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Preface

This Ph.D. thesis focuses on the modelling and simulation of various nonlin-
ear systems with complex behavior. One of the objectives of the work is to
give a different point of view on the study of a class of nonlinear dynamical
systems. We present several models that have been studied in detail with
both non-linear circuits and numerical simulations. Some models presented
here are biologically inspired, as it is the case in Chaps. 2 and 3, whereas the
other circuits presented exhibit a chaotic dynamics. The variety of subjects
discussed reflects the possibilities of this technique as a tool for the study of
complex systems. We briefly describe the contents of the chapters forming
this thesis.

e Chapter 1 introduces briefly the concept of electronic simulation of
complex dynamics. The concepts of dynamical systems and complex
dynamics are presented with simple examples, followed by a short dis-
cussion on the advantages of using electronic circuits for the modelling
of complex systems.

e In Chap. 2 the dynamics of a neuron model is described by means of
analog circuits. The Morris-Lecar model expresses the membrane volt-
age of a clam muscle fiber, which exhibits spiking oscillations under
the action of an external excitation. The model lies on the mathemat-
ical representation with differential equations of the dynamics of the
membrane ionic channels. The bifurcation structure of this model is
explored as the parameters of the model are spanned in a two dimen-
sional space. A complex bifurcation structure is found numerically and
experimentally. Furthermore this work investigates how the model can
be modified in order to obtain a bursting oscillatory pattern which is a
periodic repetition of brief spiking activity followed by a silent period.
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e Chapter 3 deals also with a biologically inspired model. The electronic

circuits are used in this chapter in order to reproduce the dynamics of
a coupled genetic oscillator. The oscillator, called the repressilator,
consists of three genes whose concentration of expressed proteins os-
cillates periodically. These oscillators can be coupled in such a way
that a global synchronization is obtained. We demonstrate that the
synchronization can be obtained with in-phase oscillations. It is also
shown that a periodical forcing can synchronize a population of repres-
silators. We propose a plausible biological model which is simulated
by the use of circuits. Finally, we discuss the simulation of other gene
networks. In particular we describe the model of a genetic oscillator
with delay whose oscillations are caused by the lag in the production
of the proteins and the self-repression. Another system described here
is a genetic switch made of two mutually repressive genes.

In Chap. 4, the coupling of chaotic oscillators is treated and simu-
lated with circuits. When we dealt with coupled systems in Chap. 3,
we made the assumption about instantaneous transmission of the in-
formation which may not be true. We ask in this part about the role
of the delay in this kind of synchronization. As two oscillators are cou-
pled and synchronized, the introduction of a delay on the transmission
line may destabilize this synchronization. We use chaotic oscillators
in order to study the synchronization of two and three coupled units
with delay. Different scenarios arise depending on the type of cou-
pling. With two oscillators, synchronization is not possible. However
as a feedback with delay is added to the oscillators, both circuits syn-
chronize perfectly. When three units are coupled in a line, in some
particular configuration of coupling the synchronization of the outer
two is obtained whereas the central unit remains behind or in advance
compared with the other oscillators. An experimental verification of
this phenomenon is offered by using Chua’s circuits.

Chapter 5 hints that it is possible to send an encrypted message as two
chaotic circuits are coupled bidirectionally with delay on a transmission
line. Moreover, the message can be sent and recovered by the two
coupled units at the same time. We describe how it is possible to send
and to receive a message with this experimental setup. This is the first
experimental setup of this kind at the moment of the writing of this



Ph.D. thesis.

e In Chap. 6 we summarize the most relevant points of this thesis.
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Chapter 1

Introduction

The diversity of subjects presented in this Ph.D. thesis is the result of dis-
cussions with scientists with different backgrounds and points of view. The
interdisciplinary nature of the contents is a sign that a common methodol-
ogy can be used with different systems. We propose a different insight to the
modelling of complex dynamical systems by using analog electronic circuits.
The common aspect to all the work collected in this Ph.D. thesis is the study
of the dynamics of complex systems from different fields such as electronics,
neurodynamics or genetic engineering.

1.1 Simulation of complex dynamics

Dynamics and the study of dynamical systems could be described as the sci-
ence of motion. The word dynamics comes from the ancient Greek dvvautros,
which means power or force, and thus is related to the study of forces which
originate the movement. The efforts made since the 17th century in giving
a mathematical abstraction to these evolving objects gave the framework of
the dynamical systems theory.

A physical system, in general, can be represented by a model based on
a set of equations which is an abstraction of the reality. The study of this
set of equations can give information on the object without making any
further physical observations, in other words, we can draw conclusions on
the behavior of the system without experimentation. The method by which
the behavior of the system is studied through the set of equations is called
simulation. This powerful method of prediction can also be used in another
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context: the control of the dynamical system. The information on the system
allows to develop a method to control undesired behaviors or to maintain the
system in a desired dynamical regime.

These equations describing the model should be analyzed with some of the
multiple techniques available to the experimenter. Here we present a method
of simulation with electronic circuits that gives fruitful results in different
fields of applications. Analog simulations have been used in different contexts
such as chaotic dynamics [1], neuroscience [2, 3, 4], lasers [5], communication
systems [6] and recently for the study of stochastic phenomena [7]. In this
Ph.D thesis we introduce the simulation of complex systems by using analog
circuits.

There are several definitions of a complex system in the scientific com-
munity and there are different definitions of the complexity depending on
the subject of study. In our case, a complex system can be decomposed in
simple components which can be modeled and simulated individually. These
components can exhibit different dynamics, and even complex behaviors such
as chaotic oscillations, that can be studied with all the available tools of the
linear and nonlinear dynamics. However, these sub-units can interact with
each other in a very complex and nonlinear way. The sum of all the indi-
vidual behaviors can be dramatically different as they are connected into a
network. In that case the study of the entire system is also necessary since
new behaviors that were not present in the individual parts can now emerge
in a connected system.

The methodology followed in this Ph.D. thesis consists in first studying
the individual part and then growing in complexity by interconnecting dif-
ferent elements between them. This method is perfectly suited to the use of
electronic circuits since the first step is to construct the basic elements with
the available tools and studying them in order to characterize their behavior.
These basic elements are then reproduced and interconnected for the analysis
of the dynamics on different levels of complexity.

We must underline here that the method of studying a system from the
smallest part to the most complex and organized one is called the bottom-up
approach. This is the usual technique used in engineering during the design
process of any system. The traditional scientific procedure is on the opposite
side. It consists on studying an object from the highest level of detail to the
smallest one. We propose here a different approach that gave fruitful results
in different fields such as the synchronization of chaotic oscillators, neural
systems modelling or even the genetic engineering.
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1.2 Dynamical systems

The initial motivation of the study of dynamical systems comes from Classical
Mechanics, where the need for a mathematical formalism to study the time
evolution of the objects gave one of the most important theories in physics.
Dynamics is strongly linked to the study of the trajectory of objects in space.
However, it is now an abstract framework that can be applied to any evolution
problem.

First, a dynamical system is represented by a set of variables, continuous
or discrete, representing all the states of our system. This set is a description
of the relevant quantities that are evolving, such as the space, temperature,
speed or whatever. For convenience we will represent these variables in form
of a vector

x

_ | 2
x=1 . | (1.1)

The number of variables and the set of definition depends on the system.
The set of all possible states of the system is called the phase space, and a
particular numerical value of this vector is a point of this space.

Now that the states are described by this set of variables, we need some
rules to find out the evolution. In all the examples proposed in this Ph.D.
thesis, we will refer to time evolution. This progression is determined by a
differential equation which is a function of time and x. It links the instan-
taneous variation of the system to its actual position x. In other words, the
position in the near future is a function of the actual position and eventually
the time. It means that if we know the position at the time ¢ with an infinite
precision, we are able to reconstruct all the future states of the system. In
this case we talk of a deterministic system. In general, a dynamical system
can be written as:

dx
i f(x,t) (1.2)
x(t9) = Xo. (1.3)

The Eq. (1.2) determines the evolution of the system. The left term dx/dt is
the instantaneous temporal variation of the variable x, while the right term
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is a function of the variable x and time in the form:

fl(l'l,.fﬂg, P ,t)
et = | R | a4

This function and the initial condition x(tg) = Xo contain all the behavior
of the system, this is the model of the system. A particular trajectory x(t)
with the precedent initial condition is called a solution of the differential
equation (1.2). This is the first type of differential equation that we will
study in this work. The function f generally depends on a set of parameters
p = {p1, o ...} that links the variable {x1, xs,...,t} in a linear or nonlinear
manner. This set of parameters can strongly influence the dynamics of the
system. The dynamics in function of a parameter is studied through the
bifurcation diagram. This diagram represents the different possible regimes
of the system as one or several parameters are varied. These plots provide
a substantial knowledge on the system if we are looking for a particular
dynamical regime. In Chap. 2, we present such diagrams as two parameters
of the system are varied. In this case oscillatory regimes can appear or vanish.

The differential equations will appear where an evolution problem has to
be solved. Solving this equation analytically in most cases is an impossible
task. This is one of the purposes of the presented work to propose methods
to obtain such solutions.

Later on in this thesis, we show how to simulate differential equations
when a delay is present in the problem. In the case of the equation with
delay the instantaneous variation of the variable depends on the present
state and also from the past states at an previous time 7. The differential
equation becomes:

dx
= = £(x(0). x(t = 7). 1) (1.5)

xp = {x(t) for —7 <t <0}. (1.6)

The initial conditions of Eq. (1.6) in this case should be defined for the values
of the trajectory during the time ¢ € [—7,0]. This dependence on the past
states can have a dramatic effect on the evolution of the system. To illustrate
these effects we will take a very simple example of differential equation:

d
d—f = —azx +b, (1.7)
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Figure 1.1: Time evolution of two differential equations. (a) The solution of
the equation without delay is plotted. (b) The solution of the same equation
with delay is shown. In this second case the oscillations appears due to the
effect of the delay.

with 2(0) = 0. The solution of this equation is straightforward:

b
z(t) = =(1—e ). (1.8)
a
The time evolution of this equation is shown in the Fig. 1.1 (a). Now suppose
that the system has a memory of its past state and the system depends on a
delay:
dx

e —az(t — 1) +b. (1.9)

The time evolution of this equation is no longer so simple. In Fig. 1.1 we
show the difference for the time evolution of the two equations. When a
delay is introduced in the system, the trajectory oscillates before stabilizing
to the steady state value. Different tools are necessary to find the solution
of this kind of equation. The electronic circuits are good candidates for the
implementation of differential equations with delay.

