bistable behavior in
the Morris-Lecar model, we can construct a great variety of bursters [16].
To do that, we take advantage of the hysteretic behavior of the system,
leading to paths in the phase plane that are different depending in the way
the parameter is varied. In our case the fundamental control parameter
will be an external excitatory current delivered to the neuron. By choosing
an appropriate dynamics for this current we can allow the system to hop
between coexisting states thus giving rise to bursting activity patterns. In
[17] a design of a burster neuron based on the FitzHugh-Nagumo model
has been proposed, where an external forcing current is applied so that the
model exhibits bursting activity. The parameters of the perturbation are
based on the analysis of a two-parameter bifurcation diagram. In our work,
since the excitation current is an internal variable of the system, the burster
is autonomous. As examples of our methodology we present a square wave
(or fold/homoclinic) burster, an elliptic (sub-Hopf/fold cycle) burster and a
cycle/fold burster, all of them obtained from the dynamics of the Morris-
Lecar neuron model [16].

The organisation of the chapter is as follow. In Sec. 2.2 we present the
Morris-Lecar model and its electronic implementation. The bifurcations of
the circuit are analysed in Sec. 2.3. In Sec. 2.4 we present a method for the
design of electronic bursters and finally we summarize our results in Sec. 2.5.
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2.2 The Morris-Lecar Circuit

The Morris-Lecar model was originally developed as a mathematical model
of the giant barnacle muscle fiber [10]. It belongs to the class of the so-called
conductance models and uses a calcium current, a potassium current and
a leaky ohmic current to phenomenologically describe the behavior of the
muscle fiber. As the dynamics of the calcium channels is much faster than
that of the potassium channels, we will consider the former always in the
equilibrium state, thus reducing the model to the following system of two
first order differential equations:

C
dVm

dt
= −g∗

CaM(Vm)(Vm −VCa)− g∗

KN(Vm −VK)− gL(Vm −VL)+ I, (2.1)

dN

dt
= λN (Vm)(−N + G(Vm)), (2.2)

where Vm is the membrane voltage, N is the activation variable of the slow
potassium channels, and I is an external tonic current delivered to the
neuron. Notice the voltage dependence on Vm of the time constant λN in
Eq. (2.2), where its expression takes the following form:

λN(Vm) =
1

φ
cosh((Vm − V3)/2V4). (2.3)

On the other hand, g∗

Ca and g∗

K are the maximal conductances of the calcium
and potassium channels, respectively, and gL is a constant leak conductance.
The conductances of the potassium and calcium channels vary in a sigmoidal
way with the membrane voltage Vm. This dependence is introduced by the
following functions M(V ) and G(V ):

M(V ) = 0.5(1 + tanh((V − V1)/V2)), (2.4)

G(V ) = 0.5(1 + tanh((V − V3)/V4)), (2.5)

where V1, V2, V3, and V4 will be considered as adjustable parameters .
As many other mathematical systems describing the electrical activity

of the nerve membrane, a strategy based on the use of electronic circuits is
well suited to implement its dynamical behavior. The above set of equations
can be represented in a block diagram as shown in the Fig. 2.3 (a). This
figure represents the equations of the model schematically and it will be the
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basis of the electronic circuit design that is presented in Fig. 2.3 (b). In
this figure we can see the three ionic currents which are generated by using
the feedback of the voltage membrane Vm into the functional blocks. The
calcium current has only one element, the sigmoidal shaped function G(V ),
whereas the potassium channel includes an integrator for the slow dynamics
of this channel and also the variable time constant which depends on Vm.
That means that the channel does not open and close instantaneously as
the calcium channel does, but rather gradually, with a certain inertia. From
the viewpoint of the electronics, this means a first order filter. These three
currents are summed up and fed into an integrator to generate the membrane
voltage.

In order to further reduce the complexity of the model we can make
a strong approximation. Equation (2.2) representing the dynamics of the
potassium channel includes a voltage-dependent time constant λN(Vm). Im-
plementing this parameter in the electronic circuit represents a difficulty. The
hard point is to construct a voltage controlled resistor in order to modify the
value of the time constant of a RC filter (or the first order filter). These
components are mainly nonlinear and they introduce noise and undesirable
harmonic components. Furthermore, this time constant has a complex influ-
ence in the equation. Nevertheless, when this function is set to a constant,
the Morris-Lecar system of equations still exhibits interesting features like a
Hopf bifurcation and spiking capabilities. Based on this observation we have
reduced the original set of equations to a new set given by

C
dVm

dt
= −g∗

CaM(Vm)(Vm −VCa)− g∗

KN(Vm −VK)− gL(Vm −VL)+ I, (2.6)

dN

dt
= τ−1(−N + G(Vm)), (2.7)

with the same functions G(Vm) and M(Vm) as in Eqs. (2.4) and (2.5). Here
the parameter τ has a constant value, that is, it does not depend on the
membrane voltage. This parameter has a critical role in the stability of
the system because the Jacobian matrix of the linearized system around an
equilibrium point has its eigenvalue depending on the parameter τ .

The proposed circuit is displayed in Fig. 2.3 (b). It uses mainly linear
components excepts for the analog multipliers and diodes. With this circuit
we can now describe the experiments. The main logical blocks are delimited
by dashed lines. The calcium block is made of a sigmoidal function, imple-
mented with pn-junction diodes, an operational amplifier, and an amplifier
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(a)

(b)

Figure 2.3: (a) Block representation of the Morris-Lecar model. We represent
the differential equations in a schematic way; the blocks symbolize integrator,
gains, transfer functions and multipliers. This logical representation is the
basis of the implementation of the circuit. The blocks representing the ionic
currents are delimited by dashed-lines; the Eqs. (2.8) and (2.9) correspond
to the currents ICa and IK . All the currents are summed and fed into an
integrator; the sum of the currents is comparable to the Eq. (2.11). (b)
Electronic scheme of the circuit simulating the Morris-Lecar model. The ionic
currents are delimited by red dashed lines and correspond to the equivalent
blocks in Fig. (a). The ionic currents ICa, IK , and IL are summed and
fed into an integrator so that the output is the membrane voltage Vm of the
neuron model. The functions G(V ) and M(V ) are implemented with 1n4148
diodes and with UA741 OP-Amps.
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Parameter Values Units

τ R21 × C1 s
V1 −Vcc × R1/(R1 + R2) V
V2 −0.5V × R3/R4 V
V3 −Vcc × R11/(R11 + R12) V
V4 −0.5V × R13/R14 V
VL Vleak V
g∗

Ca 1/RCa S
g∗

K 1/RK S
gL 1/Rleak S
OPAMP UA741 –
Vcc 10 V
Mutiplier AD633 –

Table 2.1: Equivalence between the parameters of the model and the param-
eters of Eqs. (2.6) and (2.7).

to adjust the gain and the bias. The output signal is fed into an analog mul-
tiplier (AD633) and multiplied by the tension Vm. Except for the explicitly
specified cases,the parameters used for all the experiments are shown in the
Tab. 2.1. The output of this block is the current ICa which expression is

ICa = g∗

CaM(Vm) × (Vm − VCa). (2.8)

The potassium current is quite similar, but now we use an analog integrator
(a simple RC circuit). The expression of the ionic current can be described
with the following two equations:

IK = g∗

KN(Vm − VK), (2.9)

dN

dt
= τ−1(−N + G(Vm)). (2.10)

The last block, the integrator, sums all the ionic currents and integrate
them into a capacitor. The output of this circuit is the membrane voltage
Vm. Thus, this variable is the solution of the following differential equation,

C
dVm

dt
= −IK − ICa − IL + I, (2.11)

where IL is a simple ohmic leak. In the following section we will explore the
properties of this circuit.



22 Chapter 2. The electronic simulation of a neuron model

2.3 Experimental bifurcation diagrams

In this section the equations used for the implementation of the circuit are
slightly different. We have scaled the voltage in Eqs. (2.6) and (2.7) so that
the observation of the voltage variable is made much easier. The scaling
factor is a non-dimensional number α = 0.120. We can give the values of
the fixed parameters that will be used next, the other parameters will be
specified in each case: VCa = 1V , VK = −0.66V , VL = 0.5V , C = 20µF , and
C1 = 1µF .

The experimental setup for the measurements of the bifurcation diagram
is a simple ADC converter board. For a fixed set of parameters we construct
the bifurcation diagram as a function of a varying external current. We slowly
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Figure 2.4: (a)Experimental bifurcation diagram example in one dimension
obtained by plotting the maxima and minima of the membrane voltage Vm as
a function of the excitation current I. There we can observe three different
attractors: two branches of stable fixed points, one of them starting from the
left and another from the right of the panel, and a stable limit cycle (spiking
behavior) coexisting with them between 0.5 and 1 mA. (b) This schematic
diagram is the three dimensional phase space (N ,Vm,I) which corresponds
to the experimental bifurcation diagram in (a). We can observe a saddle-
node bifurcation (SN), a subcritical Hopf bifurcation (HP) and a tangent
bifurcation of a limit cycle. The stable branches appear in solid lines while
dashed lines represent unstable branches or unstable limit cycle.



2.3. Experimental bifurcation diagrams 23

Figure 2.5: Legends of the notation on the bifurcation diagrams.

increase the current step by step and observe the changes of the membrane
voltage Vm.

In Fig. 2.4 (a) we plot the maxima and minima of the membrane voltage
to visualize the oscillatory behavior and stable states of the system. In this
figure there appears a saddle-node bifurcation on an invariant cycle (point
SN), a subcritical Hopf bifurcation (point HP) and a limit-cycle (the spiking
regime of the neuron), for clarity we schematically draw the correspond-
ing three dimensional phase space (N ,Vm,I) in Fig. 2.4 (b). By collecting a
great amount of these diagrams varying only one parameter and joining these
one-dimensional diagrams in a two-parameter plot we can visualize how the
bifurcations in the system evolve when a parameter is varied. Due to the
complexity of the whole high dimensional bifurcation diagram, we have used
two-dimensional diagrams with one axis being I and the other one being
another parameter of the model. Notice that in the case of the experimen-
tal bifurcation diagrams the unstable states cannot be observed. It is only
possible to capture the stable steady states as well as the stable limit-cycles.

We have chosen three types of bifurcation diagrams which exhibit inter-
esting features, (a) I − V3 plane, where V3 is the activation threshold of the
potassium channel, (b) I − V4 plane, where V4 is the slope of the activa-
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tion function for the potassium channel and, (c) I − τ plane, where τ is the
time constant of the potassium channel. These parameters have a large in-
fluence on the model behavior as we describe below in each case. The Fig.
2.5 explains the principal notations used on the bifurcation diagrams for the
representation of the phase plane of each zone.

2.3.1 I − V3 diagram

In the Fig. 2.6 (a) we have plotted the corresponding bifurcations observed in
the circuit when the parameter I and V3 are varied. The different attractors
and behaviors of the model are specified on the graphics with oscillations and
stable nodes. The bifurcation diagram shows interesting global bifurcations,
such as a Bogdanov-Takens bifurcation (BT point on the panel) and a cusp
bifurcation close to it. In fact, these two bifurcations are so close that at the
selected scale they cannot be clearly differentiated. The first one represents
the transition from a saddle-node bifurcation to a sub-critical Hopf bifurca-
tion, where this last bifurcation always lie near a cusp bifurcation. The cusp
bifurcation appears when three equilibrium points, a saddle point and two
nodes, collapse. In the Fig. 2.6 (b) we have plotted the bifurcation diagram
obtained with the software XPP-AUTO; we have simulated the Eqs. (2.6)
and (2.7) with the parameters obtained from the circuit. Both diagrams are
very similar albeit some little differences in the location of the bifurcations,
for example the experimental diagram is shifted left from 0.5mA in compar-
ison with the numerical diagram. There are several other differences due to
the imprecisions and the noise in the circuit. The fine bifurcation structure
detailed in Fig. 2.6 (b) is too narrow to be observed in the circuit. The sys-
tem in the magnified region displays two homoclinic bifurcations. The first
one is the homoclinic bifurcation of a stable limit cycle along the line H1
and the second one is the bifurcation of an unstable limit-cycle along the line
H2.In the shaded region we have a stable limit cycle.The Hopf bifurcation
starts with a Bogdanov-Takens bifurcation on the saddle-node branch. The
general aspect and the bifurcations are conserved which manifest that the
circuit is robust. In spiking neurons we have basically two types of excitabil-
ity. The excitability represents the way the neurons begin to spike when an
external current is gradually increased. In the first type of neurons, the class
I neurons, the neuron begins to spike with an almost zero frequency when the
current is increased. In the class II neurons, the spiking begins at nonzero
frequency. The change in the excitability of the neuron can be explained
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(a)

(b)

Figure 2.6: (a) Experimental bifurcations in the I − V3 plane. We observe a
Bogdanov-Takens bifurcation (BT point) and a cusp bifurcation close to it.
(b) The numerical results obtained from the Eqs. (2.6) and (2.7) with the
XPP-AUTO software. The color used for the bifurcations are the same as in
the Fig. (a). Both diagrams look very similar despite some differences on the
place of the bifurcations due to the natural errors and distortions introduced
by the circuit. The general aspect is conserved and also does the type of
bifurcations, which manifests that the circuit is robust. We schematize the
region of the circle which presents a complex bifurcation structure. In the
inset of the figure we enlarge a part of the subcritical Hopf bifurcation. The
numerical simulation and the analog simulation correspond to the following
parameters: τ = 2 ms, V4 = 0.2 V, V2 = 0.15 V, V1 = 0 V, g∗

K = 8 mS,
g∗

Ca = 4 mS and gL = 2 mS.

considering these bifurcations. As is well known, the Morris-Lecar model
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is able to support both class I and class II excitabilities. The change from
the class I to class II excitability comes from a Bogdanov-Takens bifurcation
which set the transition from a saddle-node bifurcation (class I excitability)
to a sub-critical Hopf bifurcation (class II). In our circuit we can control
this parameter easily and so we can switch the type of excitability by only
changing the parameter V3.

2.3.2 I − V4 diagram

This bifurcation diagram which is shown in Fig. 2.7 is quite similar to the
previous one in its structure. We observe the same characteristics and the
same Bogdanov-Takens and cusp bifurcations (the BT bifurcation always lies
near a cusp bifurcation). Moreover, a new type of codimension-2 bifurcation
appears. This is a generalized Hopf bifurcation (also called a Bautin bifurca-
tion) that corresponds to a transition from a sub-critical to a super-critical
Hopf bifurcation [18]. Once again the BT bifurcation changes the excitabil-
ity of the neuron. We have two parameters that permit the control of the
excitability of the model: V3 and V4. As in the Fig. 2.6 we also present the
numerical result for the same set of parameters in Fig. 2.7 (b). The numerical
simulation obtained with XPP-AUTO agrees with the experimental diagram
in Fig. 2.7 (a). Moreover, the bifurcations are the same and their positions
in the phase plane are similar in both diagrams. Some discrepancies appears
between the two diagrams due to the approximations and the nonlineari-
ties in the circuit as well as experimental noise. Nonetheless the diagram
obtained with the circuit is satisfactory and illustrates well the model.

2.3.3 I − τ diagram

As it was mantioned before the parameter τ is very important for the stability
of the system because the dynamics of the potassium current is crucial to
the stability of the model. It represents the time of repolarization of the
membrane, or in other words, the time necessary for the membrane to return
to the resting state after firing of a spike. In fact, by varying this parameter
we can change dramatically the dynamics of the system. The position in
the phase space of the equilibrium points does not depends on τ , but the
stability of each point is affected by this parameter. Figs. 2.8 (a) and 2.9 (a)
show experimental bifurcation diagrams where we observe bistable regimes.
In Fig. 2.8 (a), we have a big zone of bistability. On one side we have the



2.3. Experimental bifurcation diagrams 27

(a) (b)

Figure 2.7: (a) Experimental bifurcations in the I − V4 plane. A Bogdanov-
Takens lies in the plain and a cusp bifurcation is close to it. We found also a
generalized Hopf bifurcation which represents the transition from a subcritical
to a supercritical Hopf bifurcation. (b) This diagram represent the numerical
simulation of Eqs. (2.6) and (2.7) for the same set of parameters. It is clear
that the experimental diagram and the simulated diagram are very similar.
Some mismatches between the two diagrams are due to the nonlinearities
and to the experimental noise. The parameters are as follows: τ = 2 ms,
V3 = 0.06 V, V2 = 0.15 V, V1 = 0 V, g∗

K = 8 mS, g∗

Ca = 4 mS and gL = 2
mS.

bistability with a stable node and a limit cycle and on the other side one
with two stable nodes (along the line l1). This particularity can be used for
the design of a burster neuron as we will see next. Figure 2.8 (b) shows the
numerical simulation of Eqs. (2.6) and (2.7). This simulation validates the
diagram obtained with the circuit, and the results are very close.

