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Abstract

The Rayleigh oscillator is one canonical example of self-excited systems. However, simple generalizations of such
systems, such as the Rayleigh–Duffing oscillator, have not received much attention. The presence of a cubic term makes
the Rayleigh–Duffing oscillator a more complex and interesting case to analyze. In this work, we use analytical tech-
niques such as the Melnikov theory, to obtain the threshold condition for the occurrence of Smale-horseshoe type chaos
in the Rayleigh–Duffing oscillator. Moreover, we examine carefully the phase space of initial conditions in order to ana-
lyze the effect of the nonlinear damping, and in particular how the basin boundaries become fractalized.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The forced and damped Duffing oscillator has served as a prototype model for various physical and engineering
problems such as Josephson junctions, optical bistability, plasma oscillations, buckled beam, and electrical circuit
[1–12]. Since Ueda’s work in 1979 [13], it is known that chaotic responses are commonplace in Duffing oscillators sub-
jected to a harmonic perturbation.

Usually, the phenomenological model of the dissipative force is assumed to be linear with respect to the velocity. In
this context it is appropriate to recall the words of Pippard [15]: There is something of a tendency among physicists to try

to reduce everything to linearity . . . , reality may not always conform to what might wish, rather more so with the damping

forces than with the restoring force in small-amplitude vibrations.

Several phenomenological models of nonlinear damping are given in the literature [8,14]. In this paper, the dissipa-
tive force is assumed to be nonlinear, and its main feature is to be a self-excited system like the Van der Pol oscillator.
We examine the effect of the damping coefficient on the Duffing oscillator by introducing a cubic power of the velocity
in the dissipative function, the so-called Rayleigh dissipation. The resultant equation of motion is given by
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where l is a real parameter, and F and x are respectively the amplitude and the frequency of the external perturbation.
Moreover, the system is invariant under the transformation of x!�x, and t! t + p/x. The Rayleigh oscillator [16] is
like the Van der Pol oscillator save one key difference: as the voltage increases, the Van der Pol oscillator increases in fre-
quency while the Rayleigh oscillator increases in amplitude. This system is of real physical interest, since it might be useful
to model many physical and engineering systems, and in the context of chemical and biological oscillators. Much work has
been done on the mechanisms by which the strange attractors arise and are modified as a parameter of the system is varied.
These mechanisms include period-doubling cascades, intermittency, crisis, etc. As an example of applications of this mod-
el, Yamapi [17] has studied the stability of the synchronization process in a ring of four mutually coupled self-sustained
electrical systems described by the coupled Rayleigh–Duffing equations. In their work, Wang et al. [18] have considered
the dynamics of a micro-electromechanical system (MEMS) device, and it has been shown that with two separate actuators
generating the force, a double-well potential can be formed as those appearing in the Duffing oscillator.

Our goal in this paper is to make a contribution in the study of the transition to chaos in the Rayleigh–Duffing oscil-
lator by using the Melnikov theory, and then see how the fractal basin boundaries arise and are modified as the damp-
ing coefficient is varied. The last part of this work consists of a numerical investigation of the strange attractor at
parameter values which are close to the analytically predicted bifurcation curves. In particular, the case of the two-well
potential is considered.

This paper is organized as follows: In Section 2 we deal with the description, analysis of the model, and some com-
parison with the Rayleigh oscillator. In Section 3, the conditions for the existence of chaos are thoroughly analyzed. A
convenient demonstration of the accuracy of the method is obtained from the fractal basin boundaries, and this is dis-
cussed in Section 4. Finally we summarize our results in Section 5.
2. Description and analysis of the model

We are considering here the Rayleigh–Duffing oscillator, which is given by
€x� lð1� _x2Þ _x� xþ x3 ¼ F cos xt: ð2Þ
This equation possesses a nonlinear damping term and a nonlinear restoring force. The nonlinear damping term cor-
responds to the Rayleigh oscillator including a cubic term of the velocity, while the nonlinear restoring force corre-
sponds to the Duffing oscillator, hence its name. The unperturbed forced Rayleigh oscillator, that is, in the absence
of the cubic nonlinearities in the restoring force of Eq. (1), possesses only one hyperbolic equilibrium point (0,0).