Nevertheless, the use of electronic circuits as a tool of simulation can
be questioned for such systems, and specifically, which are the advantages
of using this particular kind of simulation technique. A short discussion
about the benefits and the inconveniences is necessary before starting the
description of any particular system. In the section (1.3), we expose the
main arguments of the discussion.
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1.3 Why to use electronic circuits?

Here we give a small discussion about the possible advantages and drawbacks
of using electronic circuits:

1.

First of all, an analog circuit is a physical system. It means that the be-
havior of the system, which is reflected by the electrical variable, can be
observed with a measurement. The system ceases to be a mathematical
object and becomes a physical object.

. The fact that the system can be implemented in a electronic circuit

means that it is robust to small parameter changes. The components
are not perfect and their nominal values change from component to
component which implies that if the circuit works the model is not
sensitive to these small differences.

. The mathematical models of the components are not perfect, they may

be subjected to nonlinearities and influenced by external factors such as
the temperature. The noise is present in all the variables of the circuit
and it may affect the dynamics of the circuit in one way or another.
The resistance to noise is another kind of robustness. The noise due
to the thermal agitation of the carriers is present in every electronic
component and increases with the number of parts.

. For the practical benefits of using electronic circuits, we can comment

that building an electronic circuit from a theoretical model can lead
to interesting applications. The most striking example is perhaps the
electronic circuits which interact with real systems, e.g., neurons by
reproducing their behavior [2], or even neurocomputers which are in-
spired by the information processing of real neurons.

. In order to explore the dynamics of the model, the electronic circuits

can have several advantages compared with the numerical simulations.
For example, the numerical integration of complex models may last
minutes, or even hours, while it is really faster with the electronic
circuits.

. Another interesting point is that it is possible to change the parameter

directly. For example, if a resistor controls the time constant of an inte-
grator, a simple variation of this resistor changes the dynamics in real
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time. In many cases, the exploration of the parameter space is faster
than using numerical simulations, however the analysis of the corre-
sponding time series may be longer. To overcome this difficulty, it is
possible to develop electronic tools, useful when the dynamical system
has a chaotic dynamics, such as automatic analysis of the bifurcation
diagram and the Poincaré sections [8].

7. The construction of the circuit by itself is a very instructive process.
One can see how the dynamics of the system appears as the elements are
connected. Moreover, as the parameters are changed the experimenter
can see unexpected results in the dynamics. Seeing chaos in a electronic
circuit and observing the route to chaos is a wonderful experience.

On the other hand, the realization of electronic circuits may be subject
to several criticism. The inconveniences can also be separated in two parts,
mainly practical and theoretical.

1. Often, there is nothing that you see in the circuit that you cannot see
with the numerical simulation. In this case, the electronic circuit is
nothing more than a practical confirmation of the theoretical results.
One can say that this is not a “real experiment”, that it is just an
analog integrator of a mathematical model. This is in part true, but
we stress on the fact that it remains an experiment in a physical system.

2. The robustness to noise mentioned before can also be regarded as a
problem if we are looking for a particular behavior in a small range of
parameters. These mismatches may be a problem if we want to observe
this particular dynamical regime.

3. Constructing circuits may have also some inconveniences on the prac-
tical aspects. Building a circuit may be a hard task of design and
assembly. The time spent to construct the circuit may be longer than
programming the numerical simulations. as long as some systems are
difficult to implement. For example when they include multipliers the
complexity of the design may increase.

Still, the analog circuits are a good tool for the simulation of certain equa-
tions, such as systems with delay, since they can integrate accurately very
complex equations in a very short time. The use of circuits is a potential
alternative, or at least a complement, to the numerical simulation of complex
systems.
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1.4 Modelling with circuits

Before describing the models which are at the core of this work, we present the
motivations of the use of the analog circuits for the simulation and modelling.

The basic components used in analog electronic circuits, such as resistors,
capacitors and transistors, can be described with the laws of electromag-
netism. Deduced from these fundamental laws, a model of the component
describes its macroscopic behavior which is the relation between current and
voltage. The model consists, in general, in a linear (or nonlinear) differential
equation. An association of these components would represent a set of dif-
ferential equations which can be solved by letting the circuit evolving freely,
after setting the initial conditions.

Fairly simple models are used for these components in order to express
the relation between the voltage and the current. In the case of the transistor
the models are rather more complex, which will be treated later on. Here we
present the simplest components (resistors and capacitors) needed to simulate
a differential equation. The resistor from the point of view of dynamical
systems is a simple linear gain, more precisely, it can be considered from a
physical point of view as a disipative device. The equation of a simple resistor
expresses the relation between the current and the voltage in function of the
resistance R by using Ohm’s law:

V = Ri. (1.10)

We have a linear relation between the current and the voltage which depend
on the physical characteristics of the resistance. The second elementary
component that is commonly used is the capacitor. A simple model of the
capacitor is two conductive plates opposed to each other and connected to a
different electric potential.

In this configuration charges are accumulated on each plate. More gener-
ally, the relation between the voltage difference between plates and the flow
of charges, which is the current, is

av
C— =1. 1.11
o (1.11)
The current that flows across the device is the derivative of the voltage and
C'is the capacity of the capacitor which is a physical property of the device.

The capacitor can also be viewed as a current integrator:

V(t) = % /_ i(2)da. (1.12)
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Ae—m—j

TR E—
1

Figure 1.2: Normalized schemes of a resistance and a capacitor, the voltage
across the component is Vy, and the current is i. (a) represents a resistor
and (b) a capacitor.

These are the basic necessary elements to construct a circuit that simulates
a differential equation. In order to illustrate the method to simulate such
equations, we present a very simple example of a first order differential equa-

tion: p

Y
— =— ) 1.13
o= ey 0 (1.13)
The equivalent circuit of this equation is presented in Fig. 1.3. The capacitor
integrates the current ¢ as written in Eq. (1.11). By using the Kirchhoff law
and the Ohm law we deduce that the current is proportional to the voltage

drop in the resistance:

. (E=V)
= 1.14
= (114
The complete differential equation of the circuit can now be written as:
%

To simulate the Eq. (1.15) it is now necessary to identify the constants g

and a: )
o = RO
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Figure 1.3: Simple example of the simulation of a first order differential
equation. The circuit is composed of a resistor, a capacitor and a DC voltage
source.

The initial conditions of the equation are more delicate to choose. However it
is easy to start with the capacitor discharged and the voltage source turned
off, that is, with V' =0 and ¢ = 0.

The voltages and currents in the circuit simulate the variables that can
later be observed, recorded and analyzed by using a standard laboratory
equipment. Several classes of differential equations can be simulated by this
mean:

e Ordinary differential equations (ODEs).
e Non autonomous differential equations.

e Delay differential equations.

For each class of equation we propose several examples along this work, as for
instance, the ODEs which are simulated in Chap. 3, correspond to a small
genetic network. The non autonomous equations with a forced oscillator and
the delay equations are treated in Chap. 5.

1.5 The models

The first work presented in this Ph.D. thesis is centered in the neuroscience
context. The nervous system is a typical example of a complex system where
the interconnection of the basic units (which are the neurons) gives birth to
very complex dynamics and behaviors.
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The purpose of this first work is the exploration of the parameter space
of a simple neuron-model. The Morris-Lecar model expresses the membrane
voltage of a clam muscle fiber, which exhibits spiking oscillations under an
external excitation. The spiking activity is a typical electrical activity of
the neurons by which the information is transmitted and it travels along the
axons, which are the links between the neurons. The spikes are brief pulses
of current that circulate along the membrane of the neuron. The modelling
of the neuron is based on differential equations which describe accurately
the dynamics of the system. The dynamical properties of the system are
explored with circuits and later on used to construct a new neuron type: a
burster, which is a neuron with periodic repetition of brief spiking activity
followed by silenced period. This is an example of how the circuits can be
useful to construct a system with a different dynamics.

In the following chapters a different biological system is studied. In Chap.
3 we deal with the simulation of a genetic process. In this chapter, we propose
a new approach for the simulation of a genetic network with the modelling of
a biological oscillator with analog circuits. A single oscillator is constructed
with electronic components, as an analogy to the genetic one. Next, this
unit is connected to similar circuits in order to observe the effects of the
coupling in a population of oscillators. As in biological clocks, which consist
in coupled oscillators with an external forcing due to environmental changes,
we introduce a periodical forcing in the coupled system and we determine the
conditions in which the system is entrained. Several other genetic systems
can be modeled as shown in Chap. 3, where we also analyse the influence of
the delay on the dynamics of the system.

The coupling between oscillators has been extensively investigated during
many years and it is still a hot topic. As we mentioned before the coupling of
oscillators appears not only in many biological processes but also in mechan-
ical/electronic/physical/social phenomena. Chapter 4 deals with the study
of the synchronization of oscillators when the coupling is not instantaneous,
i.e., when a delay is present in the transmission of the information. The
classical concept of synchronized state is modified in this context. When two
chaotic oscillators are coupled with delay, there is a case where the system
is alternatively forcing and forced by its counterpart. This state is called
achronal synchronization. Chaotic circuits are used in order to measure the
effect of this peculiar synchronization, however the conclusions can be ex-
tended to any other system. When a feedback is introduced in the oscillator,
another kind of synchronization appears, the isochronous state. In this case
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we observe exactly the same dynamics at the same moment despite the delay
on the transmission line. This isochronous state is observed not only in two
coupled systems but also in an array of three coupled oscilllators. We give
an experimental observation of the isochronous synchronization between two
circuits with a third relaying circuit in the middle.