By modifying the parameter V4 we obtain the new bifurcation diagram
shown in the Fig. 2.9 (a). This diagram displays similar characteristics as the
previous one. The saddle-node bifurcation on the limit-cycle is independent
of the parameter τ . In this figure we have an interesting bistable zone along
the line l2 where a limit-cycle and a stable node coexist. The transition
from one to another occurs through a subcritical Hopf bifurcation and a fold
bifurcation. By using this particularity an elliptic burster can be constructed
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(a) (b)

Figure 2.8: (a) Experimental bifurcations in the I−τ plane. We have a large
bistable zone represented by the coexistence of a stable node and a limit-
cycle (spiking behavior) due to a subcritical Hopf bifurcation. (b) This figure
is the numerical result of Eqs. (2.6) and (2.7) with the same parameter
set. The figures are almost identical but there is a systematic difference on
the place of the bifurcations. The saddle-node bifurcation obtained with the
circuit is shifted from 0.3mA to the right. The black line marked as H on the
diagram is the homoclinic bifurcation of a stable limit-cycle, which bifurcation
is difficult to observe in the circuit. This limit cycle region is too narrow.
The parameters are as follows: V4 = 0.06 V, V3 = 0.12 V, V2 = 0.15 V,
V1 = 0 V, g∗

K = 8 mS, g∗

Ca = 4 mS and gL = 2 mS.

as it will be described in the next section. Along the line l3 we have a
bifurcation pattern identical to the one shown in Fig. 2.8 (a) along the line
l1. On one side we have a bistability between a limit-cycle and a stable node
and on the other between two stable nodes, although the transition from one
to another in this case occurs through a saddle-node bifurcation. We have
verified also this diagram with the numerical simulation presented in Fig. 2.9
(b) and both graphics correspond well.

The bifurcation diagram appearing in Fig.2.10 (a) presents a small bistable
zone (the small triangle) where a stable node and a limit cycle coexist. If
the system is on the stable branch for example at the point 1 on the di-
agram, when we increase the external current the attractor changes to a
spiking regime after a saddle-node bifurcation (see the point 2). On the
other hand, when the current decreases the stable limit cycle collapses with
an saddle point. The system describes a hysteresis loop as the trajectory is
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(a) (b)

Figure 2.9: (a) Experimental bifurcations in the I −τ plane. This diagram is
very close to Fig. 2.8 (a). In this figure we have changed slightly the parame-
ters V4 of the model and plot a new bifurcation diagram. We have the bistable
zone with a stable node and a limit-cycle, and a new zone appears where a
single limit-cycle (spiking behavior) is present. (b) The diagram plotted is the
numerical result of the model equations with the same parameters used in the
circuit. The two diagrams are very similar, while some differences appear in
the diagram owing to the noise and the nonlinearities present in the circuit.
The black line marked as H on the diagram is the homoclinic bifurcation of
a stable limit-cycle. This limit cycle region is too narrow to be observed with
the circuit. The numerical values of the parameters are as follows: V4 = 0.1
V, V3 = 0.12 V, V2 = 0.15 V, V1 = 0, g∗

K = 8 mS, g∗

Ca = 4 mS and gL = 2
mS.

different if we increase or decrease the external current. Although this region
of bistability always remains in a narrow range of parameters it can be a
good candidate for the design of the square wave burster. The numerical
simulation displayed in Fig. 2.10 (b) with XPP-AUTO matches the result
obtained experimentally. The homoclinic bifurcation seems longer than in
the experimental diagrams and this region remains small but it is sufficient
for our purpose.
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(a) (b)

Figure 2.10: (a) In this diagram we have a bistable zone with a limit cycle
and a stable point. The transition from the limit cycle to the resting state
occurs through a homoclinic connection to an unstable point. We can observe
in the insets the different phase portrait and the attractors of the regions of
the bifurcation diagram. The zone of bistability remains very small and is
difficult to find out experimentally. (b) The figure shows the numerical result
of Eqs. (2.6) and (2.7) with the same parameter set. The region of bistability
in the triangle appears to be larger than in the experimental diagram, but
in numerical simulations the noise is not present. So the region appears
greater. The numerical values of the parameters are as follows: V4 = 0.07 V,
V3 = 0.032 V, V2 = 0.15 V, V1 = −0.028 V, g∗

K = 8 mS, g∗

Ca = 2.6 mS and
gL = 2 mS.

2.4 The design of bursters

The previous experiments are the basis for the implementation of some mod-
els of bursting behavior. Since a burster works by switching with two pseudo-
stable attractors (a limit-cycle and a stable node for example), we have to
spot the bistable zones of the parameter space. Here the previous experimen-
tal work is essential, since we can visually find out the bistable regimes of the
neuron model. So, the first step is the search for bistable states where we can
switch easily from one attractor to another by simply varying the external
current. In the previous diagrams we have to look for a bistable regime along
a horizontal line. For example, following the line l2 in Fig. 2.9 (a) we have a
bistable behavior between a stable node and a stable limit-cycle. When the
external current is moved a hysteresis loop appears between the resting state
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and the spiking state (Fig. 2.11). This hysteresis loop leads to transitions
from the resting state to the spiking regime and back. Once we have chosen
two coexisting states as good candidates for the switching, we introduce a
new differential equation in our system to allow this switching to take place
autonomously. This new equation governs the slow current I, and is given
as follows:

dI

dt
=

1

RaRbC2
(Vm − Vth), RC >> τ. (2.12)

The introduction of the new variable I(t) allows us to switch the whole dy-
namics from one attracting state to another one by a suitable election of
values of Rb and Vth. Observe that now I is really an “internal” variable of
the extended dynamical system. Equation (2.12) is implemented by using
a simple operational amplifier in integrator mode. In order to develop our
method, we start by marking the interesting bistable zone on the bifurcation
diagram (horizontal line l1 on Fig. 2.8 (a) and extracting the corresponding
projection in one dimension (current vs amplitude on Fig. 2.4). Setting the
voltage threshold Vth in Eq. (2.12) is a rather difficult task because the inte-
grated current must decrease when the burster is spiking and must increase
when the burster is in its resting state. The parameter is tuned manually so

Spiking regime

Resting regime

Bifurcations

Hysteresis loop
I

Vm

N

Figure 2.11: Hysteresis loop of the burster. Observe that the system switches
from a resting state to a spiking regime and back when the current I is
changed. When the system is in the spiking regime, the current changes
so that the state approaches the edge. As the system crosses the bifurcation
on the edge the system returns in a resting state. The current in this state
changes its direction and the state approaches the lower edge. The burster
oscillates between these two states.
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that we obtain the desired behavior. The resulting waveform of this current
for the square-wave burster is shown in Fig. 2.12. Notice that the current
I is increasing when 〈Vm〉 (where 〈·〉 holds for the mean value) is above the
threshold and decreasing when it is below Vth. The second parameter Rb is
important for the time constant of the equation; it determines the speed of
the slow driving current. If this parameter is set too high, the oscillations are
weak. If the constant is too low the system can switch to another attractor.

We present in the next sections three different kind of bursters whose
differences are due to the bifurcations involved. Biological equivalence exist
for two of the three bursters. The square-wave behaves like the pancreatic
β-cells and the Hindmarsh-Rose model. The elliptic bursting phenomena
have been observed in rodent trigeminal interneurons.

2.4.1 Square wave burster (“Fold/homoclinic” burster)

First, we have built the well-known square-wave (or fold/homoclinic) burster
[16, 19]. This burster displays oscillations between a stable limit cycle and
a stable node. In Fig. 2.10 (a) we have found a small region of bistability
between an oscillatory state with an homoclinic connection and a stable node.
If we sketch the behavior of Vm along the line l4 drawn in Fig. 2.10 (a), a
graph similar to the one displayed in Fig. 2.12 (a) is obtained. The bistable
regime can be seen on the bifurcation diagram appearing in Fig. 2.12 (a).
Although this bistable regime only occurs in a narrow range of the variable I
we can apply the technique to this case. Here the transition between the two
states takes place through a fold bifurcation for the passage from the resting
point to spiking activity and through a homoclinic connection of the saddle
point for the transition from firing to resting.

In Fig. 2.12 (b) we have an example of a bursting oscillation between
two attractors in the three dimensional phase space. We also plot the cor-
responding time series of the voltage in Fig. 2.12 (c), where the temporal
characteristics of the bursting are clear.

2.4.2 Elliptic burster (“subHopf/fold cycle” burster)

We have simulated also the elliptic burster. Once again the bistability is the
key point. But in this case the nature of the bifurcation is totally different.
In Fig. 2.13 (b) we have a representation of the oscillation in the full three
dimensional phase space. The solid red line corresponds to the trajectory



2.4. The design of bursters 33

I1 I2 I

HM

SN

Threshold

Vm

(a)

0,26

0,28

0,30

-2

-1

0

-0,2

-0,1

0,0

N (V/s)

Vm
 (V

)

I 
  

(m
A)

(b)

0 0.5 1 1.5 2

−0.2

−0.1

0

t (s)

V
m

 (
V

)

(c)

Figure 2.12: (a) Dynamical behavior of the square-wave burster. The figure
represents the bifurcation diagram of the Morris-Lecar model as a function
of I. The bursting regime appears through a fold bifurcation for the passage
from the stable node to the limit cycle and through a homoclinic connection
when the cycle looses its stability and gets back to the resting state; (b) 3D
view of the orbit in the space (I, N, Vm). The parameter values are as follows:
τ = 0.03 s, V4 = 0.07 V, V3 = 0.028 V, V2 = 0.15 V, V1 = −0.032 V, g∗

K = 8
mS, g∗

Ca = 1.38 mS, gL = 2 mS, C2 = 1µF , Ra = 4.3 kΩ and Rb = 13.7 kΩ.
(c) Time series of the membrane voltage corresponding to the output of the
circuit.

in phase space. The transition from the resting to the spiking regime takes
place through a subcritical Hopf bifurcation and the reverse transition occurs
through the tangent bifurcation where the unstable limit cycle collapses with
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the stable cycle. This bifurcation is also called a “fold cycle”. This kind of
behavior can be seen along the line l2 in the figure 2.9 (a), where we can see
a bistable region due to the sub-critical Hopf bifurcation. We can configure
this system to oscillate along the line l2.

In Fig. 2.13 (b) we represent the experimental phase space, which consists
in a three dimensional space spanned by the membrane voltage, the current
and the potassium channel activation. In Fig. 2.13 (c) we have plotted the
time series of the voltage Vm. The Fig. 2.13 (d) depicts the variation of the
excitation current.

2.4.3 Circle/Fold cycle burster

This kind of bursters is slightly different from the previous one. There are
three different transitions. We have drawn the line l3 on the bifurcation
diagram in Fig. 2.9 (a). Along this line we have some different bistable
states. First we observe the bistability with two stable nodes and then with
a stable node and a stable limit cycle.

The bursting starts after a saddle-node bifurcation on a limit-cycle. The
electric current goes increasing until the tangent bifurcation (the fold-cycle
bifurcation) takes place and then the system gets back to a new stable node.
The current is now decreasing and is reduced until the sub-critical Hopf
bifurcation occurs. Once this bifurcation is crossed the system returns to
the first stable state and the cycle starts over. We summarize this complex
behavior in Fig. 2.14 where we can clearly see how the sequence of attractors
is followed by the dynamical system. In panel (a) we have plotted a schematic
view of the phase space. In (b) a view of the experimental attractor in the
three-dimensional phase space is depicted. The panel (c) shows the temporal
evolution of the membrane voltage as the system carries out some cycles of
bursting.

2.5 Conclusions

We have designed and built a circuit that approximates the main dynamical
regimes of the well-known Morris-Lecar neuron model. By analyzing the
behavior of this system in the phase space in terms of some of the parameters
of the model we have been able to obtain different bursting behaviors where
each one of them is characterized by the visiting of a particular succession of
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Figure 2.13: (a)Bursting behavior of the elliptic burster. The bursting is
produced through a sub-critical Hopf bifurcation. The gray shade represents
the limit cycle and the solid line the stable state. (b) View of the phase
space of the system, the variables are (Vm, N, I), parameter are as follows:
τ = 0.079 s, V4 = 0.07 V, V3 = 0.12 V, V2 = 0.15 V, V1 = 0, g∗

K = 8
mS, g∗

Ca = 4 mS, gL = 2 mS, Ra = 174, C2 = 1µF , kΩ and Rb = 10
kΩ. (c) Time series generated by an elliptic burster built from the Morris-
Lecar circuit. Observe the growing of the oscillation as the sub-critical Hopf
bifurcation is approached. (d) Time series of the current I.

attractors of the subsystem by the evolving phase point. Thus, our strategy
provides a method to investigate the features of relatively simple dynamical
systems giving rise to rather complex cycles in the phase space that appear
as the phase point transiently visits a given set of the stable attractors of the
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Figure 2.14: (a) Dynamical behavior of the circle/fold burster. The transi-
tion from the resting to the oscillatory state is made through a saddle-node
bifurcation on a limit-cycle. The cycle collapses by a fold bifurcation and the
system remains on a stable state until it returns to the resting state trough
a subcritical Hopf bifurcation. (b) Experimental measurement of the attrac-
tor as view in the three-dimensional phase space (Vm, N, I). The parameter
values are as follows: τ = 0.026 s, V4 = 0.07 V, V3 = 0.12 V, V2 = 0.15 V,
V1 = 0, g∗

K = 8 mS, g∗

Ca = 4 mS, gL = 2 mS, C2 = 1µF , Ra = 4.3 kΩ and
Rb = 10 kΩ (c) Time series of Vm. (d) Time series of the current I

dynamical subsystem.
We have explored the bifurcation diagram of the simplified ML model to

point out and extract the dynamical behaviors. We are looking for bistable
states and hysteretic phenomena in the system. An appropriate selection of
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the attractors and a slow drive current forms a complex oscillator with the
characteristics of a bursting neuron. Such a circuit can be implemented in a
VLSI circuit with some modifications, in such a way that a large assembly
of coupled bursting neurons can be simulated.

The implementation of the method by means of an electronic circuit in-
troduces a great flexibility in the real time control of the characteristics of
the system. In particular, this method allow us to carry out a continuous
control of the behavior of the system by allowing the continuous observation
of the system’s output as the parameters are changed. The use of electronic
circuits is an advantage in this context because they are physical devices that
operate in a real environment and thus they are subject to a great deal of
uncontrollable noise. This is in fact the environment in which evolve real dy-
namical systems as neurons and so, our method could provide an approach
to analyze the robustness of the dynamics of neuronal models under real
situations.
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Chapter 3

The analog simulation of
genetic networks

3.1 Molecular biology and nonlinear dynam-

ics

The cells are systems with a great complexity due to the existing high number
of interactions of diverse nature between their numerous components, partic-
ularly between proteins and genes. The understanding of these interactions
is important, since they regulate the fundamental cellular processes. Many
years of experimentation have been necessary to reveal the molecular bases
of these processes. Recently, a new complementary way for the study of the
interactions between genes and proteins based on the design of synthetic ge-
netic networks began. The creation of these artificial genetic networks, much
more simple that those operating in the cell, is contributing to decipher the
existing relation between the coordinated activity of groups of genes and
the cellular functions. This has given birth of the so-called synthetic biol-
ogy, where nonlinear dynamics, physics of complex systems, engineering and
molecular biology play an important role.

The climax of the genome project, which most notable success has been
the complete sequencing of the human genome, among other species impor-
tant for the experimental biologists, is the knowledge of the all the genes that
compose the genetic material of a organism. Moreover it led to a new phase
of the project: the postgenomic era.

The interest is now focused on the discovering of the organization and

41
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the type of the interactions amongst the proteins, which are the product of
the expression of the genes. Each protein is in charge of a function which
can induce changes in other molecules in the cell, as for example the enzymes
or even hormones. This molecules can be viewed as the nodes of a network
where the interactions are the links. It forms a complex network of regulation
interaction which are responsible for the functioning of the cell. The works
on the regulation and the expression of the genes in the cellular processes
received a strong impulse in the 1960’s decade with the publication of the
work of the French scientists François Jacob and Jacques Monod. With the
establishment of the operon theory, some of the fundamental mechanisms
of the gene regulation has been unveiled, as for example the differential ex-
pression of the genome in different biological process, such as the cellular
development and differentiation.