As a possible application of this peculiar synchronization, we demonstrate
experimentally that a message can be transferred between two peers with a
chaotic masking scheme. The message is sent along with a chaotic carrier
that hides the information within the broad spectrum of the chaotic signal.
The bidirectional communication is possible in the sense that the message
can be sent in both senses at the same time. This configuration may be used
in some particular application as for example the negotiation of secret keys.
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Chapter 2

The electronic simulation of a
neuron model

2.1 Introduction

Nowadays the interface between electronic circuits and biological systems is
attracting a great deal of research due to the enormous variety of potential
applications of electronic devices to the general field of biomedical sciences.
Even a connection of an electronic circuit with biological neurons is now
possible [1, 2]. As a consequence of this fact, new disciplines such as biomed-
ical engineering or bionics are reviving. From a theoretical viewpoint, the
modelling of neurons is becoming more and more accurate, and the elec-
trical behavior of neurons is well reproduced at a quantitative level by the
increasingly complex mathematical models that are used in computational
neuroscience. In this context, the modelling of neurons by means of electronic
circuits is a steady growing field that presents rich potentialities for the de-
sign of specific hardware that is able to display some useful characteristics
for the processing of information in real time.

Experimentation on real neurons is a hard and expensive task, neverthe-
less part of these difficulties can now be solved to some extent with the help
of artificial neurons. Computational neuroscientists can profit from the use
of electronic devices as a tool for the exploration in real time of the behavior
of neuron models [3, 4]. As a consequence, a network of artificial neurons
can be emulated this way and tested in a real time environment. The devices
connecting such circuits with biological neurons are called hybrid networks

15
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[5, 6], and the achievements of these tools in the biomedical sciences are
immense. Artificial vision and audition [7] or spinal cord stimulation for
hemiplegic patient are some examples.

Neurons are cells forming part of the nervous system of the evolved mul-
ticellular living being. This particular cells are capable of the processing
and the transmission of the information by mean of electric impulses which
are called spikes. Depending on the kind of animal we are looking at, the
neurons will have different shapes and properties. However most of them
are composed of three main sections. The soma is the main part of the cell
which contains the nucleus and the components necessary for the survival of
the cell within the body. Joint to the soma, the dendrites are the receptor of
the nervous activity of other neurons. These received signals are processed,
and if the condition are matched then a nervous response is produced. This
response takes the form of a electrical pulse, called a spike, transmitted along
the axon which is the afferent ending of the neuron. This spikes will then ac-
tivates other neurons and so forth. The information is processed through this
large amount of connections among neurons. The shape and the frequency
of the spikes can be very different from one neuron to another. In the general
case, the duration of this pulses is of a few milliseconds of duration and a few
milivolts of amplitude. They can be generated individually (with a resting
time before the following spike), or in burst of several spikes with a silent
period before the next burst of pulses. The cell generating these patterns are
called bursters. Bursters are a class of neurons which are present in many
areas of the brain and whose autonomous activity displays periods of fast
spiking alternated with resting or silent intervals. Furthermore, an external
current can modulate the bursting response of those neurons and the cou-
pling between bursters can lead to very complex synchronization patterns
[8]. An extensive review on the dynamics of the neurons can be found in [9].

In this chapter we propose an electronic implementation of a simple model
of the giant barnacle muscle fiber developed by Morris and Lecar in 1981 [10].
The Morris-Lecar model is a characteristic example of a simple dynamical
system presenting a rich and wide variety of dynamical behaviors (see for
instance [10] and [11]). It uses only two dynamical variables to describe the
state of the neuron and thus allows us a straightforward observation of the
phase plane. In fact, with the help of an oscilloscope it is possible to visu-
alize the attractors in real time. Moreover, depending on the parameters of
the model, it presents Hopf (subcritical and supercritical), saddle-node and
tangent bifurcations which can be easily observed. By examining these bi-



2.1. Introduction 17

furcations, when two parameters are varied, we can observe some interesting
codimension-2 bifurcations taking place in the system. A similar experimen-
tal work with electronic circuits has been achieved by [12] with a modified
FitzHugh-Nagumo neuron model and in [13] in which a bifurcation diagram
varying only one parameter for the Morris-Lecar neuron model is carried out.
The phase plane of the Morris-Lecar model has been extensively explored in
[14] with bifurcation analysis and numerical simulations. This work investi-
gates the bifurcations in a five-dimensional space. Nevertheless the method
proposed here is experimental.

We have analysed the Morris-Lecar phase plane to develop a method to
obtain bursting behavior. The rather complex behavior of a burster is due to
the coexistence of multiple attractors so that the phase point passes through
a succession of different pseudo-attractors as it traces a closed orbit through
the phase space [15]. By finding out regions showing bistable behavior in
the Morris-Lecar model, we can construct a great variety of bursters [16].
To do that, we take advantage of the hysteretic behavior of the system,
leading to paths in the phase plane that are different depending in the way
the parameter is varied. In our case the fundamental control parameter
will be an external excitatory current delivered to the neuron. By choosing
an appropriate dynamics for this current we can allow the system to hop
between coexisting states thus giving rise to bursting activity patterns. In
[17] a design of a burster neuron based on the FitzHugh-Nagumo model
has been proposed, where an external forcing current is applied so that the
model exhibits bursting activity. The parameters of the perturbation are
based on the analysis of a two-parameter bifurcation diagram. In our work,
since the excitation current is an internal variable of the system, the burster
is autonomous. As examples of our methodology we present a square wave
(or fold/homoclinic) burster, an elliptic (sub-Hopf/fold cycle) burster and a
cycle/fold burster, all of them obtained from the dynamics of the Morris-
Lecar neuron model [16].

The organisation of the chapter is as follow. In Sec. 2.2 we present the
Morris-Lecar model and its electronic implementation. The bifurcations of
the circuit are analysed in Sec. 2.3. In Sec. 2.4 we present a method for the
design of electronic bursters and finally we summarize our results in Sec. 2.5.
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2.2 The Morris-Lecar Circuit

The Morris-Lecar model was originally developed as a mathematical model
of the giant barnacle muscle fiber [10]. It belongs to the class of the so-called
conductance models and uses a calcium current, a potassium current and
a leaky ohmic current to phenomenologically describe the behavior of the
muscle fiber. As the dynamics of the calcium channels is much faster than
that of the potassium channels, we will consider the former always in the
equilibrium state, thus reducing the model to the following system of two
first order differential equations:

AV,

O = g M (Vi) (Vo = V) = Gic N (Vi = Vie) = gu(Vin = Vi) + 1, (2.1
L MV (=N + GV, 0.9)

where V,,, is the membrane voltage, IV is the activation variable of the slow
potassium channels, and [ is an external tonic current delivered to the
neuron. Notice the voltage dependence on V,, of the time constant Ay in
Eq. (2.2), where its expression takes the following form:

1
(Vi) = Ecosh((vm —V3)/2V}). (2.3)
On the other hand, g/, and g} are the maximal conductances of the calcium
and potassium channels, respectively, and g7, is a constant leak conductance.
The conductances of the potassium and calcium channels vary in a sigmoidal

way with the membrane voltage V,,. This dependence is introduced by the
following functions M (V) and G(V):

M(V)
G(v)

= 0.5(1 + tanh((V — Vi)/Va)), (2.4)
= 0.5(1 + tanh((V — V3)/Va)), (2.5)

where V1, V5, V3, and V, will be considered as adjustable parameters .

As many other mathematical systems describing the electrical activity
of the nerve membrane, a strategy based on the use of electronic circuits is
well suited to implement its dynamical behavior. The above set of equations
can be represented in a block diagram as shown in the Fig. 2.3 (a). This
figure represents the equations of the model schematically and it will be the
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basis of the electronic circuit design that is presented in Fig. 2.3 (b). In
this figure we can see the three ionic currents which are generated by using
the feedback of the voltage membrane V,, into the functional blocks. The
calcium current has only one element, the sigmoidal shaped function G(V),
whereas the potassium channel includes an integrator for the slow dynamics
of this channel and also the variable time constant which depends on V,,.
That means that the channel does not open and close instantaneously as
the calcium channel does, but rather gradually, with a certain inertia. From
the viewpoint of the electronics, this means a first order filter. These three
currents are summed up and fed into an integrator to generate the membrane
voltage.

In order to further reduce the complexity of the model we can make
a strong approximation. Equation (2.2) representing the dynamics of the
potassium channel includes a voltage-dependent time constant Ax(V;,). Im-
plementing this parameter in the electronic circuit represents a difficulty. The
hard point is to construct a voltage controlled resistor in order to modify the
value of the time constant of a RC filter (or the first order filter). These
components are mainly nonlinear and they introduce noise and undesirable
harmonic components. Furthermore, this time constant has a complex influ-
ence in the equation. Nevertheless, when this function is set to a constant,
the Morris-Lecar system of equations still exhibits interesting features like a
Hopf bifurcation and spiking capabilities. Based on this observation we have
reduced the original set of equations to a new set given by

AV, . *

C— = =96 M (V) (Vin = Veu) = g N (Vi = Vie) =g (Vin = Vi) + 1, (2.6)
N

dd—t =7 (=N +G(Vin)), (2.7)

with the same functions G(V,,) and M(V},) as in Egs. (2.4) and (2.5). Here
the parameter 7 has a constant value, that is, it does not depend on the
membrane voltage. This parameter has a critical role in the stability of
the system because the Jacobian matrix of the linearized system around an
equilibrium point has its eigenvalue depending on the parameter 7.

The proposed circuit is displayed in Fig. 2.3 (b). It uses mainly linear
components excepts for the analog multipliers and diodes. With this circuit
we can now describe the experiments. The main logical blocks are delimited
by dashed lines. The calcium block is made of a sigmoidal function, imple-
mented with pn-junction diodes, an operational amplifier, and an amplifier
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Figure 2.3: (a) Block representation of the Morris-Lecar model. We represent
the differential equations in a schematic way; the blocks symbolize integrator,
gains, transfer functions and multipliers. This logical representation is the
basis of the implementation of the circuit. The blocks representing the ionic
currents are delimited by dashed-lines; the Eqs. (2.8) and (2.9) correspond
to the currents Ic, and Ix. All the currents are summed and fed into an
integrator; the sum of the currents is comparable to the Eq. (2.11). (b)
Electronic scheme of the circuit simulating the Morris-Lecar model. The ionic
currents are delimited by red dashed lines and correspond to the equivalent
blocks in Fig. (a). The ionic currents Ica, I, and Iy, are summed and
fed into an integrator so that the output is the membrane voltage V,, of the
neuron model. The functions G(V') and M (V') are implemented with 1n4148
diodes and with UA7/1 OP-Amps.
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Parameter Values Units
T Roy x C4 s
Vi —Vee X R1/(R1 + Ry) \4
Vs —0.5V x R3/R, A%
Vs —Vee X Ri1/(Ri1 + Ri2) 'V
‘/4 —0.5V x R13/R14 Vv
VL ‘/leak \%
gz'a 1/RCa S
gL 1/ Riear S
OPAMP UAT741 —
Vee 10 Vv

Mutiplier ~ AD633 -

Table 2.1: Fquivalence between the parameters of the model and the param-
eters of Eqs. (2.6) and (2.7).

to adjust the gain and the bias. The output signal is fed into an analog mul-
tiplier (AD633) and multiplied by the tension V,,. Except for the explicitly
specified cases,the parameters used for all the experiments are shown in the
Tab. 2.1. The output of this block is the current I, which expression is

]Ca = gzvaM(Vm) X (Vm — Vca). (28)

The potassium current is quite similar, but now we use an analog integrator
(a simple RC circuit). The expression of the ionic current can be described
with the following two equations:

dN

O = =N+ G (V). (2.10)

The last block, the integrator, sums all the ionic currents and integrate
them into a capacitor. The output of this circuit is the membrane voltage
V,n. Thus, this variable is the solution of the following differential equation,

dV,

CW:_IK_[CCL_[L—’_I) (211)

where [, is a simple ohmic leak. In the following section we will explore the
properties of this circuit.
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2.3 Experimental bifurcation diagrams

In this section the equations used for the implementation of the circuit are
slightly different. We have scaled the voltage in Egs. (2.6) and (2.7) so that
the observation of the voltage variable is made much easier. The scaling
factor is a non-dimensional number o = 0.120. We can give the values of
the fixed parameters that will be used next, the other parameters will be
specified in each case: Vg, = 1V, Vg = —0.66V, V;, = 0.5V, C' = 20uF', and
01 = 1,U,F .

The experimental setup for the measurements of the bifurcation diagram
is a simple ADC converter board. For a fixed set of parameters we construct
the bifurcation diagram as a function of a varying external current. We slowly

Stable Node
02—

Tangent

Limit Cycle

Figure 2.4: (a)Ezperimental bifurcation diagram example in one dimension
obtained by plotting the maxima and minima of the membrane voltage V,,, as
a function of the excitation current I. There we can observe three different
attractors: two branches of stable fixed points, one of them starting from the
left and another from the right of the panel, and a stable limit cycle (spiking
behavior) coezisting with them between 0.5 and 1 mA. (b) This schematic
diagram is the three dimensional phase space (N,V,,,I) which corresponds
to the experimental bifurcation diagram in (a). We can observe a saddle-
node bifurcation (SN), a subcritical Hopf bifurcation (HP) and a tangent
bifurcation of a limit cycle. The stable branches appear in solid lines while
dashed lines represent unstable branches or unstable limit cycle.
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Figure 2.5: Legends of the notation on the bifurcation diagrams.

increase the current step by step and observe the changes of the membrane
voltage V.

In Fig. 2.4 (a) we plot the maxima and minima of the membrane voltage
to visualize the oscillatory behavior and stable states of the system. In this
figure there appears a saddle-node bifurcation on an invariant cycle (point
SN), a subcritical Hopf bifurcation (point HP) and a limit-cycle (the spiking
regime of the neuron), for clarity we schematically draw the correspond-
ing three dimensional phase space (N,V,,,/) in Fig. 2.4 (b). By collecting a
great amount of these diagrams varying only one parameter and joining these
one-dimensional diagrams in a two-parameter plot we can visualize how the
bifurcations in the system evolve when a parameter is varied. Due to the
complexity of the whole high dimensional bifurcation diagram, we have used
two-dimensional diagrams with one axis being I and the other one being
another parameter of the model. Notice that in the case of the experimen-
tal bifurcation diagrams the unstable states cannot be observed. It is only
possible to capture the stable steady states as well as the stable limit-cycles.

We have chosen three types of bifurcation diagrams which exhibit inter-
esting features, (a) I — V3 plane, where V3 is the activation threshold of the
potassium channel, (b) I — Vj plane, where Vj is the slope of the activa-
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tion function for the potassium channel and, (¢) I — 7 plane, where 7 is the
time constant of the potassium channel. These parameters have a large in-
fluence on the model behavior as we describe below in each case. The Fig.
2.5 explains the principal notations used on the bifurcation diagrams for the
representation of the phase plane of each zone.

2.3.1 [ —V; diagram

In the Fig. 2.6 (a) we have plotted the corresponding bifurcations observed in
the circuit when the parameter I and V3 are varied. The different attractors
and behaviors of the model are specified on the graphics with oscillations and
stable nodes. The bifurcation diagram shows interesting global bifurcations,
such as a Bogdanov-Takens bifurcation (BT point on the panel) and a cusp
bifurcation close to it. In fact, these two bifurcations are so close that at the
selected scale they cannot be clearly differentiated. The first one represents
the transition from a saddle-node bifurcation to a sub-critical Hopf bifurca-
tion, where this last bifurcation always lie near a cusp bifurcation. The cusp
bifurcation appears when three equilibrium points, a saddle point and two
nodes, collapse. In the Fig. 2.6 (b) we have plotted the bifurcation diagram
obtained with the software XPP-AUTO; we have simulated the Eqgs. (2.6)
and (2.7) with the parameters obtained from the circuit. Both diagrams are
very similar albeit some little differences in the location of the bifurcations,
for example the experimental diagram is shifted left from 0.5mA in compar-
ison with the numerical diagram. There are several other differences due to
the imprecisions and the noise in the circuit. The fine bifurcation structure
detailed in Fig. 2.6 (b) is too narrow to be observed in the circuit. The sys-
tem in the magnified region displays two homoclinic bifurcations. The first
one is the homoclinic bifurcation of a stable limit cycle along the line H1
and the second one is the bifurcation of an unstable limit-cycle along the line
H2.In the shaded region we have a stable limit cycle.The Hopf bifurcation
starts with a Bogdanov-Takens bifurcation on the saddle-node branch. The
general aspect and the bifurcations are conserved which manifest that the
circuit is robust. In spiking neurons we have basically two types of excitabil-
ity. The excitability represents the way the neurons begin to spike when an
external current is gradually increased. In the first type of neurons, the class
[ neurons, the neuron begins to spike with an almost zero frequency when the
current is increased. In the class Il neurons, the spiking begins at nonzero
frequency. The change in the excitability of the neuron can be explained
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Figure 2.6: (a) Experimental bifurcations in the I — V3 plane. We observe a
Bogdanov-Takens bifurcation (BT point) and a cusp bifurcation close to it.
(b) The numerical results obtained from the Eqs. (2.6) and (2.7) with the
XPP-AUTO software. The color used for the bifurcations are the same as in
the Fig. (a). Both diagrams look very similar despite some differences on the
place of the bifurcations due to the natural errors and distortions introduced
by the circuit. The general aspect is conserved and also does the type of
bifurcations, which manifests that the circuit is robust. We schematize the
region of the circle which presents a complex bifurcation structure. In the
inset of the figure we enlarge a part of the subcritical Hopf bifurcation. The
numerical simulation and the analog simulation correspond to the following
parameters: T =2 ms, Vy, =02 V, Vo =015 V, V4 =0 V, gj = 8 mS,
96, =4 mS and g, =2 mS.

considering these bifurcations. As is well known, the Morris-Lecar model
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is able to support both class I and class II excitabilities. The change from
the class I to class II excitability comes from a Bogdanov-Takens bifurcation
which set the transition from a saddle-node bifurcation (class I excitability)
to a sub-critical Hopf bifurcation (class II). In our circuit we can control
this parameter easily and so we can switch the type of excitability by only
changing the parameter V3.

2.3.2 [ -V, diagram

This bifurcation diagram which is shown in Fig. 2.7 is quite similar to the
previous one in its structure. We observe the same characteristics and the
same Bogdanov-Takens and cusp bifurcations (the BT bifurcation always lies
near a cusp bifurcation). Moreover, a new type of codimension-2 bifurcation
appears. This is a generalized Hopf bifurcation (also called a Bautin bifurca-
tion) that corresponds to a transition from a sub-critical to a super-critical
Hopf bifurcation [18]. Once again the BT bifurcation changes the excitabil-
ity of the neuron. We have two parameters that permit the control of the
excitability of the model: V3 and V,. As in the Fig. 2.6 we also present the
numerical result for the same set of parameters in Fig. 2.7 (b). The numerical
simulation obtained with XPP-AUTO agrees with the experimental diagram
in Fig. 2.7 (a). Moreover, the bifurcations are the same and their positions
in the phase plane are similar in both diagrams. Some discrepancies appears
between the two diagrams due to the approximations and the nonlineari-
ties in the circuit as well as experimental noise. Nonetheless the diagram
obtained with the circuit is satisfactory and illustrates well the model.

2.3.3 [ — 7 diagram

As it was mantioned before the parameter 7 is very important for the stability
of the system because the dynamics of the potassium current is crucial to
the stability of the model. It represents the time of repolarization of the
membrane, or in other words, the time necessary for the membrane to return
to the resting state after firing of a spike. In fact, by varying this parameter
we can change dramatically the dynamics of the system. The position in
the phase space of the equilibrium points does not depends on 7, but the
stability of each point is affected by this parameter. Figs. 2.8 (a) and 2.9 (a)
show experimental bifurcation diagrams where we observe bistable regimes.
In Fig. 2.8 (a), we have a big zone of bistability. On one side we have the
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Figure 2.7: (a) Ezperimental bifurcations in the I — Vy plane. A Bogdanov-
Takens lies in the plain and a cusp bifurcation is close to it. We found also a
generalized Hopf bifurcation which represents the transition from a subcritical
to a supercritical Hopf bifurcation. (b) This diagram represent the numerical
simulation of Eqs. (2.6) and (2.7) for the same set of parameters. It is clear
that the experimental diagram and the simulated diagram are very similar.
Some mismatches between the two diagrams are due to the nonlinearities
and to the experimental noise. The parameters are as follows: T = 2 ms,
Ve =006V, Vo=015V, Vi, =01V, gi =8 mS, g5, =4 mS and g, = 2
m.S.

bistability with a stable node and a limit cycle and on the other side one
with two stable nodes (along the line ;). This particularity can be used for
the design of a burster neuron as we will see next. Figure 2.8 (b) shows the
numerical simulation of Egs. (2.6) and (2.7). This simulation validates the
diagram obtained with the circuit, and the results are very close.