The introduction of the recombinant DNA technique produced a notice-
able change in the biochemistry and in the experimental molecular biology
due to the possibility to clone, design and synthesize new genes. These genes
can be introduced later in an organism in order to be expressed. Another
important technology is the analysis of the the genetic expression profiles
in DNA microarray which allows the observation of the expression level of
all the genes in some particular metabolic conditions. This kind of analysis
allows to define groups of genes which are coordinated (corregulated genes).
This experimental setup improved the knowledge of the regulation of the ge-
netic expression. Nevertheless, the structure and the function of this natural
genes networks needs new techniques and new tools for the study.

Recently, the design and the construction of artificial networks has been
proposed to study biological processes, such as oscillations of the metabolism.
These networks, simpler than the natural ones, can contribute to the under-
standing of the molecular bases of a specific function. For its simplicity, the
synthetic genetic networks can be synthesized in a laboratory and simple
mathematical models can be constructed in order to obtain qualitative and
numerical analysis. These works, among others, gave birth to the so-called
synthetic biology which integrates several scientific fields such as non-linear
dynamics, complex systems physics and bio-molecular engineering. This is a
new emerging field with a strong interdisciplinary component in which the
future advances seems promising.

In this context, we propose an alternative way to design and analyze
the genetic networks. The approach of the analog circuit allows to view the
logical units of the network but with a determined dynamics. The interesting
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point here is that instead of using the boolean approach, we can interconnect
unit with a specific dynamics in order to design the objective dynamical
system.

The organization of the chapter is as follows. In Sec. 3.2, we introduce
the electronic repressilator. It is a simple analog electronic circuit that mim-
ics the behavior of a well-known synthetic gene oscillator, the repressilator,
which represents a set of three genes repressing one another. In Sec. 3.3,
synchronization of a population of such units is thoroughly studied, with the
aim to comparing the role of global coupling with that of global forcing on
the population in Sec. 3.4. In the Sec. 3.5, we propose the implementation
of two different genes network. The first one is a simple electronic version of
a genetic toggle switch, which is a simple network of two mutually repressor
genes, where control by external forcing is also analyzed. The second one is a
auto-repressive gene network in which the delay of the self-repression induce
oscillations.

3.2 Analog simulation of the repressilator

One of the main advances brought about by the advent of synthetic biology
is the design of artificial gene regulation networks that mimic the behavior
of natural ones. One could think that this simplifies the analysis of cell be-
havior by isolating in a modular way relevant network modules, which can
therefore be studied independently of other complex cellular processes that
in the natural case are intermingled with the module of interest. This is
certainly the case, and it has been the main motivation behind the design of
certain synthetic gene networks, such as oscillators and switches. A paradig-
matic example is the repressilator, a set of three genes (and their respective
proteins) which repress one another in a circular way, leading to clear-cut
oscillations in the protein expression. In spite of their doubtless advantages,
experimental studies of these synthetic systems are still difficult, due both to
the inherent complexity of molecular biology experiments and to our lack of
knowledge of the kinetic parameters of the specific network components. For
example, mutual synchronization of globally coupled populations of repressi-
lators has not yet been observed, in spite of theoretical predictions and of the
interest of the phenomenon as a model of synchronized rhythm generation in
multicellular circadian clocks. Here we take another approach, reproducing
the dynamical behavior of the repressilator via a simple analog electronic
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circuit, and using it to investigate experimentally the synchronization of a
set of repressilators, with an emphasis on the comparison between the effect
of global coupling and global external forcing, two ingredients that can real-
istically be expected to exist in natural multicellular clocks. The usefulness
of the approach is further demonstrated by the design of an even simpler
circuit representing a genetic toggle switch, and its use to study the effect of
forcing on a population of such devices.

Genetic regulatory networks have been well studied in living microorgan-
isms such as bacterias or viruses since the early 1960s [1]. They rely on the
fact that certain specific proteins are able to influence and regulate the ac-
tivity of DNA transcription. The final product of this DNA transcription is
another protein, which could influence in turn the expression of yet another
gene (or of its own gene, or even that of its transcription factor). This process
leads to networks of genetic interactions, where proteins and genes can be
interpreted as nodes, and the interactions between them as links [2]. These
regulatory networks provide the essential control of protein expression in the
cell.

Transcription regulation can arise in a positive or negative way. Negative
regulation occurs when a protein hinders, or even blocks, the transcription
process, as illustrated in the Fig. 3.1. For instance when a protein binds at
a certain location of the DNA chain, called promoter, it blocks the access of
RNA polymerase, which is the enzyme that transcribes DNA into messenger
RNA. This kind of proteins are called repressors. An example of repressive
regulation is the tryptophan trp operon in the bacterium Escherichia coli (E.
coli), where the presence of tryptophan proteins inhibits the transcription
of the trp operon [3]. On the other hand, positive regulation results from
biochemical processes that enhance protein transcription, or at least allow it.
The regulation of the lactose operon in E. coli is a good example of positive
regulation [1]. The presence of β-galactosidase in the bacteria’s medium
speeds up the transcription of the operon, and consequently the bacteria can
transform lactose in glucose.

These mechanisms of positive and negative regulation are similar to con-
trol mechanisms in electronic engineering. Negative feedback regulation is
a basic system of control that enhances the stability and the resistance to
noise in gene expression [4] .

Gene regulation is the basis of the design of synthetic regulatory path-
ways. In our context, synthetic means that the genetic network does not
exist in a natural form. The first synthetic genetic networks, a genetic toggle
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Figure 3.1: Graphical illustration of the transcription process (a), the activa-
tion of a particular gene (b) and the repression of the same gene (c).

switch [5] and a genetic oscillator [6], have been presented in two seminal
articles. In Ref. [5], the combination of two mutually repressing genes forms
a bistable system whose state can be changed due to an external inducer
(e.g. a protein or a temperature shift). When one of the transcribed proteins
is produced, the other one remains silenced. The switching occurs when the
inducer (external influence) is applied beyond a certain threshold, making
the system jump to the opposite state. After a jump between states, which
consists in a variation of the protein concentration, the system maintains
the protein level. One can say that this genetic switch has memory, since it
remains in its current state until an external inducer acts again.

The second paradigmatic system is the repressilator [6], which is in fact
a genetic oscillator and where three repressor genes are placed in a ring,
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with each repressor inhibiting the production of the following protein with
a certain delay. In Fig. 3.2 (a) we show a schematic representation of the
interactions of this genetic network, where blue arrows represent promoters.
The product of each repressor gene (in green) binds to the next promoter
and inhibits production of the corresponding protein. This configuration
leads to oscillations in the expression of the three proteins, with a 2π/3
phase delay. Driven by this network motif, different bacteria oscillate in-
dependently, with different phases and slightly different frequencies (due to
intrinsic cell variability) [6]. Synchronization of these rhythms would allow
global oscillations in the cell population, thus simplifying the observation of
the phenomenon, which currently requires single-cell tracking. Intercell com-
munication through quorum-sensing has been proposed as a mechanism of
synchronization [7], but no experimental verification has been made so far.

In this chapter, we propose an analysis of the dynamics of these two
genetic regulatory networks (repressilator and toggle switch), making use
of nonlinear analog electronic circuits. Our circuits allow a one-to-one cor-
respondence between the structure of the genetic and electronic networks,
and their analog character extends this correspondence to the full dynamical
behavior. An evident benefit is that the electronic circuits are easier to imple-
ment experimentally than genetic circuits. The natural parameter mismatch
in the living cell is reproduced by component dispersion in the electronic cir-
cuits. We study the synchronization of a population of repressilators due to
global coupling. Additionally, in order to improve the synchronization of the
genetic oscillators we add an external periodical forcing to every repressila-
tor. We analyze the influence of external forcing on synchronization when the
frequency and the amplitude of the external signal are modified. The results
obtained with electronic circuits should be extensible to synthetic genetic
networks, where external forcing could be implemented via a temperature
periodic shift, or by periodic injection of a repressor protein.

3.3 The electronic repressilator

Previous work on electronic genetic networks used hybrid digital-analog cir-
cuits based on AND and OR functions [8]. Here we propose the use of
all-analog circuits whose structure and dynamics are as similar as possible to
that of the corresponding genetic network. Fig. 3.2 (b) shows the electronic
setup of the analog repressilator. The output of the three MOS transistors
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Figure 3.2: (a) Network architecture of a synthetic oscillator, the repressila-
tor. Three repressor genes are consecutively connected by negative feedback.
Promoters (in blue) of each gene (in green) are repressed by proteins (cI,
LacI and TetR) transcribed from the previous gene. (b) Electronic setup of
the analog repressilator. Only three kind of elements are required: resistances,
MOS transistors and capacitances. The output of each transistor corresponds
to the level of each repressor protein. (c) Dynamics of the electronic repres-
silator. Time series (displaced in the vertical axes to allow comparison) of
the three analog protein concentrations. They oscillate at the same frequency
but phase shifted by 2π/3.

correspond to the level of the three repressor proteins of the repressilator.
The numerical values of the resistances, and capacitances are indicated in
Table 3.1. Two reasons have motivated this particular design. First, the
simplicity of the circuit, which is composed of basic electronic components.
Second, the fact that the MOS technology allows the use of the analog re-
pressilator in integrated circuits.

The N-channel MOSFET transistors of Fig. 3.2 (b) can be viewed as
controllable switches. If the tension applied to the gate exceeds a certain
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Symbol Parameter Values Units

Ri Internal resistance 1.0 ± 10% kΩ
Ci Internal capacitance 1.0 ± 20% µF
Ti Transistor 2N7000 – –
Vcc Voltage source 3.227 V
Rc

i Coupling resistance from 0.130 to 30 kΩ

Table 3.1: Numerical values of the electronic components used in the experi-
ment

threshold voltage, the transistor switches off its output, leading to an output
voltage close to zero (the transistor has very low output impedance). In
this case, the tension on the gate acts as a repressor of the output voltage,
similar to what happens with a repressor protein. When the gate voltage V2

falls bellow the threshold, the voltage V3 associated to transistor T2 begins to
increase and the transistor T2 acts as a high-level impedance, that is, we have
an open circuit. The protein level is represented by the output voltage of the
transistors (and capacitors). In the absence of repression (no tension on V2),
the transistor voltage V3, which in turn will be the repressor of the following
transistor, grows until it reaches its maximum value (the supply voltage Vcc).
On the other hand, if repression rises, due to an increase of voltage at the
previous transistor, the output voltage falls to zero. Summarizing, we can
say that the three transistors are repressing themselves in the same way as
it happens in the repressilator genetic network. This kind of configuration
is responsible of the oscillations at the three output voltages/protein levels
and is known as a ring oscillator.

We can derive the differential equations of this model by considering a
basic unit (equivalent to a single repressor gene), which is made of a RC
circuit connected to a voltage source and a transistor [see red square at
Fig. 3.2 (b)]. Without any voltage V2 on the gate of the transistor T2, it
will behave as a simple RC circuit. The transistor will be turned off and
the capacitor will be charged until it reaches its maximum value. If the
gate voltage increases and reaches a certain threshold Vth, the transistor T2
“cuts” the output tension and the capacitor discharges rapidly through the
transistor. From this simple circuit we can derive the differential equation of
the variable V3

R2C2
dV3

dt
= −V3 + Vccf(V2), (3.1)
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where the function f(x) depends on the transistor parameters and should be
sigmoidal shaped if we want to obtain oscillations at the transistor’s output.
A good candidate for f(x) is

f(x) =
α

1 + βxn
, (3.2)

where α, β and n are parameters depending on the MOSFET transistor.
This corresponds to the Michaelis-Menten equation of growth of order n.

The complete set of equations of the repressilator reads

R1C1
dV2

dt
= −V2 + Vccf(V1) (3.3)

R2C2
dV3

dt
= −V3 + Vccf(V2) (3.4)

R3C3
dV1

dt
= −V1 + Vccf(V3). (3.5)

And the time series of the circuit can be seen in Fig. 3.2 (c), where the three
repressor levels evolve with a phase difference of 2π/3. When a repressor is
active (e.g. T1 voltage), the following repressor (T2) is inhibited and the
third increases (T3). The increase of T3 leads, in turn, to the decrease of T1
voltage. The chain repression is responsible of the oscillations of the whole
system, both in electronic and genetic repressilators.

3.4 Alternative implementation with opera-

tional amplifiers

Operational amplifiers are common components in a wide variety of electronic
circuits. One of their applications is the construction of modules which com-
pute basic operations such as addition and subtraction. Within this frame-
work we propose an electronic circuit that reproduces the global behavior of
the repressilator. The design is shown in the left plot of Fig. 3.3 and is based
on the same principles as the biological repressilator, namely three dynamical
elements coupled in chain with an inhibitory interaction. The electronic im-
plementation consists on three basic units made of one RC integrator circuit
and one UA741 operational amplifier (OP-Amp). Each voltage measured at
the output of the RC circuits (marked as Vi in Fig. 3.4) is equivalent to the
concentration of each repressilator protein. This voltage is further fed into
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Figure 3.3: (a) Electronic setup of the analog repressilator. We used Ci =
1µ F, Ri = 1kΩ and UA741 Op-Amps. (b) In the right plot we show the
dynamics of the system.

the OP-Amp representing the promoter of the following gene. The output
voltage Vi is connected to the negative input and the positive input is set to
ground, therefore the OP-Amp is used as a voltage comparator. The output
of the amplifier can take only two values: Vc1 and Vc2 which are the posi-
tive and negative power supply of the OP-Amp. The outputs Vi are linked
through the RC circuits in a closed chain, in the same way as the genetic
network shown in Fig. 3.2. The differential equations describing the behavior
of the voltage of each unit is expressed by:

R1C1
dV1

dt
= −V1 + Hv(−V3) (3.6)

R2C2
dV2

dt
= −V2 + Hv(−V1) (3.7)

R3C3
dV3

dt
= −V3 + Hv(−V2), (3.8)

where Hv(x) represents the comparator function of the OP-Amp, which can
be represented ideally by a step function:

Hv(x) = Vc2 if x < 0 (3.9)

Hv(x) = Vc1 if x > 0.

The supply voltage is asymmetric, in our case the lower voltage Vc2 is set to
a value slightly below 0 V. In this way the behavior of the circuit is closer
to the original genetic oscillatory network and does not display negative
voltages. The positive supply is set to Vc1 = 12 V. When an output voltage
(for example V2) increases, it induces a reduction of the following output
voltage (V3), since it is injected at the negative input of the corresponding
Op-Amp (3 in this case), crossing the threshold Vth = 0V . Following the
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chain, V3, which is decreasing, will enhance the value of V1 which in turn
will decrease V2. This mechanism leads to an oscillatory behavior (see right
plot of Fig.3.3) with a frequency and amplitude that depend on the OP-Amp
internal parameters but also on the value of Ri and Ci.

3.5 Coupling electronic repressilators

One of the questions raised by the seminal paper of Elowitz et al. [6] is
the way in which a population of repressilators might be synchronized. It
has been observed that each cell of a colony of repressilators oscillates at its
own frequency and phase, preventing the occurrence of global oscillations.
Intercellular communication via quorum sensing [9, 10] has been proposed as
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Figure 3.4: Experimental time series (d,e,f) and probability distribution func-
tion (pdf) of the oscillation periods (a,b,c) for a population of 16 repressi-
lators. The coupling strength increases when the resistance decreases (the
currents between the coupled circuits flow easier). In this figure we show
three cases starting from low coupling (upper figures) to high coupling (lower
figures). From upper figure to lower figure we have: low Rc

i = 5.1 kΩ (a,d),
intermediate Rc

i = 2.2 kΩ (b,e) and high Rc
i = 0.24 kΩ coupling (c,f). Note

that the coupling is measured by the inverse of Rc
i in such a way that when

Rc
i decreases the coupling increases.
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a way of coupling repressilators [7], with the aim of observing global oscilla-
tions of the colony. In this section, we reproduce the numerical observations
of [7] using a collection of globally coupled electronic repressilators. The
internal parameters of the circuits are adjusted to make them oscillate at dif-
ferent frequencies, and a global coupling is introduced through a resistance
Rc

i placed at the output of the first transistor (T1) of each repressilator. All
coupling resistances are connected to a common point, allowing an exchange
of information about the dynamical state of the repressilators through the
intensities of each branch. The coupling intensity is controlled by adjusting
the values of Rc

i , which are set to be the same: coupling increases as the
coupling resistance decreases. The experimental setup is composed of 16
coupled electronic repressilator as shown in the Fig. 3.6. One of the dynam-
ical variable of the 16 circuits is recorded with a A/D converter board with
16 inputs.
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Figure 3.5: Synchronization transition of a population of electronic repressi-
lators for increasing values of the coupling parameter. An order parameter
R (see Eq. (3.10)) close to one indicates synchronization of the population
of repressilators for values of 1/Rc

i > 0.001Ω−1. This figure shows the char-
acteristic transition to synchrony of a population of coupled oscillators when
the coupling is increased.
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Figure 3.4 (d,e,f) shows the temporal evolution of a population of 16
electronic repressilators for increasing coupling (that is decreasing coupling
resistance Rc). Time series correspond to the voltage at the output of the
first transistor. Panels (a,b,c) of the figure show the probability distribu-
tion function (pdf) of the period between oscillations. For low coupling
(Rc

i = 5.1 kΩ), repressilators oscillate unsynchronized at their own frequency
(upper plots), and the pdf has a wide distribution of periods. Intermediate
values of coupling (Rc

i = 2.2 kΩ), show a partial entrainment (central plots),
which is reflected by the appearance of a peak at the pdf. Finally, when
coupling is further increased (Rc

i = 0.24 kΩ), we achieve synchronization of
all repressilators (bottom plots), denoted by the unique peak at the pdf. It
is worth noting that repressilators oscillate not only at the same frequency
but also at the same phase, a fact that can only be observed at the time
series of the voltage as shown in Fig. 3.4 (e). Our experimental observations
agree qualitatively with the numerical simulations of [7] and confirm that
global coupling would be a suitable way of obtaining synchronization of a
colony of repressilators. Figure 3.5 shows a systematic study of the influence
of coupling in the synchronization of the population of repressilators. We
have evaluated the order parameter R given by the expression

R =

〈

V2,i
2
〉

−
〈

V2,i

〉2

〈V 2
2,i〉 − 〈V2,i〉

2
, (3.10)

where V2,i(t) corresponds to the voltage at the T1 output of repressilator i,
〈· · · 〉 indicates time average and · · · denotes average over the population of
repressilators. Low values of R correspond to the absence of coherent fluctu-
ations of the system, while R close to the unity indicates a high coherence of
the oscillations. Figure 3.5 corresponds to the classic synchronization phase
transition predicted by Kuramoto [11] in coupled phase oscillators [12], and
has been reported experimentally in coupled electrochemical oscillators [13]
and in numerical simulations of a population of repressilators [7].

3.6 Forcing electronic repressilators

Synchronization of a population of repressilators by global coupling, reported
above for our analog electronic circuits, has not yet been reproduced in a real
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biochemical setting. In this section we propose a parallel source of entrain-
ment, which can be provided by external influences [14]. An extra motiva-
tion in our case arises from the behavior of circadian rhythms, biochemical
rhythms with a period close to 24 hours that have been observed ubiquitously
among living organisms [15]. In the absence of external cues, the internal
rhythms of such organisms drift with periods close to (but different from)
24 hours, but in the presence of external forcing they become perfectly en-
trained to the external period. In many organisms, the source of external
forcing has been identified to be a variation of the light due to night and day
cycles. Indeed, the molecular basis of the effect of light on different circadian
biochemical networks has been unraveled [16]. The question on whether such

Figure 3.6: Schematic representation of the repressilator population. The
coupling among the repressilators is controlled with the resistance Rc. A
function generator is connected to the central node so that all units receive
the same forcing. The amplitude of the forcing can be controlled with the
amplitude of the generator Vf or with the resistance Rf .
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external forcing is enough to induce the synchronization between circadian
cells usually observed in experiments [17], or if coupling between the cells is
needed, is still open. This is precisely what we address here, with the help
of electronic circuits. We consider a population of electronic repressilators
oscillating within a certain range of frequencies, i.e., in the absence of global
oscillations. When a periodic external forcing is applied to the whole pop-
ulation, all repressilators would be affected by the same external frequency,
leading to global oscillations. In our case, the electronic repressilators are
forced by modulating the common point of the coupling resistances. An in-
termediate coupling resistance Rf = 0.24 kΩ is placed between the common
point and an external forcing voltage. The intensity of the forcing is con-
trolled by the amplitude of the external voltage. Fig. 3.6 shows a schematic
representation of a repressilator population where forcing and coupling are
controlled.

This configuration allows to adjust both the coupling and the forcing of
the system and analyze its combined effect on the synchronization of a popu-
lation of repressilators. Figure 3.7 plots the time series (insets) and the power
spectra of the whole system (16 repressilators) for three different forcing am-
plitudes Af , and a given forcing frequency ff = 240 Hz. We have chosen the
forcing frequency to be within the frequency range of the unsynchronized
repressilators (150 Hz. . . 300 Hz). In order to study only the influence of
forcing, the coupling resistance is set to Rc

i = 5.1 kΩ, which corresponds to
a negligible coupling [see Fig. 3.4 (a)]. For low values of forcing Af = 1V
[Fig. 3.7 (a)], repressilators keep their oscillating frequencies, as shown by
the time series and the wide power spectrum. If the forcing amplitude is
increased Af = 2.4 V, we observe a reduction of the spectrum amplitude
and an appearance of a central peak at the forcing frequency ff = 240 Hz
[Fig. 3.7 (b)]. At the same time, some repressilators seem to be frequency
locked (inset of Fig. 3.7 (b)). Finally, for high enough values of the forcing
amplitude, Af = 4 V, the power spectrum shows a unique peak, indicating
that oscillators are frequency locked [Fig. 3.7 (c)]. Nevertheless, a phase
shift is kept between them, as can be observed at the temporal evolution of
their output voltages (inset of Fig. 3.7 (c)).

Now we consider different forcing frequencies, since it is well known that
nonlinear oscillators can adjust their period of oscillations within a certain
range of frequencies [18]. In Fig. 3.8 we plot the power spectrum and the
corresponding time series for three different forcing frequencies ff and a given
forcing amplitude Af = 4 V. We have chosen the forcing frequencies to be
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Figure 3.7: Transition to synchronization by an external forcing of frequency
ff = 240 Hz: power spectrum of 16 repressilators for varying values of exter-
nal forcing and their corresponding time series (inset). The coupling between
the units is set to a low value, so that we focus on the influence of forcing.
The three figures show the power spectrum for increasing values of the forc-
ing: (a) weak forcing Af = 1V ; (b) intermediate forcing Af = 2.4V ; (c)
strong forcing Af = 4V . For a weak forcing each unit present a different
frequency of oscillation. At intermediate coupling some of the repressilators
locked their frequency. At strong coupling values the system is synchronized.

inside (b) and outside (a,c) the frequency distribution range of the population
of repressilators. When the forcing frequency is too low, repressilators do
not follow it, and the power spectrum does not show any peak at the forcing
frequency [Fig. 3.8 (a)]. If the forcing frequency enters a region close to
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the natural frequencies of the repressilators, the system is entrained by the
forcing frequency [Fig. 3.8 (b)]. Nevertheless we still observe a phase shift at
the time series (inset). The entrainment is optimum for a central frequency
ff = 240 Hz and it is gradually lost when the frequency is further increased
[Fig. 3.8 (c)].

At this point it is worth noting the differences between forcing and cou-
pling. Figure 3.9 shows the synchronization of the population of repressilators
for the two different techniques. We can see that despite of having the same
power spectrum, i.e., the same oscillating frequency, the time series show a
phase shift between repressilators only for the case of forcing. In fact, we
must distinguish between two different synchronized states. In the case of a
coupled population, we achieve both frequency and phase locking leading to
an order parameter R close to the unity. Nevertheless, when we introduce
external forcing in an uncoupled system, we observe only frequency locking
and the phases of each oscillator depend on its initial conditions. This fact
slightly reduces the efficiency of this technique, decreasing the amplitude of
the global oscillations.

If coupling and forcing are considered at the same time, a better entrain-
ment of the global oscillations would be expected. To check this conjecture
we scan the amplitude and frequency of the forcing signal in the absence or
presence of coupling. In Fig. 3.10 we plot the results obtained with a fre-
quency step of ∆f = 20 Hz and an amplitude step of ∆A = 0.5 V. Two cases
are shown; the left plot corresponds to negligible coupling between repressi-
lators, whereas coupling and forcing are jointly considered in the right plot.
For the latter case, we set the coupling to intermediate values [Rc

i = 2.2 kΩ,
see Fig. 3.4 (b)].

At first sight, a resonance region appears in both cases, although some
differences exist. In the absence of coupling (left plot), the synchronization
region is reduced, showing a sharp peak. In addition, we observe low peaks
at the first harmonic of the resonance frequency. Nevertheless the highest
value corresponds to R = 0.46, which is considerably low compared with the
highest peak of the coupling case R = 0.92. Such differences are caused by
the phase shift, since the order parameter R measures correlations between
series at zero lag (i.e. without phase shift). If coupling is considered (right
plot), R has high values even for the case of forcing at low/high frequencies.
Synchronization is increased when the forcing frequency enters the region
of natural frequencies of the system. Furthermore, resonances at the first
harmonic of the natural frequencies are also observed.
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Figure 3.8: Influence of the external frequency on the synchronization of
analog repressilators. We fix the amplitude of the external forcing to a high
enough value Af = 4V while its frequency ff is modified in a range close
to the natural frequency of the repressilator population. In (a) although the
forcing strength is high, synchronization is not observed for low values of the
forcing frequency ff = 100 Hz. In (b) the entrainment is achieved when
the forcing frequency ff = 240 Hz is close to the natural frequency of the
electronic repressilators. In (c) we lose again synchronization if the forcing
frequency is further increased, ff = 560 Hz.

These results indicate that external forcing enhances synchronization in a
population of globally coupled repressilators. However, these results are not
so good when the coupling is suppressed or reduced to a negligible part. With
only the forcing acting, a phase shift between the repressilators appears as in



3.7. Simulations of others genetic networks 59

1

2

0.2 0.21 0.22
Time (s)

1

2

3

0 200 400 600 800 1000 1200
Frequency (Hz)

1

Po
w

er
 (

ar
b.

 u
.)

0.2 0.21 0.22
Time (s)

1

2

3
V

oltage (V
)

V
oltage (V

)

a)

b)

Figure 3.9: Comparison between synchronization by forcing (a) and coupling
(b). We can observe that although both spectra are similar, which means that
there is an entrainment to the external frequency, the phase difference only
disappears when repressilators are coupled (b). The population of repressila-
tors oscillates at the forcing frequency nevertheless when the coupling between
units disappears a phase deviation appears between the units.

the inset of Fig. 3.7 (c) and the total coherence R of the system decreases.

3.7 Simulations of others genetic networks

3.7.1 The electronic toggle switch

Following the same procedure as in the electronic repressilator, we can built
other electronic-circuit representation of genetic networks. For example, re-
moving one transistor from the repressilator circuit leads to a bistable system
similar to the toggle switch developed in [5] by Gardner et al.. The toggle
switch is a simple network of two repressor genes, where each of the repressor
proteins binds to the promoter of the other one, see Fig. 3.11 (a). In this way,
when a repressor dominates, the system remains at the same state unless an
external effect changes it, by degrading artificially one of the repressors, so
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Figure 3.10: Synchronization efficiency of external forcing in the presence
(lower plot) and absence (upper plot) of coupling. The axes correspond to
the forcing frequency (X), forcing amplitude (Y) and the corresponding order
parameter (Z). In the absence of coupling (left plot), we observe a maximum
(resonance) close to the region of the natural frequency of the repressilators.
We can also observe a low peak close to the first harmonic of the resonance
frequency. When coupling and forcing are considered, we can observe an
increase of the order parameter. Nevertheless we can still observe a region
where the system enters resonance with the external forcing. The peak at
the first harmonic has increased (compared with the uncoupled case) and both
resonance regions are now wider.
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(a)

(b)

Figure 3.11: (a) Network architecture of a bistable genetic network toggle-
switch. Two repressor genes are mutually connected by negative feedback.
Promoters (in blue) of each gene (in green) are repressed by proteins tran-
scribed from the previous gene. A green fluorescent protein (GFP), associated
to a protein (cI) level, acts as the reporter of the system state. (b) Electronic
setup of the analog toggle-switch. The output of each transistor corresponds
to the level of the two repressor proteins.

the other one takes over and the state is changed.

The design of the circuit is similar to the electronic repressilators, but it
contains only two basic units, each one consisting of a transistor and a RC
circuit. We assume that the voltage of one component (T1) is large. Since
it is applied at the gate of the other transistor (T2), it inhibits the second
component, whose output voltage is switched off. The differential equations



62 Chapter 3. The analog simulation of genetic networks

Figure 3.12: Phase portrait of the system described in the Eqs. (3.11) and
(3.12). There are three steady states in the system: two stable and one un-
stable. The nullclines are in solid red and blue lines. The separatrix dividing
the two basins of attraction is drawn in dashed lines.

of the system are:

R1C1
dV1

dt
= −V1 + Vcc(1 − f(V2)), (3.11)

R2C2
dV2

dt
= −V2 + Vcc(1 − f(V1)), (3.12)

where the function f(x) was given in Eq. 3.2. The phase diagram of the
system is displayed in the Fig. 3.12. The phase portrait of the system
contains three stable states, two of them stable and the other one unstable.
Moreover it is divided into two parts with a separatrix marking the boundary
between the two basins of attraction. When the state of the system crosses
the separatrix after being forced, it jumps to the other basin of attraction
and a switching occurs.

First of all, we must check the switching properties of the Electronic
Toggle Switch (ETS). In bistable systems, switching between states must
be produced by external induction. In our case, the inducer is an external
voltage source, whose potential is applied through a discharge resistance Rd.
Since the system is bistable, we first turn off the output voltage of transistor
T1 (i.e. turn on T2). Next, we turn off T2, leading to a turn-on of T1.

Figure 3.13 shows the evolution of a population of toggle switches in
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Figure 3.13: Control of an electronic toggle-switch population by external
forcing. Starting from all bistable switches at the high state, we induce a
jump by forcing repressor 1 of each toggle-switch with an external potential
(steps 4 to 8). In the absence of forcing the toggle-switch population keeps
its state (steps 8 to 12). We can turn on the system again by forcing the
opposite repressor (step 12 to 16). The system keeps its state when external
forcing is removed (step 16 to 20).

response to a global external driving. The upper plot depicts the inducing
voltage, and the lower plot shows the mean voltage of T1 for the whole
population of repressilators. The system, which is initially at the high state,
suffers the action of an external inducer at step 4. The output voltage of the
population of repressilators decreases until the system jumps towards the off
state. At step 8 we stop the inducing action and the system remains off. The
turning-on process begins at step 12, where a forcing potential is applied, in
this case, at the T2 output. A jump to the high state is observed after step
15, remaining at this point even when the external inducer is removed.

The results obtained with the ETS match with those reported in a real
genetic network [5]. The advantage of using ETS is that its simplicity allows
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to test different configurations of coupling. It can be easily coupled with
other circuit like a repressilator so that the study of the dynamics of these
complex systems results simple.