By modifying the parameter V; we obtain the new bifurcation diagram
shown in the Fig. 2.9 (a). This diagram displays similar characteristics as the
previous one. The saddle-node bifurcation on the limit-cycle is independent
of the parameter 7. In this figure we have an interesting bistable zone along
the line [y where a limit-cycle and a stable node coexist. The transition
from one to another occurs through a subcritical Hopf bifurcation and a fold
bifurcation. By using this particularity an elliptic burster can be constructed
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Figure 2.8: (a) Ezperimental bifurcations in the I —7 plane. We have a large
bistable zone represented by the coexistence of a stable node and a limit-
cycle (spiking behavior) due to a subcritical Hopf bifurcation. (b) This figure
is the numerical result of Eqs. (2.6) and (2.7) with the same parameter
set. The figures are almost identical but there is a systematic difference on
the place of the bifurcations. The saddle-node bifurcation obtained with the
circuit is shifted from 0.3mA to the right. The black line marked as H on the
diagram is the homoclinic bifurcation of a stable limit-cycle, which bifurcation
15 difficult to observe in the circuit. This limit cycle region is too narrow.
The parameters are as follows: V3 = 0.06 V, V3 = 0.12 V, Vo = 0.15 V,
Vi=0YV, gx=8mS, g5, =4 mS and g, =2 mS.

as it will be described in the next section. Along the line I3 we have a
bifurcation pattern identical to the one shown in Fig. 2.8 (a) along the line
[;. On one side we have a bistability between a limit-cycle and a stable node
and on the other between two stable nodes, although the transition from one
to another in this case occurs through a saddle-node bifurcation. We have
verified also this diagram with the numerical simulation presented in Fig. 2.9
(b) and both graphics correspond well.

The bifurcation diagram appearing in Fig.2.10 (a) presents a small bistable
zone (the small triangle) where a stable node and a limit cycle coexist. If
the system is on the stable branch for example at the point 1 on the di-
agram, when we increase the external current the attractor changes to a
spiking regime after a saddle-node bifurcation (see the point 2). On the
other hand, when the current decreases the stable limit cycle collapses with
an saddle point. The system describes a hysteresis loop as the trajectory is
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Figure 2.9: (a) Experimental bifurcations in the I — 7 plane. This diagram is
very close to Fig. 2.8 (a). In this figure we have changed slightly the parame-
ters Vy of the model and plot a new bifurcation diagram. We have the bistable
zone with a stable node and a limit-cycle, and a new zone appears where a
single limit-cycle (spiking behavior) is present. (b) The diagram plotted is the
numerical result of the model equations with the same parameters used in the
circuit. The two diagrams are very similar, while some differences appear in
the diagram owing to the noise and the nonlinearities present in the circuit.
The black line marked as H on the diagram is the homoclinic bifurcation of
a stable limit-cycle. This limit cycle region is too narrow to be observed with
the circuit. The numerical values of the parameters are as follows: V, = 0.1
V,Vs=012V, V5 =015V, V; =0, g}y =8 mS, g5, =4 mS and g, = 2
msS.

different if we increase or decrease the external current. Although this region
of bistability always remains in a narrow range of parameters it can be a
good candidate for the design of the square wave burster. The numerical
simulation displayed in Fig. 2.10 (b) with XPP-AUTO matches the result
obtained experimentally. The homoclinic bifurcation seems longer than in
the experimental diagrams and this region remains small but it is sufficient
for our purpose.
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Figure 2.10: (a) In this diagram we have a bistable zone with a limit cycle
and a stable point. The transition from the limit cycle to the resting state
occurs through a homoclinic connection to an unstable point. We can observe
in the insets the different phase portrait and the attractors of the regions of
the bifurcation diagram. The zone of bistability remains very small and is
difficult to find out experimentally. (b) The figure shows the numerical result
of Eqs. (2.6) and (2.7) with the same parameter set. The region of bistability
in the triangle appears to be larger than in the experimental diagram, but
in numerical simulations the noise is not present. So the region appears
greater. The numerical values of the parameters are as follows: Vy = 0.07 V,
V3 =0032 V, Vo =015V, V} = —0.028 V, g} = 8 mS, g5, = 2.6 mS and
gr, = 2 mS.

2.4 The design of bursters

The previous experiments are the basis for the implementation of some mod-
els of bursting behavior. Since a burster works by switching with two pseudo-
stable attractors (a limit-cycle and a stable node for example), we have to
spot the bistable zones of the parameter space. Here the previous experimen-
tal work is essential, since we can visually find out the bistable regimes of the
neuron model. So, the first step is the search for bistable states where we can
switch easily from one attractor to another by simply varying the external
current. In the previous diagrams we have to look for a bistable regime along
a horizontal line. For example, following the line I in Fig. 2.9 (a) we have a
bistable behavior between a stable node and a stable limit-cycle. When the
external current is moved a hysteresis loop appears between the resting state
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and the spiking state (Fig. 2.11). This hysteresis loop leads to transitions
from the resting state to the spiking regime and back. Once we have chosen
two coexisting states as good candidates for the switching, we introduce a
new differential equation in our system to allow this switching to take place
autonomously. This new equation governs the slow current 7, and is given
as follows:

dl 1

a_ 1 oy RO s 9.12
iR th) =T (2.12)

The introduction of the new variable I(t) allows us to switch the whole dy-
namics from one attracting state to another one by a suitable election of
values of R, and V;,. Observe that now [ is really an “internal” variable of
the extended dynamical system. Equation (2.12) is implemented by using
a simple operational amplifier in integrator mode. In order to develop our
method, we start by marking the interesting bistable zone on the bifurcation
diagram (horizontal line /; on Fig. 2.8 (a) and extracting the corresponding
projection in one dimension (current vs amplitude on Fig. 2.4). Setting the
voltage threshold Vi, in Eq. (2.12) is a rather difficult task because the inte-
grated current must decrease when the burster is spiking and must increase
when the burster is in its resting state. The parameter is tuned manually so

Figure 2.11: Hysteresis loop of the burster. Observe that the system switches
from a resting state to a spiking regime and back when the current I is
changed. When the system is in the spiking regime, the current changes
so that the state approaches the edge. As the system crosses the bifurcation
on the edge the system returns in a resting state. The current in this state
changes its direction and the state approaches the lower edge. The burster
oscillates between these two states.
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that we obtain the desired behavior. The resulting waveform of this current
for the square-wave burster is shown in Fig. 2.12. Notice that the current
I is increasing when (V,,,) (where (-) holds for the mean value) is above the
threshold and decreasing when it is below V},. The second parameter R is
important for the time constant of the equation; it determines the speed of
the slow driving current. If this parameter is set too high, the oscillations are
weak. If the constant is too low the system can switch to another attractor.

We present in the next sections three different kind of bursters whose
differences are due to the bifurcations involved. Biological equivalence exist
for two of the three bursters. The square-wave behaves like the pancreatic
(-cells and the Hindmarsh-Rose model. The elliptic bursting phenomena
have been observed in rodent trigeminal interneurons.

2.4.1 Square wave burster (“Fold /homoclinic” burster)

First, we have built the well-known square-wave (or fold /homoclinic) burster
[16, 19]. This burster displays oscillations between a stable limit cycle and
a stable node. In Fig. 2.10 (a) we have found a small region of bistability
between an oscillatory state with an homoclinic connection and a stable node.
If we sketch the behavior of V,,, along the line Iy drawn in Fig. 2.10 (a), a
graph similar to the one displayed in Fig. 2.12 (a) is obtained. The bistable
regime can be seen on the bifurcation diagram appearing in Fig. 2.12 (a).
Although this bistable regime only occurs in a narrow range of the variable 1
we can apply the technique to this case. Here the transition between the two
states takes place through a fold bifurcation for the passage from the resting
point to spiking activity and through a homoclinic connection of the saddle
point for the transition from firing to resting.

In Fig. 2.12 (b) we have an example of a bursting oscillation between
two attractors in the three dimensional phase space. We also plot the cor-
responding time series of the voltage in Fig. 2.12 (c), where the temporal
characteristics of the bursting are clear.

2.4.2 Elliptic burster (“subHopf/fold cycle” burster)

We have simulated also the elliptic burster. Once again the bistability is the
key point. But in this case the nature of the bifurcation is totally different.
In Fig. 2.13 (b) we have a representation of the oscillation in the full three
dimensional phase space. The solid red line corresponds to the trajectory
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Figure 2.12: (a) Dynamical behavior of the square-wave burster. The figure
represents the bifurcation diagram of the Morris-Lecar model as a function
of I. The bursting regime appears through a fold bifurcation for the passage
from the stable node to the limit cycle and through a homoclinic connection
when the cycle looses its stability and gets back to the resting state; (b) 3D
view of the orbit in the space (I, N,V,,). The parameter values are as follows:
7=003s V; =007V, V3=0028V, V=015V, V; =—-0.032 V, gj; =8
mS, g&, = 1.38 mS, gr =2 mS, Cy = 1puF, Ry, = 4.3 k2 and Ry, = 13.7 K.
(c) Time series of the membrane voltage corresponding to the output of the
circuat.

in phase space. The transition from the resting to the spiking regime takes
place through a subcritical Hopf bifurcation and the reverse transition occurs
through the tangent bifurcation where the unstable limit cycle collapses with
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the stable cycle. This bifurcation is also called a “fold cycle”. This kind of
behavior can be seen along the line I in the figure 2.9 (a), where we can see
a bistable region due to the sub-critical Hopf bifurcation. We can configure
this system to oscillate along the line /5.

In Fig. 2.13 (b) we represent the experimental phase space, which consists
in a three dimensional space spanned by the membrane voltage, the current
and the potassium channel activation. In Fig. 2.13 (c¢) we have plotted the
time series of the voltage V,,. The Fig. 2.13 (d) depicts the variation of the
excitation current.

2.4.3 Circle/Fold cycle burster

This kind of bursters is slightly different from the previous one. There are
three different transitions. We have drawn the line I3 on the bifurcation
diagram in Fig. 2.9 (a). Along this line we have some different bistable
states. First we observe the bistability with two stable nodes and then with
a stable node and a stable limit cycle.

The bursting starts after a saddle-node bifurcation on a limit-cycle. The
electric current goes increasing until the tangent bifurcation (the fold-cycle
bifurcation) takes place and then the system gets back to a new stable node.
The current is now decreasing and is reduced until the sub-critical Hopf
bifurcation occurs. Once this bifurcation is crossed the system returns to
the first stable state and the cycle starts over. We summarize this complex
behavior in Fig. 2.14 where we can clearly see how the sequence of attractors
is followed by the dynamical system. In panel (a) we have plotted a schematic
view of the phase space. In (b) a view of the experimental attractor in the
three-dimensional phase space is depicted. The panel (¢) shows the temporal
evolution of the membrane voltage as the system carries out some cycles of
bursting.

2.5 Conclusions

We have designed and built a circuit that approximates the main dynamical
regimes of the well-known Morris-Lecar neuron model. By analyzing the
behavior of this system in the phase space in terms of some of the parameters
of the model we have been able to obtain different bursting behaviors where
each one of them is characterized by the visiting of a particular succession of
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Figure 2.13: (a)Bursting behavior of the elliptic burster. The bursting is
produced through a sub-critical Hopf bifurcation. The gray shade represents
the limit cycle and the solid line the stable state. (b) View of the phase
space of the system, the variables are (V,,, N, 1), parameter are as follows:
T =007 s Vy, =007V, V3 =012 V, Vo, =015V, V; =0, g}y =8
mS, gt, = 4 mS, g = 2 mS, R, = 174, Cy = 1uF, K and R, = 10
kQ. (c) Time series generated by an elliptic burster built from the Morris-
Lecar circuit. Observe the growing of the oscillation as the sub-critical Hopf
bifurcation is approached. (d) Time series of the current I.

attractors of the subsystem by the evolving phase point. Thus, our strategy
provides a method to investigate the features of relatively simple dynamical
systems giving rise to rather complex cycles in the phase space that appear
as the phase point transiently visits a given set of the stable attractors of the
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Figure 2.14: (a) Dynamical behavior of the circle/fold burster. The transi-
tion from the resting to the oscillatory state is made through a saddle-node
bifurcation on a limit-cycle. The cycle collapses by a fold bifurcation and the
system remains on a stable state until it returns to the resting state trough
a subcritical Hopf bifurcation. (b) Experimental measurement of the attrac-
tor as view in the three-dimensional phase space (V,,, N,I). The parameter
values are as follows: 7 = 0.026 s, V, =0.07 V, V3 =0.12 V, V5, =0.15 V,
Vi=0, gk =8mS, g5, =4 mS, g =2 mS, Cy = 1puF, R, = 4.3 K2 and
Ry, =10 kQ (c) Time series of Vy,. (d) Time series of the current I

dynamical subsystem.

We have explored the bifurcation diagram of the simplified ML model to
point out and extract the dynamical behaviors. We are looking for bistable
states and hysteretic phenomena in the system. An appropriate selection of
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the attractors and a slow drive current forms a complex oscillator with the
characteristics of a bursting neuron. Such a circuit can be implemented in a
VLSI circuit with some modifications, in such a way that a large assembly
of coupled bursting neurons can be simulated.

The implementation of the method by means of an electronic circuit in-
troduces a great flexibility in the real time control of the characteristics of
the system. In particular, this method allow us to carry out a continuous
control of the behavior of the system by allowing the continuous observation
of the system’s output as the parameters are changed. The use of electronic
circuits is an advantage in this context because they are physical devices that
operate in a real environment and thus they are subject to a great deal of
uncontrollable noise. This is in fact the environment in which evolve real dy-
namical systems as neurons and so, our method could provide an approach
to analyze the robustness of the dynamics of neuronal models under real
situations.
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Chapter 3

The analog simulation of
genetic networks

3.1 Molecular biology and nonlinear dynam-
ics

The cells are systems with a great complexity due to the existing high number
of interactions of diverse nature between their numerous components, partic-
ularly between proteins and genes. The understanding of these interactions
is important, since they regulate the fundamental cellular processes. Many
years of experimentation have been necessary to reveal the molecular bases
of these processes. Recently, a new complementary way for the study of the
interactions between genes and proteins based on the design of synthetic ge-
netic networks began. The creation of these artificial genetic networks, much
more simple that those operating in the cell, is contributing to decipher the
existing relation between the coordinated activity of groups of genes and
the cellular functions. This has given birth of the so-called synthetic biol-
ogy, where nonlinear dynamics, physics of complex systems, engineering and
molecular biology play an important role.

The climax of the genome project, which most notable success has been
the complete sequencing of the human genome, among other species impor-
tant for the experimental biologists, is the knowledge of the all the genes that
compose the genetic material of a organism. Moreover it led to a new phase
of the project: the postgenomic era.

The interest is now focused on the discovering of the organization and

41
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the type of the interactions amongst the proteins, which are the product of
the expression of the genes. Each protein is in charge of a function which
can induce changes in other molecules in the cell, as for example the enzymes
or even hormones. This molecules can be viewed as the nodes of a network
where the interactions are the links. It forms a complex network of regulation
interaction which are responsible for the functioning of the cell. The works
on the regulation and the expression of the genes in the cellular processes
received a strong impulse in the 1960’s decade with the publication of the
work of the French scientists Francois Jacob and Jacques Monod. With the
establishment of the operon theory, some of the fundamental mechanisms
of the gene regulation has been unveiled, as for example the differential ex-
pression of the genome in different biological process, such as the cellular
development and differentiation.

The introduction of the recombinant DNA technique produced a notice-
able change in the biochemistry and in the experimental molecular biology
due to the possibility to clone, design and synthesize new genes. These genes
can be introduced later in an organism in order to be expressed. Another
important technology is the analysis of the the genetic expression profiles
in DNA microarray which allows the observation of the expression level of
all the genes in some particular metabolic conditions. This kind of analysis
allows to define groups of genes which are coordinated (corregulated genes).
This experimental setup improved the knowledge of the regulation of the ge-
netic expression. Nevertheless, the structure and the function of this natural
genes networks needs new techniques and new tools for the study.

Recently, the design and the construction of artificial networks has been
proposed to study biological processes, such as oscillations of the metabolism.
These networks, simpler than the natural ones, can contribute to the under-
standing of the molecular bases of a specific function. For its simplicity, the
synthetic genetic networks can be synthesized in a laboratory and simple
mathematical models can be constructed in order to obtain qualitative and
numerical analysis. These works, among others, gave birth to the so-called
synthetic biology which integrates several scientific fields such as non-linear
dynamics, complex systems physics and bio-molecular engineering. This is a
new emerging field with a strong interdisciplinary component in which the
future advances seems promising.

In this context, we propose an alternative way to design and analyze
the genetic networks. The approach of the analog circuit allows to view the
logical units of the network but with a determined dynamics. The interesting
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point here is that instead of using the boolean approach, we can interconnect
unit with a specific dynamics in order to design the objective dynamical
system.

The organization of the chapter is as follows. In Sec. 3.2, we introduce
the electronic repressilator. It is a simple analog electronic circuit that mim-
ics the behavior of a well-known synthetic gene oscillator, the repressilator,
which represents a set of three genes repressing one another. In Sec. 3.3,
synchronization of a population of such units is thoroughly studied, with the
aim to comparing the role of global coupling with that of global forcing on
the population in Sec. 3.4. In the Sec. 3.5, we propose the implementation
of two different genes network. The first one is a simple electronic version of
a genetic toggle switch, which is a simple network of two mutually repressor
genes, where control by external forcing is also analyzed. The second one is a
auto-repressive gene network in which the delay of the self-repression induce
oscillations.

3.2 Analog simulation of the repressilator

One of the main advances brought about by the advent of synthetic biology
is the design of artificial gene regulation networks that mimic the behavior
of natural ones. One could think that this simplifies the analysis of cell be-
havior by isolating in a modular way relevant network modules, which can
therefore be studied independently of other complex cellular processes that
in the natural case are intermingled with the module of interest. This is
certainly the case, and it has been the main motivation behind the design of
certain synthetic gene networks, such as oscillators and switches. A paradig-
matic example is the repressilator, a set of three genes (and their respective
proteins) which repress one another in a circular way, leading to clear-cut
oscillations in the protein expression. In spite of their doubtless advantages,
experimental studies of these synthetic systems are still difficult, due both to
the inherent complexity of molecular biology experiments and to our lack of
knowledge of the kinetic parameters of the specific network components. For
example, mutual synchronization of globally coupled populations of repressi-
lators has not yet been observed, in spite of theoretical predictions and of the
interest of the phenomenon as a model of synchronized rhythm generation in
multicellular circadian clocks. Here we take another approach, reproducing
the dynamical behavior of the repressilator via a simple analog electronic
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circuit, and using it to investigate experimentally the synchronization of a
set of repressilators, with an emphasis on the comparison between the effect
of global coupling and global external forcing, two ingredients that can real-
istically be expected to exist in natural multicellular clocks. The usefulness
of the approach is further demonstrated by the design of an even simpler
circuit representing a genetic toggle switch, and its use to study the effect of
forcing on a population of such devices.

Genetic regulatory networks have been well studied in living microorgan-
isms such as bacterias or viruses since the early 1960s [1]. They rely on the
fact that certain specific proteins are able to influence and regulate the ac-
tivity of DNA transcription. The final product of this DNA transcription is
another protein, which could influence in turn the expression of yet another
gene (or of its own gene, or even that of its transcription factor). This process
leads to networks of genetic interactions, where proteins and genes can be
interpreted as nodes, and the interactions between them as links [2]. These
regulatory networks provide the essential control of protein expression in the
cell.

Transcription regulation can arise in a positive or negative way. Negative
regulation occurs when a protein hinders, or even blocks, the transcription
process, as illustrated in the Fig. 3.1. For instance when a protein binds at
a certain location of the DNA chain, called promoter, it blocks the access of
RNA polymerase, which is the enzyme that transcribes DNA into messenger
RNA. This kind of proteins are called repressors. An example of repressive
regulation is the tryptophan ¢rp operon in the bacterium Escherichia coli (E.
coli), where the presence of tryptophan proteins inhibits the transcription
of the trp operon [3]. On the other hand, positive regulation results from
biochemical processes that enhance protein transcription, or at least allow it.
The regulation of the lactose operon in E. coli is a good example of positive
regulation [1]. The presence of [-galactosidase in the bacteria’s medium
speeds up the transcription of the operon, and consequently the bacteria can
transform lactose in glucose.