3.7.2 The delay oscillator

In this section we present a different kind of genetic oscillator present in
many living beings. The principle of the oscillator is shown in Fig. 3.14
(a). It consists in a simple autorepressive loop which is a self-inhibitory gene
network. The gene produces its own repressor but this one acts only after a
time delay τ due to the successive steps of the processing of the mRNA and
the proteins. Similar oscillators have been observed in circadian oscillators
and in the early development of the chicken and zebrafish embryos called
the segmentation oscillator [19, 20, 21, 22]. The transcriptional oscillator
works as follow. First, the genetic information is transcribed into mRNA
and then transported from the nucleus to the cytoplasm with a delay τm.
Once the mRNA is in the cytoplasm the translation and the processing of
the protein begins. Several operations take place during this time τ such
as the phosphorilation, dimerization, folding and so on. The time delay
accumulated during the translation is τp. Following this step, the protein
is transported to the nucleus in order to interact with the promoter of the
gene producing an additional time delay τt. The total time lag between the
beginning of the process and the return of the protein to the nucleus can
be summed into a single delay τd = τm + τp + τt. The simple autoregulated
genetic network can be formulated by two ordinary differential equations:

dm

dt
=

km

1 + (p(t−τd)
p0

)2
− γmm (3.13)

dp

dt
= kpm − γpp, (3.14)

where m is the mRNA level and p is the corresponding protein level. The
conditions on τd for the oscillations of the system can be derived analytically.
We build an analog electronic circuit composed of a negative feedback loop
with a MOSFET transistor. The circuit is represented in Fig. 3.14 (b). The
voltage V holds for the level of proteins, which increases as the capacitor
charges from the resistor R. This signal is delayed though a digital delay line.
The delayed signal is applied onto the gate of the MOSFET transistor, which
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Figure 3.14: Schematic of the genetic oscillator with delay. At each step
of the process, during the transcription, the protein synthesis and nucleus
translation a time lag is generated. The total delay of the negative feedback
loop is τd = τm + τp + τt. The accumulation of the delays in the repression
process can lead to oscillations when τd is large enough. The Fig. (b) shows
the equivalent electronic circuit designed for the simulation of the dynamics
of this kind of genetic oscillators. The voltage V represents the protein level.
This level grows when the RC circuit connected to Vcc begins to charge. This
tension is delayed through a digital delay line. The delayed voltage V (t − τ)
is fed back to the MOSFET transistor. When the delayed tension exceeds
the threshold Vth the output of the MOSFET transistor is switched off and
the protein production is inhibited. For sufficiently large delays, oscillations
of the protein level arise. Parameters: Vcc = 10V, C = 22µF, R = 5kΩ,
Vth = 2.3V, MOSFET 2N7000.

acts as a promoter. When the level of V (t − τd) exceeds the threshold Vth

the output of the transistor is switched off, which means that the production
is stopped. In other words the gene is inhibited. With small delays the
system reaches a stable state. However when the delay of the feedback loop
is increased, the stability of the stable state is affected and oscillations arise
for a sufficiently large time delay. For the simplicity of the circuit we consider
that the time delay is large in comparison to the protein translation so that
we consider this reaction instantaneous. With this assumption Eq. 3.13 can
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Figure 3.15: Dynamics of the circuit represented with the period of the oscil-
lations and with time-series for some values of the time delay of the negative
feedback loop. The period grows almost linearly with the time delay as shown
in the inset. The dashed line represent the period of the damped oscillations,
in this region the system is stable.

be simplified into a single equation and we can rewrite the equation of the
circuit as:

RC
dV

dt
=

Vcc

1 +
(

V (t−τd)
Vth

)n − V (3.15)

this equation is an autonomous oscillator since the delayed variable inhibits
its own production. Moreover the differential equation representing the cir-
cuit has the same form than the Mackey-Glass model [22]. More on this
model can be found in Chap. 5 in the appendix I. The experimental results
of the circuit are shown in the Fig. 3.15. This figure shows the bifurcation
diagram of the circuit as the delay in the feedback loop increases. The period
of the circuit increases almost linearly with the time-delay as shown in the
inset. The role of the time delay in the genetic oscillator can be very impor-
tant since time delays tend to destabilize the system and help the system to
oscillate. We showed here that a very simple electronic circuit with a digital
delay line reproduces the dynamics of this class of oscillators.

3.8 Conclusions

In this chapter, we have proposed the use of nonlinear electronic circuits
to analyze the dynamics of populations of synthetic genetic networks. An
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electronic repressilator have been designed under the same operating condi-
tions as the genetic repressilator. Experimentaly we showed that the global
coupling in the synchronization locks the frequency and the phase of a pop-
ulation of electronic repressilators. Next, we have studied the influence of
an external forcing in the synchronization of the system and we have seen
that despite that we obtain frequency locking, phase locking is not achieved.
The results indicate that external forcing is a suitable technique to enhance
synchronization in combination with coupling between repressilators, but is
less efficient when applied by itself. The methodology has been shown to
be also efficient for the simulation of different gene network such as auto-
repressive network with delay and toggle genetic switches. We showed that
the dynamics of this population of genetic networks can be reproduced with
simple electronic circuits.
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Appendix I: Exact model of the repressilator

circuit

The basic unit of the repressilator like circuit can be viewed in the Fig. 3.16.
The core of the model is a MOSFET circuit which behave as a switch

controlled by the gate voltage. Based on the MOSFET enhancement n-
channel model we have the following expression for the drain current id:

id(Vi, Vi−1) =







0 for Vi−1 < Vth

K(2Vi(Vi−1 − Vth) − V 2
i ) for 0 < Vi < Vi−1 − Vth

K(Vi−1 − Vth)
2 for 0 < Vi−1 − Vth < Vi,

(3.16)
with K a parameter depending on the MOSFET particular model. Other
models can also be used for the drain current. A simpler model can be
approximated in the form of a continuous function:

id(Vi, Vi−1) = K(Vi−1 − Vth)
2

(

Vi

Vi + Vi−1 − Vp

) (

(Vi−1/Vp)
n

1 + (Vi−1/Vp)n

)

.

However this function is less accurate than the exact model.

Figure 3.16: Basic cell of the repressilator circuit.
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The equation that rules the dynamics of one basic cell can be written as:

Ci
dVi

dt
=

(Vcc − Vi)

Ri
− id(Vi, Vi−1). (3.17)

Which is the sum of the currents in the transistor Ci. The complete model
of the repressilator circuit is set of ODEs that can be written as:

C2
dV2

dt
=

(Vcc − V2)

R2

− id(V2, V1), (3.18)

C3
dV3

dt
=

(Vcc − V3)

R3
− id(V3, V2), (3.19)

C1
dV1

dt
=

(Vcc − V1)

R1
− id(V1, V3). (3.20)

The coupling between the units is achieved through a common resistor to
all circuits as shown in Fig. 3.8. The voltage V1 of each circuit is connected to
a common point through a resistor Rc. We obtain this way a global coupling
of the system.

To obtain the equation of the coupled circuit we have to consider first the
voltage Vg of the common point were all the resistors Rc are connected. The
current flowing from this point to one of of the voltage V1 of the repressilator
n is:

in =
(Vg − V n

1 )

RC
, (3.21)

with V n
1 the voltage V1 of the circuit n. On the other hand we have the sum

of all the current at this point:

N
∑

n=1

in = 0, (3.22)

which leads to:
N

∑

n=1

(Vg − V n
1 ) = 0. (3.23)

We deduce that Vg is the mean of all the voltages:

Vg =
1

N

N
∑

n=1

V n
1 . (3.24)
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Figure 3.17: Synchronization curves of the system with 16 units in function of
the coupling resistance Rc for the experiments and the numerical simulations.

It is now straightforward to deduce the ODE of the coupled system:

C2
dV2

dt
=

(Vcc − V2)

R2
− id(V2, V1) (3.25)

C3
dV3

dt
=

(Vcc − V3)

R3

− id(V3, V2) (3.26)

C1
dV1

dt
=

(Vcc − V1)

R1
− id(V1, V3) +

1

Rc

1

N

N
∑

n=0

(V n
1 − V1) (3.27)

The parameters used in the experiments are:

• R1 = R2 = R3 = 1kΩ with a variability of 10%

• C1 = C2 = C3 = 1µF with a variability of 10%
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• Vcc = 3V

• Vth = 2.3V with a variability of 10%

• K = 400 · 10−3 A/V2

Figure 3.17 summarize the experiments with circuits and the numerical
simulation with the previous model. Different mismatch on the parameters
R, C and Vth has been applied to the simulation. It seems that the closest
simulation to the experiment is for a 10% mismatch.
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Chapter 4

Synchronization of coupled
systems with delay

4.1 Introduction

Chaos synchronization was initially focused in unidirectionally coupled sys-
tems [1]. The reason beyond this fact could be that, for technical appli-
cations, it is interesting to reproduce the state of a certain chaotic system,
no matter the distance or the number of the replica systems. This kind of
configuration is commonly known as master-slave configuration [2] and is the
most extended technique to synchronize chaotic systems [3]. Most of the ap-
plications were achieved in the chaotic communications field, where a chaotic
transmitter hides a secret message which is recovered at the receiver when
the latter synchronizes with the chaotic part of the received input [4, 5],
i.e., reproducing the state of the transmitter. Nevertheless, in Nature the
oscillators are essentially bidirectionally coupled.

Without regard to the direction of the coupling, the interaction between
two chaotic systems have been deeply studied during the last decade, focus-
ing in the ability of synchronization even in the presence of noise or delay
[3]. More recently, the spread of complex networks have dealt with synchro-
nization in large communities of chaotic systems showing the emergence of
complex behaviours [6, 7]. Less attention has been paid to the transition
from the simplest case, i.e., two bidirectionally coupled systems, to a broad
community of chaotic oscillators.

Here we depart from two chaotic systems bidirectionally coupled with de-

75
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lay and show a counter-intuitive phenomenon that arises when a third chaotic
element placed between them is considered: the isochronous synchronization
of the two outer chaotic systems. This fact has been recently reported in
bidirectionally coupled semiconductor lasers [8, 9], where a third laser, in
this case, is also requested. The present work follows the path opened by
Fischer et al. [8] and goes one step beyond. First, we analyse the robustness
of the phenomenon for different delay times, showing that accurate values
of the delay time are not required. Second, we give the first experimental
evidence, at the moment of the writing of the Ph.D. thesis, that the relaying
system could be different from those to be synchronized at zero-lag. The
chapter is organized as follows: In Section 4.2, we study the synchronization
of two mutually coupled chaotic circuits, with a certain delay in the coupling
path. We show that zero-lag synchronization is not observed in this par-
ticular configuration. In Section 4.3, we introduce a relay system between
the two chaotic circuits and observe the appearance of isochronous (zero-lag)
synchronization between the outer units. Finally, in Section 4.4 we show,
with an example, that zero-lag synchronization holds even when a different
dynamical system is used as the relay system, ending with some concluding
remarks.

4.2 Mutually coupled chaotic circuits

Unidirectional synchronization of chaotic circuits and specifically, Chua cir-
cuits, have been deeply studied during the last years. From two circuits to a
chain of many of them, synchronization have been reported under different
experimental setups.

In a general framework, we can distinguish between different types of
synchronization if we consider the system that is leading the dynamics along
with the delay between the outputs of the synchronized systems. In lag syn-
chronization [10], for example, the receiver system follows the evolution of
the transmitter with a delay τ due to a parameter mismatch. In achronal
synchronization, there is a time lapse between the output of the synchro-
nized systems, which is a consequence of a certain delay in the transmission
line. More recently, a counter-intuitive phenomenon has been reported, the
anticipated synchronization, where the receiver system advances in time the
signal of the transmitter [11, 12].

In all cases, when considering unidirectional injection, a leader and fol-
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lower role can be distinguished, being the former the system that sends the
signal to the other. However, this reasoning does not apply for the case of
mutually (bidirectional) coupled systems. In this condition, the leader and
follower role can only be inferred from the analysis of the circuit outputs.
When two system are considered, both circuits affect each other and eventu-
ally synchronize, which lead any of them to assume the role of the leader (or
follower).
Here we are interested in the synchronization between two chaotic electronic
circuits when bidirectional coupling with delay is considered. Several works
have dealt with mutually coupled chaotic circuits [13, 14, 15, 16, 17], never-
theless less attention has been paid to electronic circuits coupled with delay.
For the case of two chaotic systems, lasers have been the paradigmatic ex-
ample of coupled systems with delay [18, 19, 20, 21]. The seminal work of
Heil et al. [18] has shown the influence of the non-negligible coupling time
between two mutually coupled lasers. Specifically, a synchronization between
two chaotic lasers was observed with a time delay τc, corresponding to the
time for the output signal to travel between the two dynamical systems. Fur-
thermore an alternation between the leader and the follower was observed,
i.e., there was not a clear leader (follower) in the dynamics.
The experimental setup studied here is schematically represented in Fig. 4.2.
The output of two chaotic Chua circuits is connected bidirectionally through
a transmission line with a delay τc, which means that the output signal needs
some time to arrive to the other circuit.
Figure 4.1 shows a detailed description of the Chua’s circuit used in this
work. A nonlinear resistor is connected to a set of passive electronic com-
ponents (R,L,C). We have systematically studied the dynamical ranges of
the circuit when Rexc is modified, observing stable, periodic, excitable and
chaotic dynamics. Among all of them, we drive the circuit to have chaotic
dynamics by setting Rexc = 1.73 kΩ. Under these conditions, the dynam-
ics of the circuit in the phase space given by (V1,V2) lies in a double-scroll
chaotic attractor [22]. The output of the circuit (V1 or V2) is sent to the
other circuits (with the same characteristics) via a voltage follower, in order
to guarantee unidirectional injection (see Appendix I below for details on the
coupling implementation).
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(a) (b)

Figure 4.1: (a) Description of the Chua circuit, which is built with two TL082
operational amplifiers and passive electronic components of values: Vcc =
15 V, R1 = 222 Ω, R2 = 22 kΩ, R3 = 2.2 kΩ, R4 = 3.3 kΩ, RL = 23 Ω,
C1 = 10 nF, C2 = 100 nF, L = 10 mH. We set Rexc = 1.85 kΩ in order
to have chaotic dynamics. V1 and/or V2 correspond to the outputs of the
circuit, which are coupled to the other circuits through a voltage follower as
shown in the experimental setup. Note that all the components have a 5%
tolerance on their values. In the Fig. (b) we show an equivalent of the coil
which is called the girator. This circuit emulates the coil behavior. It allows
to control the frequency of the circuit easilly. The equivalent inductance value
is: L = R1R3R4C1/R2.

The dynamics of the circuit are described by the equations [22]:

C1
dV1

dt
=

V2 − V1

Rexc

− g(V1, Vcc) (4.1)

C2
dV2

dt
=

V1 − V2

Rexc
+ IL (4.2)

L
dIL

dt
= −V2 − RLIL, (4.3)

where the function g(V1, Vcc) represents the characteristic curve of the non-
linear resistor, which is piecewise linear and contains a region of negative
resistance.

However a more convenient version of the Chua circuit has been proposed
without the inductor. The equivalent circuit of the inductor described in [23].
We reproduce here the scheme of the coil that we used for the experiments in
the Fig. 4.1 (b). This circuit behave has an inductor, as the input frequency
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Figure 4.2: (a) Qualitative description of the experimental setup. Two similar
chaotic systems (A and B) are coupled through a bidirectional channel with
a time delay τc. (b) In the inset (i) we plot the output voltage V A

1 (above)
and V B

1 (below), which has been vertically shifted to ease comparison. In in
the inset (ii) the cross-correlation function is plotted, showing two maxima
of similar value at a time delay ∆t = ±τc. For this particular example, the
internal coupling parameters are: Rcoup = 47 kΩ and τc = 1.1625 ms.

increases its equivalent impedance increases linearly. The numerical value of
the equivalent inductance depends on the components of the circuit: L =
R1R3R4C1/R2.

The output of both circuits are chaotic when uncoupled, and keep their
dynamics for low to moderate coupling strengths. Nevertheless, when the
coupling strength crosses a certain threshold, synchronization arises. Figure
4.2 (b) shows the output voltage of both circuits for a coupling resistance of
Rc = 47 kΩ, which corresponds to an moderate coupling. We can observe
how both signals show a relatively good synchronization. The quality of the
synchronization is measured with the cross-correlation function which gives
an estimate of the similarity between two time series shifted with a time lag
∆t. The cross-correlation function between two output voltages V A

1 and V B
1

(the voltage 1 of the circuit A and B respectively) is defined as:

C(∆t) =
〈(V A

1 (t) − 〈V A
1 〉)(V B

1 (t + ∆t) − 〈V B
1 〉)〉

√

〈(V A
1 (t) − 〈V A

1 〉)2〉〈(V B
1 (t) − 〈V B

1 〉)2〉
,

where ∆t is a temporal shift introduced in V B
1 and the brackets represent

time averaging. This tool helps to find the delay between two time series,
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Figure 4.3: Cross-correlation of Chua circuit A and B, as a function of the
time shift ∆t between both series and the time delay τc. We can observe how
the highest correlation (Cmax ∼ 0.64) always occurs at ∆t = ±τc, which indi-
cates that we have lag-synchronization with exchanges in the leader-follower
role between both circuits.

which corresponds to the ∆t with the highest correlation (−1 < C(∆t) < 1).
In Fig. 4.2 (b) (right inset)we plot the cross-correlation between the output
voltage of both circuits, which has two maxima at precisely the coupling time
±τc . It is worth mentioning that both maxima have similar values (C ∼ 0.6)
indicating that there is not a clear leader or follower in the dynamics, i.e.,
both circuits alternate their role.

At this point we make a systematic study of the influence of the coupling
time in the synchronization of both circuits, since phenomena like ampli-
tude death [24], symmetry breaking [18] or periodic regimes [20] have been
previously reported in experiments with mutually coupled systems. With a
fixed coupling strength, we sweep the coupling time τc and check the quality
of the synchronization between both circuits. Figure 4.3 shows the cross-
correlation as a function of τc. We observe how the highest cross-correlation
is always obtained at ±τc, which indicates, first of all, that the delay between
both outputs matches the coupling time and, second, that the switching of
the leader-follower role is independent of τc. Therefore, we can say that
the phenomenon is robust against the coupling time and furthermore that
isochronous synchronization, i.e., zero-lag between circuit outputs, is not ob-
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Figure 4.4: Synchronization region for the two oscillators. In one region one
of the oscillators dominates the other, that is the oscillator forces the other
to follow its dynamics. In the other region the opposite occurs, the other
oscillator dominates. The third region is the region where the coupling is too
low for the synchronization to occur.

served in two bidirectionally coupled circuits with delay, a fact previously
reported in chaotic lasers [18].

We further study the influence of the coupling strength on the correlation
function as the coupling become asymetrical. The dominant system, the
leader, has a correlation peak at ∆t = ±τ higher than the follower. We
should stress on the fact that the two peaks of the cross correlation are
symetric with respect to ∆t = 0. A good way to check the influence of the
coupling strength on this system is to compare de numerical values of this
two peaks. As the peak for ∆t = τ is lower than the peak at ∆t = −τ , we
consider that the system 1 dominates over the system 2. In the circuit we can
control the gain K1 of the injection from the circuit 1 to the circuit 2. As this
gain is very high the circuit 1 dominates the circuit 2. On the other hand, the
gain K2 controls the coupling strength in the direction 2 to 1. In the Fig. 4.4
we span the parameter space K1, K2 in order to compare the strength of the
two peaks. The diagram determinates which system dominates over the other
one depending on the coupling strentgh. In the figure, three different region
appear clearly. The first region in the lower side represent the region for
which the correlation is too low to consider that the synchronization arises.
The second zone correspond the region where the system 1 dominates and
the third zone the region for which the system 2 dominates. The figure is
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Figure 4.5: (a) In this Figure we show a simplified diagram of the experi-
mental setup which consist in two bidirectionaly coupled Chua circuit with a
coupling gain Ki and a delayed feedback signal with a gain Kf . The gains and
the delay can be tuned automatically by software. The plot in the Fig. (b) is
a example of isochronous synchronization of the circuit for a sufficiently high
feedback gain. Notice that the peak located at ∆t = 0 is higher that any other
one. This means that globally the zero time-lag synchronization dominates.

symmetrical along the diagonal line which marks the separation of the two
domains of influence. Since that along this line the two gains are identical
(K1 = K2) there is no dominant system over the other and both displays the
same power, the role of the leade and follower alternates.

An important remark should be made here. There is no isochronous syn-
chronization in this experimental setup. In order to obtain synchronization
of the two systems with a zero lag an suplementary ingredient is needed.
This synchronization is stable only if we introduce a delayed feedback of the
coupling variable in each oscillators.

We extend the previous results by introducing a new element in the sys-
tem, that is a delayed feedback of the signal. As a matter of fact, the only
way to obtain sustained isochronous chaotic oscillations in our experiment is
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to introduce a feedback of one of the variable. However, this feedback has to
be delayed in order to keep the systems synchronized. This surprising fact is
possible only with feedback in this bidirectionally coupled system. The signal
and the feedback are delayed by the same time lag. In the Fig. 4.5 (a) we
have a simplified diagram of the experimental setup with all the parameter
that we control. The gain Kf holds for the gain of the feedback, for all the
measures the gain is normalized so that it takes its numerical values in the
interval [0, 1]. The gain Ki holds for the coupling gain, which remain equals
in both direction for all the experiments.

4.3 Isochronous synchronization in three cou-

pled circuit

Arriving to this point the question about if it is possible to obtain zero-lag
synchronization in mutually coupled chaotic circuits when a delay is consid-
ered in the coupling path is still open. A recent work by Fischer et al. [8]
has shown that the addition of a relay system between two chaotic lasers can
lead to isochronous synchronization between the outer systems. With this
idea in mind, we introduce a third Chua circuit between the two previous
ones, keeping the bidirectional coupling and the delay in the transmission
channels. Figure 4.6 shows the experimental setup, where the intermediate
Chua circuit, which acts as the relay system, is drawn in red since it has
different internal parameters from those of the outer Chua circuits (see Fig.
4.6 for details). The coupling time and the coupling strength are set to be
equal at all paths, leading to a symmetrical system. In Fig. 4.6 (a) we
plot the output voltages V1 of the three circuits for intermediate coupling
(Rc = 1.2 kΩ). We can observe how circuits A and C are synchronized at
exactly the same time despite the delay in the coupling lines, which is the
typical signature of isochronous synchronization. An interesting point arises
when looking at the output of the relaying system. We can observe how the
Chua circuit B is also synchronized with the other two, but in this case it
is delayed with a time corresponding to τc. In this way, the central system
is following the dynamics of the outer circuits and therefore it is not driving
them.

Figure 4.6 (b) show the cross-correlation function between pairs of cir-
cuits. We can observe how for the case of Chua circuit A and B the correlation
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Figure 4.6: (a) Qualitative description of the experimental setup. A third
(B) Chua circuit is introduced between A and C. We adjust the internal
parameters of the Chua circuit B to be different from those of the outer Chua
circuits: for the circuit A and C, Rexc = 1.85 kΩ and Lo = 14 µH, whereas
for circuit B, Rexc = 1.76 kΩ and Li = 10 µH. The three circuits are tuned
in the double scroll chaotic regime. (b) In (i) we plot the V1 variable of
the circuits (vertically shifted). We can observe how Chua circuit A and C
show isochronous synchronization (zero-delay) while the central one (B) is
lag-synchronized with its outer counterparts. In the left figure, the cross-
correlation function between A-C (ii), A-B (iii) and C-B (iv) is plotted. We
can observe how A and C synchronize with zero delay, while B follows the
outer circuits with a delay corresponding to the coupling time τc.

peak is obtained at zero-delay, indicating isochronous synchronization. As
expected, correlations of the external circuits (A and C) with the central one
(B) show the achronal synchronization, with a peak at exactly the coupling
time τc. In this case, there is no alternation between the leader role and the
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(a) (b)

(c)

Figure 4.7: Cross-correlation plots of Chua circuits A and C (a), A and
B (b) and C and B (c), as a function of the time shift ∆t between both
series and the delay in the transmission line τc. We can observe isochronous
synchronization between A and C, since the best correlation is always reported
at zero-lag (upper figure). Bottom plots show lag-synchronization between the
central and the outer circuits, since the best correlation is always observed
with a delay of τc, no matter what its value is.

central Chua circuit is always the follower.

In order to show the robustness of the phenomenon versus the coupling
time, we repeat the experiment with different delay times from values ranging
from near to zero until τc ∼ 3 ms. The cross-correlation function shows in
all cases the zero-lag synchronization for the outer circuits (see Fig. 4.7 (a))
and achronal synchronization with regard to the central one (see Fig. 4.7
(b,c)). It is worth mentioning that the central circuit do not necessarily need
to be matched with the outer ones. In fact, as mentioned before, internal
parameters of the relay Chua circuit were deliberately detuned.
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4.4 Replacing the relay system

Since the isochronous synchronization seems to be dependent on the sym-
metry of the system, it would be reasonable to obtain the same results with
a different dynamical system acting as a relay, since symmetry would be
preserved (as long as the outer circuits are identical). With this aim, we
replace the central Chua circuit by a Sprott circuit [26] a different nonlinear
electronic circuit which, as the Chua circuit, is able to behave chaotically.

The chaotic circuit, named after J.C. Sprott [26], is a simple circuit com-
posed of three linear integrators with a non-linear feedback loop. We adjust
the parameters of the circuit to show a chaotic double scroll structure. The
schematic representation is shown in Fig. 4.8. The circuit simulates a third
degree differential equation which is called a “jerk”. The equations modelling
the circuit are:

dV1

dt
=

1

R3C3

V2 (4.4)

dV2

dt
=

1

R1C2

(V3 − V2) (4.5)

dV3

dt
=

1

C1

(

−
1

R2

V2 −
R5

R4

1

R6

V1 +
R5

R4

1

R7

Vccsign(V 1)

)

(4.6)

The numerical values of the components of the circuit are shown in the figure
caption of Fig. 4.8.

In Fig. 4.9 we show a schematic description of the experimental setup,
where we can see that, despite the different central unit, the system maintains
the symmetry. Figure 4.9 (b) shows the time series of the circuit outputs. We
observe how the zero-lag synchronization holds for the Chua circuits. At the
same time, the Sprott circuit also synchronizes, in this case, advancing the
dynamics of the outer ones a time equal to τc. Cross-correlation functions
between pairs of circuits quantifies the phenomenon observed in the time
series, circuits A and B have a maximum at zero delay, while correlations
with the central circuit show that, in this case, the relaying system is leading
the dynamics.

We have done several experiments (not shown here) with different relaying
circuits in order to understand the role of the central circuit in the isochronous
synchronization. We have seen that, as long as the central circuit do not
filter the signal of the outer ones, isochronous synchronization is observed.
Nevertheless, we have observed that it is very sensitive to a mismatch in the
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Figure 4.8: Description of the Sprott circuit. The circuit is composed of a
linear integrator (lower part) and a non linear feedback loop (red square).
The nonlinear function can be written as f(x) = −A3x + A4sign(x). The
numerical values of the components are: R3 = R4 = R5 = 1 kΩ, R1 = 220 Ω,
R2 = 1 MΩ, R6 = 10 kΩ, R7 = 31 kΩ, C1 = 10 nF, C2 = 22 nF, C3 = 10 nF.

coupling, in the sense that, when we introduce an asymmetry in the coupling
time or coupling strength, zero-lag synchronization is lost. Interestingly,
similar phenomena have been reported in interconnected cortical areas of the
brain, where simulations based on realistic neuroanatomical and physiological
properties of the neural architecture have shown the appearance of time lags
when asymmetry is considered [25].

4.5 Conclusions

This work is focused on synchronization in mutually coupled circuits with
delay in the coupling connections. First, we analyze the synchronization of
two chaotic circuits as a function of the delay time. We observe that despite
both circuits synchronize when they are similar, a time delay between both
outputs appears. The delay is equal to the coupling time between both
circuits τc, i.e., the time needed by the signal to travel from one circuit to
the other. Furthermore, the role of leader and follower in the dynamics
is exchanged continuously between both circuits, a phenomenon previously
reported in coupled semiconductor lasers [18]. Next, we include a relay circuit
between the two chaotic circuits, which is bidirectionally coupled. Under
this configuration, exchanges in the leader/follower role disappear and the
two outer circuits synchronize with zero-lag. This phenomenon, known as
isochronous synchronization holds when the relay circuit is replaced by a
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Figure 4.9: (a) Qualitative description of the experimental setup. Two simi-
lar chaotic systems A and C (Chua circuits) are coupled through a different
chaotic system B (Sprott circuit). (b) In (i) we plot the output voltage of the
three circuits showing that despite being different dynamical systems all of
them synchronize their dynamics. Furthermore, the two outer circuits keep
the zero-lag synchronization as can be observed both in the time series (i)
and in their cross-correlation plots (ii). The central circuit B, synchronizes
with the outers with a delay equal to the coupling time τc, despite being a
completely different dynamical system. Figures (iii) and (iv) show the cross-
correlation between the central and the outer circuits, where the central circuit
is advanced a time interval equal to the coupling time τc.

different dynamical unit, in this case a Sprott circuit. In parallel experiments,
not shown here, we have observed that the symmetry is the key ingredient
of isochronous synchronization, and is lost when asymmetries are introduce
in the coupling time or the coupling strength.
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Appendix I: Coupling and delay board

The coupling between each circuit is introduced by a digital delay line which
samples and buffers the signal before restoring it τ ms later. The circuits
are coupled with different input/output variables, depending on the direction
of the signal. V1 is the output variable whereas the input signal is injected
into variable V2. This mechanism of asymmetric coupling prevents feedback
loops in the circuits, and therefore the signals are completely decoupled. The
Sprott circuit is coupled in a similar way, the variable V1 is sent to the other
circuits while the variable V2 receives the incoming signals through the cou-
pling resistance. Details of the coupling scheme are shown in Fig. 4.10. Each
signal is buffered with an op-amp in order to preserve the dynamics of the
circuit. The experimental setup is made up of several blocks. The first part
consists of the chaotic circuit. Each circuit is connected to the digital delay
line and to the ADC acquisition board (see blue lines in Fig. 4.10). The dig-

Figure 4.10: Experimental setup that has been used for the coupling of the cir-
cuits. The output voltage V1 of each signal is sampled in the microcontroller
ADu7660 and then buffered into a digital memory before being returned to
the circuits. Each triangle represents a signal conditioner in order to adapt
the signal to the specification of the ADC inputs. The blue line represents
the injected signal and the red lines are the delayed signals reintroduced into
the circuit. The central circuit receives the sum of the signals of the outer
circuits. Each signal is reintroduced into variable V2 through a resistance Rc.
Note that this resistance might be different for the central circuit.
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ital delay line is composed of an autonomous microcontroller with on-board
memory and DAC and ADC converters. The microcontroller is an ADu7660
development board from Analog Devices. The signal is first converted to
digital signal and then stored into a FIFO buffer in order to introduce the
delay. After a number of clock ticks, the signal is then converted into analog.
These converters sample signals up to 50 Khz with 12 bits precision and the
delay can be chosen up to 128/fe, being fe the chosen sampling frequency.
In the experiments the sampling frequency of the microcontroller is chosen
to be fe = 50 KHz.

The analog signals from the circuits are then sampled with an ADC sam-
pling board connected to a computer and signals are later analyzed with
Matlab software. The variable V1 of each circuit is sampled at ten times
their mean frequency, that is above 40 Khz, and with a precision of 12 bits.
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Chapter 5

Application of isochronous
synchronization to
communication

5.1 Introduction

Probably, one of the most promising application of the synchronization of
chaotic systems is its use in secure communications. First proposed by Pec-
ora and Carroll in their seminal paper about chaos synchronization [1], the
transmission/recovery of an encrypted message using chaotic systems was
experimentally demonstrated by Kocarev et al. two years later [2]. The mes-
sage recovery process relies on the chaos-pass filtering properties of the syn-
chronized chaotic systems, i.e., when a message is introduced in the chaotic
carrier output of the transmitter system, the receiver synchronizes only with
the chaotic part of its input signal and the message can be recovered af-
ter a straightforward signal treatment. Therefore, synchronization between
chaotic systems is a necessary requirement in communications with chaotic
carriers, nevertheless synchronization can have many faces [3]. If we assume a
certain delay in the coupling line, which would correspond to the case of real
applications, it would be possible to define different kinds of synchronization
by taking into account the delay between the synchronized systems. In the
most general case, the receiver follows the transmitter output with a lag equal
to the coupling time, in what is usually called achronal synchronization [4].
However, if the internal parameters of the coupled systems are adequately
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tuned, it is possible to obtain anticipated synchronization [5, 6], where the
receiver system advances in time the dynamics of the transmitter. The inter-
mediate case is known as isochronal synchronization [7] (also called zero-lag
synchronization) and corresponds to the situation where both chaotic sys-
tems have the same dynamics at exactly the same moment, despite the time
lost in the transmission line. Isochronal synchronization has been observed
in the dynamics of interconnected cortical areas of the brain [8, 9, 10] and it
has been recently reproduced in small arrays of coupled chaotic lasers [11, 12]
and electronic circuits [13] where bidirectional coupling was introduced. It
is within the framework of lasers that isochronal synchronization has been
proposed as a technique to bidirectionally encrypt/decrypt a message. Two
recent works [14, 15] have shown by means of numerical simulations that
it is possible to establish bidirectional secure communication between two
independent chaotic lasers and, in addition, messages can be sent simultane-
ously (i.e., both lasers sending/receiving messages at the same time). More
recently, unidirectional message transmission in the framework of isochronal
synchronization has been shown experimentally in semiconductor lasers with
opto-electronic feedback [16].

In this chapter we present, to the best of our knowledge, the first experi-
mental demonstration of simultaneous bidirectional communication between
two chaotic systems by means of isochronal synchronization. First, we syn-
chronize two Mackey-Glass electronic circuits with time-delayed feedback,
where, a delay is also introduced in the coupling line. Both systems are cou-
pled bidirectionally and isochronal synchronization arises when feedback and
coupling parameters are accurately matched. Then an encrypted message
is introduced in both chaotic outputs and recovered at the opposite system.
Finally we show how this encryption technique is suitable to negotiate an
encryption key between both systems, even in the case that an eventual
eavesdropper has access to both transmitted signals.

5.2 Experimental Setup

We have chosen a Mackey-Glass electronic circuit [17, 18, 20] as the chaotic
system to encrypt/decrypt the transmitted messages. The electronic circuit,
based on the Mackey-Glass model, is shown in Fig. 5.1 (a) and consists in a
non-linear oscillator whose oscillations are induced by the feedback loop with
delay. Three basics elements can be distinguished. First of all, a nonlinear
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function f(x), which processes the signal Vin, so that it feeds the analog
integrator with the voltage f(Vin). This integrator is the second element of
the system and it is composed of a simple RC circuit, represented by R4 and
C1. The voltage at the capacitor C1 is the dynamical variable Vout, which is
sent in turn to the third element, a digital delay line represented by a triangle
in Fig. 5.1 (a). Along the delay line, a gain κf and a delay τf is applied to
the voltage Vout, so that the voltage Vin(t) at the output of the delay line is
Vin(t) = κfVout(t − τf ).