These mechanisms of positive and negative regulation are similar to con-
trol mechanisms in electronic engineering. Negative feedback regulation is
a basic system of control that enhances the stability and the resistance to
noise in gene expression [4] .

Gene regulation is the basis of the design of synthetic regulatory path-
ways. In our context, synthetic means that the genetic network does not
exist in a natural form. The first synthetic genetic networks, a genetic toggle
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Figure 3.1: Graphical illustration of the transcription process (a), the activa-
tion of a particular gene (b) and the repression of the same gene (c).

switch [5] and a genetic oscillator [6], have been presented in two seminal
articles. In Ref. [5], the combination of two mutually repressing genes forms
a bistable system whose state can be changed due to an external inducer
(e.g. a protein or a temperature shift). When one of the transcribed proteins
is produced, the other one remains silenced. The switching occurs when the
inducer (external influence) is applied beyond a certain threshold, making
the system jump to the opposite state. After a jump between states, which
consists in a variation of the protein concentration, the system maintains
the protein level. One can say that this genetic switch has memory, since it
remains in its current state until an external inducer acts again.

The second paradigmatic system is the repressilator [6], which is in fact
a genetic oscillator and where three repressor genes are placed in a ring,
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with each repressor inhibiting the production of the following protein with
a certain delay. In Fig. 3.2 (a) we show a schematic representation of the
interactions of this genetic network, where blue arrows represent promoters.
The product of each repressor gene (in green) binds to the next promoter
and inhibits production of the corresponding protein. This configuration
leads to oscillations in the expression of the three proteins, with a 27/3
phase delay. Driven by this network motif, different bacteria oscillate in-
dependently, with different phases and slightly different frequencies (due to
intrinsic cell variability) [6]. Synchronization of these rhythms would allow
global oscillations in the cell population, thus simplifying the observation of
the phenomenon, which currently requires single-cell tracking. Intercell com-
munication through quorum-sensing has been proposed as a mechanism of
synchronization [7], but no experimental verification has been made so far.

In this chapter, we propose an analysis of the dynamics of these two
genetic regulatory networks (repressilator and toggle switch), making use
of nonlinear analog electronic circuits. Our circuits allow a one-to-one cor-
respondence between the structure of the genetic and electronic networks,
and their analog character extends this correspondence to the full dynamical
behavior. An evident benefit is that the electronic circuits are easier to imple-
ment experimentally than genetic circuits. The natural parameter mismatch
in the living cell is reproduced by component dispersion in the electronic cir-
cuits. We study the synchronization of a population of repressilators due to
global coupling. Additionally, in order to improve the synchronization of the
genetic oscillators we add an external periodical forcing to every repressila-
tor. We analyze the influence of external forcing on synchronization when the
frequency and the amplitude of the external signal are modified. The results
obtained with electronic circuits should be extensible to synthetic genetic
networks, where external forcing could be implemented via a temperature
periodic shift, or by periodic injection of a repressor protein.

3.3 The electronic repressilator

Previous work on electronic genetic networks used hybrid digital-analog cir-
cuits based on AND and OR functions [8]. Here we propose the use of
all-analog circuits whose structure and dynamics are as similar as possible to
that of the corresponding genetic network. Fig. 3.2 (b) shows the electronic
setup of the analog repressilator. The output of the three MOS transistors
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Figure 3.2: (a) Network architecture of a synthetic oscillator, the repressila-
tor. Three repressor genes are consecutively connected by negative feedback.
Promoters (in blue) of each gene (in green) are repressed by proteins (cl,
Lacl and TetR) transcribed from the previous gene. (b) Electronic setup of
the analog repressilator. Only three kind of elements are required: resistances,
MOS transistors and capacitances. The output of each transistor corresponds
to the level of each repressor protein. (¢) Dynamics of the electronic repres-
silator. Time series (displaced in the vertical axes to allow comparison) of
the three analog protein concentrations. They oscillate at the same frequency

but phase shifted by 2r /3.

correspond to the level of the three repressor proteins of the repressilator.
The numerical values of the resistances, and capacitances are indicated in
Table 3.1. Two reasons have motivated this particular design. First, the
simplicity of the circuit, which is composed of basic electronic components.
Second, the fact that the MOS technology allows the use of the analog re-
pressilator in integrated circuits.

The N-channel MOSFET transistors of Fig. 3.2 (b) can be viewed as
controllable switches. If the tension applied to the gate exceeds a certain
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Symbol Parameter Values Units
R; Internal resistance 1.0 £ 10% kQ
Ci Internal capacitance 1.0 + 20% wE
T; Transistor 2N7000 — —

Vee Voltage source 3.227 A%

R Coupling resistance  from 0.130 to 30 k2

Table 3.1: Numerical values of the electronic components used in the experi-
ment

threshold voltage, the transistor switches off its output, leading to an output
voltage close to zero (the transistor has very low output impedance). In
this case, the tension on the gate acts as a repressor of the output voltage,
similar to what happens with a repressor protein. When the gate voltage V5
falls bellow the threshold, the voltage V3 associated to transistor T2 begins to
increase and the transistor T2 acts as a high-level impedance, that is, we have
an open circuit. The protein level is represented by the output voltage of the
transistors (and capacitors). In the absence of repression (no tension on V5),
the transistor voltage V3, which in turn will be the repressor of the following
transistor, grows until it reaches its maximum value (the supply voltage V,..).
On the other hand, if repression rises, due to an increase of voltage at the
previous transistor, the output voltage falls to zero. Summarizing, we can
say that the three transistors are repressing themselves in the same way as
it happens in the repressilator genetic network. This kind of configuration
is responsible of the oscillations at the three output voltages/protein levels
and is known as a ring oscillator.

We can derive the differential equations of this model by considering a
basic unit (equivalent to a single repressor gene), which is made of a RC
circuit connected to a voltage source and a transistor [see red square at
Fig. 3.2 (b)]. Without any voltage V5 on the gate of the transistor T2, it
will behave as a simple RC' circuit. The transistor will be turned off and
the capacitor will be charged until it reaches its maximum value. If the
gate voltage increases and reaches a certain threshold Vj;, the transistor T2
“cuts” the output tension and the capacitor discharges rapidly through the
transistor. From this simple circuit we can derive the differential equation of
the variable V;

dVs

RQCQE =—-V5+ %&f(%)? (3'1)
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where the function f(x) depends on the transistor parameters and should be
sigmoidal shaped if we want to obtain oscillations at the transistor’s output.
A good candidate for f(x) is

«

f(f):m,

(3.2)

where «,  and n are parameters depending on the MOSFET transistor.

This corresponds to the Michaelis-Menten equation of growth of order n.
The complete set of equations of the repressilator reads

dVs

Rlcld—; =—-Vo+ Vccf(vl) (3-3)
dV-

R202d—; = V3 + Vief(Va) (3.4)
dV;

RyCy—t = =V + Veef (Va). (3:5)

And the time series of the circuit can be seen in Fig. 3.2 (c¢), where the three
repressor levels evolve with a phase difference of 27/3. When a repressor is
active (e.g. T1 voltage), the following repressor (T2) is inhibited and the
third increases (T3). The increase of T3 leads, in turn, to the decrease of T'1
voltage. The chain repression is responsible of the oscillations of the whole
system, both in electronic and genetic repressilators.

3.4 Alternative implementation with opera-
tional amplifiers

Operational amplifiers are common components in a wide variety of electronic
circuits. One of their applications is the construction of modules which com-
pute basic operations such as addition and subtraction. Within this frame-
work we propose an electronic circuit that reproduces the global behavior of
the repressilator. The design is shown in the left plot of Fig. 3.3 and is based
on the same principles as the biological repressilator, namely three dynamical
elements coupled in chain with an inhibitory interaction. The electronic im-
plementation consists on three basic units made of one RC' integrator circuit
and one UAT741 operational amplifier (OP-Amp). Each voltage measured at
the output of the RC circuits (marked as V; in Fig. 3.4) is equivalent to the
concentration of each repressilator protein. This voltage is further fed into
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Figure 3.3: (a) Electronic setup of the analog repressilator. We used C; =
lp F, Ry = 1kQ) and UA741 Op-Amps. (b) In the right plot we show the

dynamics of the system.

the OP-Amp representing the promoter of the following gene. The output
voltage V; is connected to the negative input and the positive input is set to
ground, therefore the OP-Amp is used as a voltage comparator. The output
of the amplifier can take only two values: V,; and V., which are the posi-
tive and negative power supply of the OP-Amp. The outputs V; are linked
through the RC' circuits in a closed chain, in the same way as the genetic
network shown in Fig. 3.2. The differential equations describing the behavior
of the voltage of each unit is expressed by:

dV;

RiC— = =Vi+ Hy(=V3) (3.6)
dV-

chzd—j = Vo + Hy(—W1) (3.7)
dV-

Rgcgd—j = Vs + H,(—Va), (3.8)

where H,(z) represents the comparator function of the OP-Amp, which can
be represented ideally by a step function:

Hy(x)=Veo if <0 (3.9)
Hv(x):‘/cl Zf x> 0.

The supply voltage is asymmetric, in our case the lower voltage V.o is set to
a value slightly below 0 V. In this way the behavior of the circuit is closer
to the original genetic oscillatory network and does not display negative
voltages. The positive supply is set to V,; = 12 V. When an output voltage
(for example V5) increases, it induces a reduction of the following output
voltage (V3), since it is injected at the negative input of the corresponding
Op-Amp (3 in this case), crossing the threshold V;, = 0V. Following the
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chain, V3, which is decreasing, will enhance the value of V; which in turn
will decrease V5. This mechanism leads to an oscillatory behavior (see right
plot of Fig.3.3) with a frequency and amplitude that depend on the OP-Amp
internal parameters but also on the value of R; and C;.

3.5 Coupling electronic repressilators

One of the questions raised by the seminal paper of Elowitz et al. [6] is
the way in which a population of repressilators might be synchronized. It
has been observed that each cell of a colony of repressilators oscillates at its
own frequency and phase, preventing the occurrence of global oscillations.
Intercellular communication via quorum sensing [9, 10] has been proposed as
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Figure 3.4: Ezperimental time series (d,e,f) and probability distribution func-
tion (pdf) of the oscillation periods (a,b,c) for a population of 16 repressi-
lators. The coupling strength increases when the resistance decreases (the
currents between the coupled circuits flow easier). In this figure we show
three cases starting from low coupling (upper figures) to high coupling (lower
figures). From upper figure to lower figure we have: low R = 5.1 k2 (a,d),
intermediate RS = 2.2 kKQ (b,e) and high RS = 0.24 kKQ coupling (c,f). Note
that the coupling is measured by the inverse of R{ in such a way that when
R{ decreases the coupling increases.
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a way of coupling repressilators [7], with the aim of observing global oscilla-
tions of the colony. In this section, we reproduce the numerical observations
of [7] using a collection of globally coupled electronic repressilators. The
internal parameters of the circuits are adjusted to make them oscillate at dif-
ferent frequencies, and a global coupling is introduced through a resistance
RS placed at the output of the first transistor (T1) of each repressilator. All
coupling resistances are connected to a common point, allowing an exchange
of information about the dynamical state of the repressilators through the
intensities of each branch. The coupling intensity is controlled by adjusting
the values of R{, which are set to be the same: coupling increases as the
coupling resistance decreases. The experimental setup is composed of 16
coupled electronic repressilator as shown in the Fig. 3.6. One of the dynam-
ical variable of the 16 circuits is recorded with a A/D converter board with
16 inputs.

L 3 _
S i
15 2 s _
2 B R
L= 1 i
g > - | a
g %8 % 5 10 15 B
% i time (ms) i
8 ool 3 — 5
g s, 2 V . 8 |
o S \| 0 / W 2
e = | / =
~ 045 1 : 0
Sl q“rl\ > 10 15 |
0O 5 15 , time (ms)
02— time (ms) —
i £ i
0 Il L1 1111l - ‘ Il L1 11111l
1e-06 0.001 1

1/Rcoupling (Q-l)

Figure 3.5: Synchronization transition of a population of electronic repressi-
lators for increasing values of the coupling parameter. An order parameter
R (see Eq. (3.10)) close to one indicates synchronization of the population
of repressilators for values of 1/RS¢ > 0.001Q71. This figure shows the char-
acteristic transition to synchrony of a population of coupled oscillators when
the coupling is increased.
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Figure 3.4 (d,e,f) shows the temporal evolution of a population of 16
electronic repressilators for increasing coupling (that is decreasing coupling
resistance R°). Time series correspond to the voltage at the output of the
first transistor. Panels (a,b,c) of the figure show the probability distribu-
tion function (pdf) of the period between oscillations. For low coupling
(RS = 5.1 k), repressilators oscillate unsynchronized at their own frequency
(upper plots), and the pdf has a wide distribution of periods. Intermediate
values of coupling (R{ = 2.2 kQ2), show a partial entrainment (central plots),
which is reflected by the appearance of a peak at the pdf. Finally, when
coupling is further increased (R{ = 0.24 k(2), we achieve synchronization of
all repressilators (bottom plots), denoted by the unique peak at the pdf. It
is worth noting that repressilators oscillate not only at the same frequency
but also at the same phase, a fact that can only be observed at the time
series of the voltage as shown in Fig. 3.4 (e). Our experimental observations
agree qualitatively with the numerical simulations of [7] and confirm that
global coupling would be a suitable way of obtaining synchronization of a
colony of repressilators. Figure 3.5 shows a systematic study of the influence
of coupling in the synchronization of the population of repressilators. We
have evaluated the order parameter R given by the expression

(VZ) — (Vau)?

where V5 ;(t) corresponds to the voltage at the T1 output of repressilator i,
(---) indicates time average and ~~- denotes average over the population of
repressilators. Low values of R correspond to the absence of coherent fluctu-
ations of the system, while R close to the unity indicates a high coherence of
the oscillations. Figure 3.5 corresponds to the classic synchronization phase
transition predicted by Kuramoto [11] in coupled phase oscillators [12], and
has been reported experimentally in coupled electrochemical oscillators [13]
and in numerical simulations of a population of repressilators [7].

3.6 Forcing electronic repressilators

Synchronization of a population of repressilators by global coupling, reported
above for our analog electronic circuits, has not yet been reproduced in a real
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biochemical setting. In this section we propose a parallel source of entrain-
ment, which can be provided by external influences [14]. An extra motiva-
tion in our case arises from the behavior of circadian rhythms, biochemical
rhythms with a period close to 24 hours that have been observed ubiquitously
among living organisms [15]. In the absence of external cues, the internal
rhythms of such organisms drift with periods close to (but different from)
24 hours, but in the presence of external forcing they become perfectly en-
trained to the external period. In many organisms, the source of external
forcing has been identified to be a variation of the light due to night and day
cycles. Indeed, the molecular basis of the effect of light on different circadian
biochemical networks has been unraveled [16]. The question on whether such
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Figure 3.6: Schematic representation of the repressilator population. The
coupling among the repressilators is controlled with the resistance R.. A
function generator is connected to the central node so that all units receive
the same forcing. The amplitude of the forcing can be controlled with the
amplitude of the generator Vy or with the resistance Ry.
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external forcing is enough to induce the synchronization between circadian
cells usually observed in experiments [17], or if coupling between the cells is
needed, is still open. This is precisely what we address here, with the help
of electronic circuits. We consider a population of electronic repressilators
oscillating within a certain range of frequencies, i.e., in the absence of global
oscillations. When a periodic external forcing is applied to the whole pop-
ulation, all repressilators would be affected by the same external frequency,
leading to global oscillations. In our case, the electronic repressilators are
forced by modulating the common point of the coupling resistances. An in-
termediate coupling resistance Ry = 0.24 k(2 is placed between the common
point and an external forcing voltage. The intensity of the forcing is con-
trolled by the amplitude of the external voltage. Fig. 3.6 shows a schematic
representation of a repressilator population where forcing and coupling are
controlled.

This configuration allows to adjust both the coupling and the forcing of
the system and analyze its combined effect on the synchronization of a popu-
lation of repressilators. Figure 3.7 plots the time series (insets) and the power
spectra of the whole system (16 repressilators) for three different forcing am-
plitudes Ay, and a given forcing frequency f; = 240 Hz. We have chosen the
forcing frequency to be within the frequency range of the unsynchronized
repressilators (150 Hz...300 Hz). In order to study only the influence of
forcing, the coupling resistance is set to R = 5.1 k{2, which corresponds to
a negligible coupling [see Fig. 3.4 (a)]. For low values of forcing Ay = 1V
[Fig. 3.7 (a)], repressilators keep their oscillating frequencies, as shown by
the time series and the wide power spectrum. If the forcing amplitude is
increased Ay = 2.4 V, we observe a reduction of the spectrum amplitude
and an appearance of a central peak at the forcing frequency f; = 240 Hz
[Fig. 3.7 (b)]. At the same time, some repressilators seem to be frequency
locked (inset of Fig. 3.7 (b)). Finally, for high enough values of the forcing
amplitude, Ay = 4 V, the power spectrum shows a unique peak, indicating
that oscillators are frequency locked [Fig. 3.7 (c)]. Nevertheless, a phase
shift is kept between them, as can be observed at the temporal evolution of
their output voltages (inset of Fig. 3.7 (¢c)).

Now we consider different forcing frequencies, since it is well known that
nonlinear oscillators can adjust their period of oscillations within a certain
range of frequencies [18]. In Fig. 3.8 we plot the power spectrum and the
corresponding time series for three different forcing frequencies f; and a given
forcing amplitude Ay = 4 V. We have chosen the forcing frequencies to be
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Figure 3.7: Transition to synchronization by an external forcing of frequency
fr =240 Hz: power spectrum of 16 repressilators for varying values of exter-
nal forcing and their corresponding time series (inset). The coupling between
the units is set to a low value, so that we focus on the influence of forcing.
The three figures show the power spectrum for increasing values of the forc-
ing: (a) weak forcing Ay = 1V; (b) intermediate forcing Ay = 2.4V; (c)
strong forcing Ay = 4V. For a weak forcing each unit present a different
frequency of oscillation. At intermediate coupling some of the repressilators
locked their frequency. At strong coupling values the system is synchronized.

inside (b) and outside (a,c) the frequency distribution range of the population
of repressilators. When the forcing frequency is too low, repressilators do
not follow it, and the power spectrum does not show any peak at the forcing
frequency [Fig. 3.8 (a)]. If the forcing frequency enters a region close to
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the natural frequencies of the repressilators, the system is entrained by the
forcing frequency [Fig. 3.8 (b)]. Nevertheless we still observe a phase shift at
the time series (inset). The entrainment is optimum for a central frequency
fr =240 Hz and it is gradually lost when the frequency is further increased
[Fig. 3.8 (¢)].

At this point it is worth noting the differences between forcing and cou-
pling. Figure 3.9 shows the synchronization of the population of repressilators
for the two different techniques. We can see that despite of having the same
power spectrum, i.e., the same oscillating frequency, the time series show a
phase shift between repressilators only for the case of forcing. In fact, we
must distinguish between two different synchronized states. In the case of a
coupled population, we achieve both frequency and phase locking leading to
an order parameter R close to the unity. Nevertheless, when we introduce
external forcing in an uncoupled system, we observe only frequency locking
and the phases of each oscillator depend on its initial conditions. This fact
slightly reduces the efficiency of this technique, decreasing the amplitude of
the global oscillations.

If coupling and forcing are considered at the same time, a better entrain-
ment of the global oscillations would be expected. To check this conjecture
we scan the amplitude and frequency of the forcing signal in the absence or
presence of coupling. In Fig. 3.10 we plot the results obtained with a fre-
quency step of Af = 20 Hz and an amplitude step of AA = 0.5 V. Two cases
are shown; the left plot corresponds to negligible coupling between repressi-
lators, whereas coupling and forcing are jointly considered in the right plot.
For the latter case, we set the coupling to intermediate values [R{ = 2.2 k{2,