The differential equations that represent this circuit are quite similar to
the Mackey-Glass model. The form of the nonlinearity differs slightly with
the original Mackey-Glass model [22] as it can be seen in the Fig. 5.2. How-
ever these differences do not change the main characteristics of the system.
A complete study of the circuit is detailled in the Appendix I along with
the description of the Mackey-Glass model. Equations corresponding to the
circuit of Fig. 5.1 (a) can be easily deduced by circuit analysis. We obtain
the differential equation:

R4C1
dVout

dt
= −Vout + f(κfVout(t − τ)), (5.1)

where the nonlinear function f(κfVout(t− τ)) depends on a p-channel JFET
(Junction Field Effect Transistor). The details on the implementation can
be found in the Appendix I.

Now we describe the communication setup which consists on a coupling
line with delay that connects two identical Mackey-Glass electronic circuits
[see Fig. 5.1 (b)]. Both circuits are coupled to each other (bidirectionally)
by adding the output signals Vout to the variables Vin of the opposite circuit.
The variable Vout of each circuit is sent through a digital coupling line with
a certain delay and gain. The equations of the coupled system represented
in the Fig. 5.1 (b) are:

R4C1
dVa

dt
= −Va + f(κfV

τf
a + κc(V

τc

b + M τc

b )) (5.2)

R4C1
dVb

dt
= −Vb + f(κfV

τf

b + κc(V
τc

a + M τc

a )), (5.3)

where variables Va and Vb correspond to the output variable of each circuit,
and the superscript τc means the delayed variable, i.e., V

τf
a = Va(t − τf ).

The encrypted messages are Ma and Mb and they are introduced at Va and
Vb, respectively, by means of a voltage adder, in a classical chaos masking
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(a)

(b)

Figure 5.1: In (a) a single Mackey Glass circuit is represented. The circuit
is composed of a non-linear function f(x) outlined in the dashed box. At
the output of the nonlinear function a simple RC circuit, composed of R4

and C1, integrates the voltage Vout. Vout is further introduced into a delayed
feedback loop, represented by a triangle. The symbols τf and κf correspond
to the feedback delay and feedback strength, respectively. Parameter values
are: R1 = 1 kΩ, R2 = 0.5 kΩ, R3 = 4 kΩ, R4 = 1 kΩ, C1 = 1 µF, J177
is a JFET transistor and LM348 is an operational amplifier. In (b) we plot
the schematic setup of the experiment corresponding to the transmission of
a message with chaotic masking. The outputs of two identical Mackey-Glass
circuits are coupled through a digital delay line and then, they are added to
the feedback signal of the opposite circuit.
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encryption way. A parallel method of introducing the message through the
feedback loop has been recently proposed [19], however, a third dynamical
unit is required in this case.

The digital delay line is composed of an autonomous microcontroller with
on-board memory and DAC (Digital to Analog Converter) and ADC (Analog
to Digital Converter) converters. The signal is first converted to a digital
signal and then stored into a FIFO buffer and after a number of clock ticks,
the signal is then converted back into analog. The gain κf y κc and the
delay τc of each channel can be adjusted by software, so that we can make
automated measurement for several gains and delays. The delay ranges from
0 to 20 ms. The gains κf and κc have values in the interval [0, 1].

Finally, the output signals of both circuits are sampled with an ADC
sampling board connected to a computer and signals are later analyzed with
Matlab software. The setup for the delay line is similar to the one described
in Chap. 4 as described in the Appendix I.

5.3 Isochronal synchronization

Figure 5.2 shows the dynamics of one of the circuits in the absence of cou-
pling, which behaves chaotically for a sufficient feedback and delay. The
output voltage Va exhibits a single extremum dynamics when plotted in the
phase space defined by [Va,Va(t − τf)], which reflects its chaotic behaviour.
Both circuits behave similarly, since the only difference between them is in-
troduced by the tolerance of their electronic components.

At this point, we couple together both circuits through a delay line of
gain κc and delay τc. When the bidirectional coupling is introduced different
scenarios arise, as it can be observed in the bifurcation diagram of Fig. 5.3 (a).
From low to moderate coupling strengths, both circuits behave chaotically,
although windows of N-period oscillations arise for intermediate and high
couplings.

Since we are interested in communicating through chaotic masking, we
set the coupling strength to κc = 0.3 which sets the system to lie within the
chaotic region. Figure 5.3 shows the outputs of both circuits corresponding
to the mentioned value of κc and a coupling delay time of τc = 18ms. We can
observe how the system is highly synchronized without a delay between both
outputs, despite the time lost in the transmission line. This is the typical
signature of isochronal synchronization.
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Figure 5.2: (a) Chaotic attractor of the system in the phase space given by
[Va,Va(t − τf )] and the corresponding time series in (b) for an uncoupled
Mackey-Glass circuit. The overall aspect of the atractor reflects the non-
linear function f which is plotted in red dashed line. The maximum value
of this function is Vmax = 1.605V which scale the dynamics of the circuit.
The parameters of the system for this experiment are: τf = 8ms, κf = 1.
The threshold for the feedback strength which undergoes a Hopf bifurcation
is κf = 0.55, bellow these value the system cannot oscillates. However this
threshold depends on the delay τf of the feedback loop.

In order to characterize the quality of the synchronization and to eval-
uate the delay between the output of both circuits we compute the Cross-
Correlation function (CC) between the Va and Vb. The CC function is defined
as:

C(∆t) =
〈(Va(t) − 〈Va〉)(Vb(t + ∆t) − 〈Vb〉)〉
√

〈(Va(t) − 〈Va〉)2〉〈(Vb(t) − 〈Vb〉)2〉
,

where the brackets indicate time averaging. In this way we compute the
correlation between time series for different shifts in the time-axis, obtaining
the quality of the synchronization (−1 < C(∆t) < 1) and the delay between
the time series, indicated by the position of the maximum of the CC function.
In Fig. 5.3 (b), we plot the CC function, which confirms that we are dealing
with isochronal synchronization since: a) The maximum of the CC (∼ 0.99)
function has a value close to the unity, indicating the synchronized behaviour
and b) the maximum is placed at ∆t = 0, which reflects that there is no delay
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between both outputs despite the time taken in the transmission line. Note
that similar to Ref. [12], the bidirectional coupling and the inclusion of the
feedback loops lead to a stable zero-lag synchronization, i.e. leader-laggard
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Figure 5.3: (a) Time series of both circuit outputs Va (black line) and Vb

(red line) under isochronal synchronization (κc = 0.3). Figure (b) on the
left shows the bifurcation diagram of the coupled system as a function of the
coupling strength κc with a fixed coupling delay of τc = 18ms. (c) represent the
cross-correlation function under isochronal synchronization. A maximum of
0.99 is observed at ∆t = 0, which indicates that there is no delay between both
outputs. Time series and cross-correlation function plot here are obtained for
κc = 0.3. The time window used for the computation of the cross-correlation
is 1.3s. Feedback parameters (equal for both circuits) are τf = 18ms and
κf = 0.4. The rest of the internal parameters are those given in Fig. 5.1
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alternation between both outputs is not observed.

We have repeated the experiment for different values of κc and τc, obtain-
ing similar results. The only requirement to obtain isochronal synchroniza-
tion with high cross-correlation values is to accurately match the feedback
and the coupling delay, i.e. τc = τf , as previously reported in [12].

5.4 Bidirectional communication

Since the synchronization is a necessary condition to communicate by means
of chaotic masking, the next step is the evaluation of the ability of the system
to encrypt/decrypt a message.

We introduce a binary message with a bit rate of 80 b/s. In the frequency
domain, the message is hidden by the broad spectrum of the circuit dynamics,
which has a peak at ∼ 120 Hz. The transition between the 0/1 state has been
filtered since we have observed that drastic jumps worsen synchronization.
The amplitude of the message must be as low as possible to guarantee a good
encryption, but it is also limited by the amplitude of the intrinsic noise of
the system, which hinders the message recovery for low values of the message
amplitude. Taking into account both restrictions, we have selected a message
amplitude of 0.4 V for the clarity of the results. It corresponds to a 25% of
the RMS value of the circuit output.

Figures 5.4 (a,b) show the input and output signals of both circuits,
where a message has been already added to both chaotic signals. A message
Mb(t) is encrypted by chaos masking with the Vb(t) signal, while at the
opposite circuit a message Ma(t) is masked by Va(t). In order to recover
the message, the input signal has been shifted a time τc, since it is the time
taken by the output signal to arrive at the opposite circuit. We can observe
how, by subtracting the output to the input signal, it is possible to decrypt
the transmitted message, whose quality can be improved further by filtering
and reshaping. Note that thanks to the bidirectional coupling both systems
are sending/receiving a message simultaneously, something that can not be
achieved in unidirectional communication.

It is worth to distinguish from two similar but different bit-recovery sce-
narios. When both circuits are sending and receiving the same bit, we obtain
identical synchronization, which can be analytically demonstrated by substi-
tuting Va = Vb and Ma = Mb in Eqs. (2)-(3). Intuitively, we can argue
that if both outputs are synchronized, and the same signal (Ma = Mb) is
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Figure 5.4: (a) and (b) show the input at output signals of circuit A and B,
respectively. Message can be recovered by subtraction of both signals. Plots
(c) and (d) show the transmitted (dashed line) and recovered (solid line)
message at both circuits.

perturbing both inputs, we are helping the coupling to synchronize both out-
puts thanks to a common external signal (i.e. the message). A different,
but also efficient, bit-recovery process occurs when circuits are sending dif-
ferent bits. In this case, the added message, whose amplitude should be low
enough to be hidden by the chaotic signal, is treated by the receiving circuit
as additive noise, which is filtered due to the chaos-pass filtering properties
of the synchronized system [14]. In both cases, the intrinsic noise of the elec-
tronic circuits, and the tolerance of the electronic components, lead to the
appearance of noisy fluctuations at the recovered message, which translates
into a similar quality in the recovered bit. Finally, an appropriate filtering
together with a threshold-passing treatment lead to a satisfactory recovery
of the message.

Arriving at this point it is worth discussing the security of this kind of
transmission. Since the signal of both circuits is accessible to a potential
eavesdropper, it would be reasonable to think that the eavesdropper could
be able to recover the encrypted messages by subtracting both signals (note
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Figure 5.5: Transmitted bits (solid lines) and recovered signals at circuit A
(blue lines) and B (red lines). The bottom figure corresponds to the absolute
value of the signal recovered by an eavesdropper. We can observe that only
when two bits do not coincide, the transmitted signal can be recovered.

that in unidirectional communication only one signal is accessible). Never-
theless, as it has been proposed in Refs. [14, 15], it is a suitable technique
to negotiate a secret key between the users. Figure 5.5 shows the message
recovered by a possible eavesdropper (bottom time series) when both users
are communicating. We can observe that when a bit “1” (or “0” ) is sent
by the two systems at the same time, the eavesdropper do not detect its
presence, since the bit is suppressed when doing the signal subtraction. Only
when two bits do not coincide the eavesdropper recovers the bit. In this way
both users could send a certain number of bits randomly distributed and take
the first N bits that coincide as the secret key to communicate. Note that
each receiver system knows which are the right bits by simply comparing the
received signal with the sent signal.
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5.5 Conclusions

We have shown that two bidirectionally coupled Mackey-Glass electronic cir-
cuits can exhibit isochronal synchronization despite the delay existing in the
transmission line. Isochronal synchronization appears for a wide ranges of
coupling time and is robust against the intrinsic noise of the electronic sys-
tems. We have used the isochronal synchronization in order to transmit,
bidirectionally and simultaneously, an encrypted message. Finally, we have
shown the ability of this kind of communication to negotiate secret keys be-
tween users. When a potential eavesdropper has access to both transmitted
signals he/she is not able to recover the whole chain of transmitted bits,
since bits that coincide are not detected. Despite this type of secure com-
munication has been recently proposed, we give here the first experimental
implementation.
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Appendix I: Bifurcations of the Mackey-Glass

model

In this appendix we describe the bifurcation conditions for the Mackey-Glass
model and we apply the same analysis technique to our electronic circuit.

The chaotic Mackey-Glass system is a nonlinear system with a delayed
feedback. We present here the details of the bifurcation analysis for the
delayed system. The Mackey-Glass model writes:

dx

dt
= −γx + f(x(t − τ)). (5.4)

With τ a discrete delay and f a nonlinear function with the following form:

f(x) =
αx

1 +
(

x
θ

)n . (5.5)

When there is no delay in the feedback loop the system has two stable states,
which are easily obtained as the derivative is equal to zero:

0 = −γx∗ + f(x∗) (5.6)

αx∗

1 +
(

x∗

θ

)n = γx∗. (5.7)

The first steady state x∗

1 = 0 is obvious. The second one depends on the
parameters of the system:

x∗

2 = θ(
α

γ
− 1)(1/n). (5.8)

A standard analysis is possible for discrete delay in order to study the
stability of the fixed point as the delay evolves. First of all, a function F is
defined such as:

dx

dt

∣

∣

∣

∣

x∗

= F (x∗) = −γx∗ + f(x∗) = 0. (5.9)

To evaluate the behaviour around this stable state a small perturbation δx
is added to x∗. With a simple analysis, we can determine if this perturbation
will be amplified or suppressed, that is, the system gets back to its stable
state.

F (x∗ + δx) = −γ(x∗ + δx) + f(x∗ + δx) = 0, (5.10)
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with δx → 0, we can remark that the derivative of the function f writes:

df(x∗)

dt
= lim

δx→0

f(x∗ + δx) − f(x∗)

δx
. (5.11)

With this equation, the previous function is transformed as:

F (x∗ + δx) = −γ(x∗ + δx) + f ′(x∗)δx + f(x∗). (5.12)

Equation (5.9) gives −γx∗ + f(x∗) = 0 and the equation simplifies to:

F (x∗ + δx) = −γδx + f ′(x∗)δx = δx(−γ + f ′(x∗)). (5.13)

We have to evaluate the derivative at x∗ to know if this perturbation is
amplified or shrinked:

f ′(x) =
α(1 + (x/θ)n) − (nα(x/θ)n)

(1 + (x/θ)n)2
. (5.14)

This function is evaluated at the two fixed points of the system:

x∗ f ′(x∗)
0 −1

θ(α
γ
− 1)(1/n) γ(1 − n(1 − γ

α
)).

(5.15)

We can derive the condition of stability for the second fixed point with the
sign of the quantity (−γ + f ′(x∗)). If this sum is negative then the fixed
point is stable, otherwise the fixed point is unstable. The conditions on the
parameters of the system:

−γ + γ(1 − n(1 −
γ

α
)) < 0, (5.16)

as n > 0 and γ > 0, the stability is reduced to the simple expresion:

γ

α
< 1. (5.17)

However the instability of the fixed point do not assure the oscillation of the
system around this unstable fixed point.

Without the delay the system cannot oscillate. The way to determine the
sufficient time delay of the feedback loop is through analysis of the eigenvalues
of the system. The delay variable is linearized around the steady state and
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the eigenvalue corresponding to this variable is exp(−λτ). The behavior
of the system around the steady state is ruled by the following linearized
equation:

dδx

dt
= −γδx + f ′∗δx(t − τ). (5.18)

We are looking for the eigenvalues of the system, the characteristic equa-
tion writes:

0 = −γ − λ + f ′∗e−λτ , (5.19)

with f ′∗ the value of the derivative of the function f evaluated at the fixed
point. This equation is transcendental and needs a numerical algorithm to
be solved. The equation to be solved is:

γ + λ = f ′∗e−λτ . (5.20)

However, since we are looking for a change of stability, the eigenvalue in this
region should be imaginary. The system undergoes a Hopf bifurcation when
the delay increases and the eigenvalue of the system is λ = iω with ω the
frequency of the system

γ + iω = f ′∗e−iωτc . (5.21)

We can separate the imaginary part and the real part to get two equations:

γ = f ′∗ cos(ωτc) (5.22)

ω = −f ′∗ sin(ωτc), (5.23)

and since sin2 + cos2 = 1 the equations can be combined:

ωτc = arcos(γ/f ′∗) (5.24)

ω =
√

(f ′∗)2 − γ2. (5.25)

Finally the condition on the delay τc to get a Hopf bifurcation is:

τc =
arcos(γ/f ′∗)
√

(f ′∗)2 − γ2
. (5.26)

Furthermore we can use the previous expression of the derivative at the
fixed point to express the critical delay in function of the parameter of the
equation:

τc =
arcos(1/(1 + n(γ/α − 1)))

γ
√

(1 + n(γ/α − 1))2 − 1
. (5.27)
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The circuit also exhibits oscillations, stable and chaotic regimes as the
delay of the feedback loop is changed as shown in Fig. 5.6

The nonlinearity of the circuit does not exactly match the analytical form
of the Mackey-Glass equation. The nonlinearity is homomorphic and has the
same properties. If we call the nonlinearity f the function implemented in
the circuit of Fig. 5.6 (a) we can write the equations of the circuit as:

R4C2
dVout

dt
= −Vout + f(κfVout(t − τ)), (5.28)

with κf a gain depending on the delay line. The nonlinear function depends
on the characteristics of the JFET transistor. The current Id flowing through
the transistor depends on the the input Vin. The current Id is the following:

id =















0 for Vin > Vth

−K(R2

R1

)Vin(−(R2

R1

)Vin − Vth + Vin) for Vin < Vth

1+
R2

R1

K(Vin − Vth)
2 for Vin > Vth

1+
R2

R1

,
(5.29)

with Vth the threshold the pinch-off point of the transistor and K a parameter
depending on the device. However we can use an ad-hoc function that is
enough for our purpose which is evaluate the fixed point and the stability of
the system. We use a function f that relates the voltage Vin to Vout:

f(x) = p1(
x

1 + ( x
p2

)6
)(step(p3 − x)2), (5.30)

Figure 5.6: Experimental bifurcation diagram of the circuit in function of the
time delay of the feedback loop.
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Figure 5.7: Experimental measurements of the nonlinearity f(x).

for x > 0 and the function step is the Heavyside function with step(x) = 0
for x < 0 and step(x) = x for x > 0. In order to estimate the parameter
of the system, the data of the nonlinearity has been sampled and later fit
with a minimum square method implemented in Matlab. For the particular
system that we are considering, the obtained parameters are:

Circuit a Circuit b
p1 = 13.53 p1 = 19.686
p2 = 0.514 p2 = 0.633
p3 = 0.935 p3 = 0.811.

(5.31)

The fit is shown in Fig. 5.7 along with the experimental data.
For this particular form of the nonlinearity we can repeat the calculation

of the fixed point. The principle is the same, it is asumed that the system is
in a steady state:

R4C2
dx

dt
= −x∗ + f(κfx

∗) = 0, (5.32)

so that we have to solve the equation:

−x∗ + p1(
κfx

1 + (
κf x

p2

)6
)(step(p3 − κfx)2) = 0. (5.33)

An assumptions can be done to simplify the expression: p3 −κfx
∗ > 0. This

assumption is verified since that the fixed point is generally situated below
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Figure 5.8: Critical delay τc for different feedback strengths κf . The cross
represent the experimental values obtained with the analog circuit. The solid
line represent the analitical values obtained from the bifurcation analysis.

the pinch point p3. The equation after transformation becomes:

κfp1(p3 − κfx)2 = (1 + (
κfx

p2

)6), (5.34)

this algebraic equation can be solved analytically however a simple numeric
algorithm is enough for our purpose, that is, find the steady states of the
system.

In order to evaluate the stability of these fixed points we have to compute
the derivative of f at the steady state points. For x ∈ [0; p3[ the derivative
is well defined and smooth. Its expresion is given by:

f ′∗ = (f(xκf))
′ = f ′(xκf )κf =

1 − 5(
κfx

p2

)6

1 + (
κf x

p2

)6
−

2κfx

(p3 − κfx)
. (5.35)

The stability of the steady state does not depend on p1.
Since this stability analysis is only valid when there is no delay we can

apply the analysis described before in order to find the critical delay τc which
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will allow the circuit to oscillate. In this particular case, we have γ = 1/R4C2

and the derivative is normalized by γ

τc =
arcos(1/f ′∗)

√

(γf ′∗)2 − γ2
= (R4C2)

arcos(1/f ′∗)
√

(f ′∗)2 − 1
. (5.36)

For example with R4 = 1kΩ, C2 = 1µF and κf = 1 the critical delay
is τc = 0.2 ms which is in good agreement with the experimental data. In
Fig. 5.8 the experimental critical delay necesary to obtain the oscillations
are compared with the curve obtained from the previous discussion. The
experimental results are in good agreement with the theoretical calculation,
and therefore it validates the proposed model.
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Chapter 6

Conclusions

In this Ph.D. thesis we studied and developed a method for the simulation
of complex systems by means of analog electronic circuits. We summarize
here the main results of the work:

1. We presented the modelling with electronic circuits of a simple neu-
ron model based on the Morris-Lecar model. A complex structure
of bifurcations have been revealed with the electronic circuit and con-
firmed by the numerical simulations. We also proposed a method to de-
sign bursters based on the two-dimensional bifurcation diagrams. The
burster is based on the analysis of the different bifurcations as one of
the parameter is varied. We present the experimental results obtained
with the circuit.

2. We introduce a bottom-up approach for the design and the analysis
of the synthetic genetic networks. We have shown that the dynam-
ics of the genetic networks can be simulated with analog electronic
circuits. More in particular, we analyzed the paradigmatic genetic net-
work called the repressilator which is a transcription oscillator designed
in the laboratory. The synchronization of a population of repressila-
tor has been achieved with the electronic circuit for a global coupling
between units. Moreover, we have shown the possibility to control the
population with a common external forcing. As an additional demon-
stration of the method we present two different genetic networks that
can be also simulated with the same basic bricks of the circuit. These
two networks are a genetic toggle switch, i.e, a bistable switch, and a
delay oscillator based on the self-repression of one promoter.

113
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3. We achieved an experimental investigation of synchronization of cou-
pled systems with delay. We show that when a delay is present on a
communication line, two chaotic oscillators cannot synchronize. How-
ever a singular regime appears. As a feedback is added to each unit
the synchronization is achieved and we obtain the same dynamics at
the same time despite the delay on the transmission line. This peculiar
synchronization is explored more in detail as three oscillators are con-
nected in line. In some of the dynamical regime the synchronization of
the outer units is achieved while the third chaotic circuit is in advance.
The isochronous state is obtained without the feedback, which is nor-
mally necessary to maintain synchronized the two circuits. The same
result has been obtained if we change the nature of the third oscillator.
We show experimentally the surprising fact that the isochronous state
is obtained with a different chaotic oscillator in the middle.

4. We proposed a possible practical application of the phenomenon of
isochronous synchronization of two coupled chaotic circuits with delay.
We demonstrated how a bidirectional communication is possible when
two chaotic circuits exchange signals over a communication channel.
The chaotic masking scheme allows to send information within the
spectrum of the chaotic carrier. This communication is shown to be
practically feasible since we present the first experiment of this nature
at the moment of the writing of the Ph.D. thesis.
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Resumen y objetivos de la tesis
en castellano

Introducción

El presente trabajo de tesis doctoral propone una metodoloǵıa de estu-
dio de los sistemas dinámicos mediante el empleo de circuitos electrónicos
analógicos. El creciente interés de la comunidad cient́ıfica por los sistemas
complejos es uno de los motores de esta tesis. Actualmente, se observa cada
vez más una colaboración entre cient́ıficos de distintos campos debido a la
necesidad de utilizar herramientas nuevas destinadas a problemas nuevos. Se
detalla aqui una alternativa a las simulaciones numéricas clásicas: es decir
al uso de ordenadores. Presentamos varios ejemplos de simulaciones con cir-
cuitos analógicos de sistemas complejos tan distintos como de una neurona
o un oscilador genético.

La base de la modelización de los sistemas estudiados son las ecuaciones
diferenciales ordinarias. Estas ecuaciones deterministas pueden representar
la dinámica de los sistemas estudiados, su evolución temporal y los diferentes
tipos de comportamientos en función de sus parámetros. Existen numerosas
herramientas anaĺıticas y computacionales para analizar el comportamiento
de estos objetos. Presentamos y aplicamos algunos de estos métodos de
simulación. Proponemos la simulación de las ecuaciones diferenciales de un
sistema dado con el uso de circuitos electrónicos analógicos. Existe una
analoǵıa que permite pasar de un sistema de ecuaciones diferenciales a un
conjunto de elementos electrónicos cuyos voltajes y corrientes representan las
variables dinámicas originales. Muchos de los sistemas lineales y no lineales
tienen su equivalente en circuitos electrónicos.
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Objetivos

Los objetivos de esta tesis doctoral son múltiples y de naturaleza interdisci-
plinar. Como principales objetivos destacamos los siguientes puntos:

• Se propone el estudio de sistemas dinámicos complejos mediante el
uso de circuitos electrónicos analógicos. Los modelos presentados aqúı
se basan en ecuaciones diferenciales de tres tipos: ecuaciones diferen-
ciales ordinarias, ecuaciones diferenciales no autónomas y ecuaciones
diferenciales con retardo. Estas tres clases de ecuaciones modelizan
sistemas dinámicos procedentes de varias áreas de conocimiento como
la dinámica neuronal, la bioloǵıa sintética y la sincronización de os-
ciladores caóticos.

• En el contexto de la dinámica neuronal se presenta un estudio exhaus-
tivo de la dinámica de un modelo de neurona basado en el modelo de
Morris-Lecar. Los diagramas de bifurcaciones del modelo se exploran
para varios parámetros de control del sistema. Introducimos además
una metodoloǵıa para la construcción de una neurona de tipo burster
a partir de los diagramas de bifurcación obtenidos.

• Dentro del ámbito de la bioloǵıa sintética se propone un método para
diseñar y simular redes de transcriptores genéticos. Se simula primero
un oscilador genético llamado represilador, y se estudia la sincronización
de una red de osciladores mediante los circuitos analógicos. Se intro-
duce luego una perturbación periódica externa con el fin de sincronizar
la población con y sin acoplamiento. Demostramos también la validez
del método simulando otros dos ejemplos de red genética.

• El estudio de la sincronización de redes de osciladores caóticos acopla-
dos con retardo es uno de los objetivos. Se presenta un estudio de los
fenómenos de sincronización cuando existe un retardo en la ĺınea de
transmisión para dos y luego tres osciladores caóticos acoplados.

• Una vez estudiada la sincronización de dos osciladores con retardos se
presenta la aplicación de estos fenómenos a las comunicaciones per-
sonales encriptadas. Se usan los circuitos caóticos con retardo para la
transmisión de un mensaje de manera segura sobre un canal de comu-
nicación no seguro.
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Metodoloǵıa

Hay varias definiciones de sistema complejo en la comunidad cient́ıfica y exis-
ten diferentes definiciones de la complejidad en función del campo cient́ıfico.
En nuestro caso, un sistema complejo se compone de unidades elementales
sencillas que pueden ser modeladas y simuladas individualmente. Estos com-
ponentes tienen dinámicas diferentes, y pueden incluso llegar a tener compor-
tamientos sofisticados, tales como oscilaciones caóticas. Pueden ser estudia-
dos con todas las herramientas disponibles de la dinámica lineal y no lineal.
Sin embargo, una vez acopladas, estas unidades elementales interactúan unas
con otras de forma muy compleja y no lineal. Los comportamientos colectivos
pueden ser radicalmente diferentes cuando los componentes están conectados
en una red. En ese caso, el estudio del sistema en su conjunto también es
necesario, ya que comportamientos que no estaban presentes en los elementos
individuales pueden aparecer ahora en un sistema conectado.

La metodoloǵıa seguida en este trabajo consiste en el estudio o diseño
de las partes individuales para luego ganar en complejidad a la hora de la
interconexión de los diferentes elementos entre ellos. Este método se adapta
perfectamente al empleo de circuitos electrónicos. El primer paso es construir
los elementos básicos y estudiarlos a fin de caracterizar su comportamiento.
Estos elementos básicos se reproducen y se interconectan entre śı con el fin
de estudiar la dinámica en un nivel de complejidad superior.

Es preciso subrayar aqúı que el método de diseño de un sistema de la
parte más sencilla a la más compleja y organizada se llama el enfoque “de
abajo hacia arriba” o “bottom-up approach”. Este es el procedimiento ha-
bitual en la ingenieŕıa a la hora del proceso de diseño. El procedimiento
cient́ıfico tradicional está en el lado opuesto. Consiste en el estudio de un
objeto de desde el mayor nivel de detalle hasta el más pequeño. Aqúı pro-
ponemos un enfoque diferente que ha dado resultados fruct́ıferos en campos
tan diversos como la sincronización de osciladores caóticos o incluso en la
ingenieŕıa genética.

Resultados y Conclusiones

El estudio de la dinámica de sistemas complejos es un tema central de mi
tesis doctoral. Hemos propuesto un planteamiento novedoso para su estu-
dio con circuitos electrónicos. El uso de estos dispositivos presenta ventajas
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en varios aspectos. Primero la simulación resulta muy modular, ya que se
trata de ensamblar bloques para observar el resultado. La computación con
electrónica analógica es mucho mas rápida que con un ordenador conven-
cional. De esta forma se podŕıan simular redes de tamaño más grande. Por
otra parte la simulación de sistemas con retardos es mucho más fiable con
circuitos electrónicos. A continuación presentamos los resultados para cada
parte obtenidos a lo largo del proceso de esta tesis doctoral realizada en el
Departamento de F́ısica de la Universidad Rey Juan Carlos:

• Dinámica Neuronal
En el Cap 2. presentamos la modelización electrónica de un modelo de
neurona simple basado en el modelo de Morris-Lecar. Se ha hallado una
estructura de bifurcación compleja con el circuito electrónico y luego
confirmada con las simulaciones numéricas. También propusimos un
método de diseño de neuronas de tipo burster basado en los diagramas
de bifurcación en dos dimensiones. El “burster” es neurona especial
cuyo comportamiento dinámico consiste en la alternancia de periodos
de actividad breves espaciados por periodos de silencios. La esencia
de la dinámica de éstas reposan sobre una biestabilidad del sistema.
El método se basa en el análisis de las diferentes bifurcaciones cuando
los parámetros del sistema vaŕıan y se apuntan los comportamientos
biestables. Se presentan los resultados experimentales obtenidos con el
circuito.

• Simulación analógica de redes genéticas
Se introduce un enfoque “de abajo hacia arriba” en el Cap. 3 para
el diseño y el análisis de redes genéticas sintéticas. Hemos mostrado
que la dinámica de la redes genéticas se pueden simular con los cir-
cuitos electrónicos analógicos. Más precisamente, hemos analizado la
red genética paradigmática llamada represilador. Es un oscilador de
transcripción diseñado en laboratorio con componentes procedentes de
varios organismos y ensamblados en una bacteria. La expresión de
los genes oscila en el tiempo en las bacterias individuales. La sin-
cronización de una población de represiladores se ha logrado con cir-
cuitos electrónicos mediante un acoplamiento global entre las unidades.
Además se demostró la posibilidad del control de la población con un
forzamiento externo común. Como una demostración más del método,
se presentan dos redes génicas diferentes que también pueden ser simu-
ladas con los mismos bloques de base del circuito. Estas dos redes son
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un interruptor biestable genético, y la otra un oscilador basado en el
retardo de la auto-represión de un promotor.

• Sincronización de osciladores con retardos
En el Cap. 4 estudiamos la sincronización isócrona (es decir, sin retraso
entre los sistemas sincronizados) de circuitos caóticos acoplados bidi-
reccionalmente. Cuando dos circuitos caóticos se sincronizan mediante
acoplamiento mutuo, se observa que no hay sincronización a tiempo
cero debido al tiempo que tarda la señal en ir de un circuito a otro.
Como consecuencia, aparece una alternancia en la sincronización, es
decir uno de los dos circuitos avanza al otro y transcurrido un cierto
tiempo los papeles se intercambian. Sin embargo, cuando se introduce
un tercer circuito entre los dos sistemas anteriores podemos observar
como las dos unidades externas se sincronizan sin retraso alguno. Cu-
riosamente, el sistema intermedio puede tener una dinámica distinta de
los dos sistemas entre los que está mediando. Finalmente, demostramos
experimentalmente que también es posible sincronizar dos circuitos si
se les añade también una realimentación con retardo.

• Aplicación de la sincronización con retardos a las comunica-
ciones
Se propone en el Cap. 5 una posible una aplicación práctica del fenómeno
de la sincronización isocrona de dos sistemas caóticos acoplados con
retardo. En este caṕıtulo investigamos la posibilidad de una comuni-
cación bidireccional cuando dos circuitos caóticos intercambian señales
en un canal de comunicación. El enmascaramiento caótico permite en-
viar información escondida en el espectro de la portadora caótica. Este
tipo de comunicación se puede llevar en la práctica. Además presenta-
mos aqúı el primer experimento de esta naturaleza hasta el momento
de la redacción.