We next derive the fixed points and the phase portrait corresponding to the unperturbed system. If we let l = F = 0,
the unperturbed system can be written as
_x ¼ y; _y ¼ x� x3; ð3Þ
which corresponds to an integrable Hamiltonian system with the potential function given by
V ðxÞ ¼ � 1

2
x2 þ 1

4
x4; ð4Þ
whose associated Hamiltonian function is
Hðx; yÞ ¼ 1

2
y2 � 1

2
x2 þ 1

4
x4: ð5Þ
By analyzing the unperturbed system, we can observe that there are three different equilibria: one hyperbolic equilibrium
point (0,0), and two elliptic points. The saddle is connected by two symmetric homoclinic orbits as shown in Fig. 1b.

We next compare the unforced Rayleigh oscillator €x� ð1� _x2Þ _x� x ¼ 0 and the unforced Rayleigh–Duffing oscilla-
tor €x� 0:02ð1� _x2Þ _x� xþ x3 ¼ 0.

We rewrite the unforced Rayleigh oscillator €x� ð1� _x2Þ _x� x ¼ 0 as the following formula
_x ¼ y; _y ¼ x� ð1� y2Þy; ð6Þ
which possesses only one hyperbolic saddle point (0,0), while corresponding to the unforced Rayleigh–Duffing oscilla-
tor €x� 0:02ð1� _x2Þ _x� xþ x3 ¼ 0 and its equivalent form
_x ¼ y; _y ¼ x� x3 þ ð1� y2Þy; ð7Þ
possess three different equilibria: one hyperbolic equilibrium point (0,0), and two elliptic points. Fig. 2 represents the
corresponding phase portraits between the unforced Rayleigh oscillator and the unforced Rayleigh–Duffing oscillator,
respectively.
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Fig. 1. (a) The two-well potential function of the unperturbed system (3); (b) the corresponding phase space portrait of the
unperturbed system (3).
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Fig. 2. (a) Phase portrait of the unforced Rayleigh oscillator €x� ð1� _x2Þ _x� x ¼ 0; (b) phase portrait of the unforced Rayleigh–
Duffing oscillator €x� 0:02ð1� _x2Þ _x� xþ x3 ¼ 0.
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3. Taming chaotic behavior in the Rayleigh–Duffing oscillator

The generalized Melnikov method developed by Wiggins [19] consists of studying a system, that when unperturbed is
an integrable Hamiltonian system having a normally hyperbolic invariant set, whose stable and unstable manifold inter-
sect non-transversely. The structure of the unperturbed system corresponds to two uncoupled one-degree of freedom
Hamiltonian systems. In this section, we discuss the chaotic behavior of the system
€x� lð1� _x2Þ _x� xþ x3 ¼ F cos xt; ð8Þ
in which l and F are assumed to be small parameters. Hence, our dynamical system may be written as
_x ¼ y;

_y ¼ x� x3 þ ðlð1� y2Þy þ F cos zÞ;
_z ¼ x:

8><
>: ð9Þ
When the perturbations are added, the homoclinic orbit might be broken transversely. And then, by the Smale–Birkhoff
Theorem [19], horseshoe type chaotic dynamics may appear. It is well known, that the predictions for the appearance of
chaos are limited, and only valid for orbits starting at points sufficiently close to the separatrix. On the other hand it
constitutes a first order perturbation method. Although the chaos does not manifest itself in the form of permanent
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chaos, and some sorts of transient chaos may show up. However, it manifest itself in terms of the fractal basin bound-
aries, as it was shown by [20].

Considering Eq. (5), we see that the unperturbed Rayleigh–Duffing oscillator has a hyperbolic fixed point at the ori-
gin ðx; _xÞ ¼ ð0; 0Þ in the phase space connected to itself by symmetric homoclinic orbits, which is the basic requirement
for the application of the Melnikov method. Then the equations for the homoclinic orbits are defined as
ðxh; yhÞ ¼ �
ffiffiffi
2
p

sech t;�
ffiffiffi
2
p

sech t tanh t
� �

: ð10Þ
We apply the Melnikov method to our system in order to find the necessary criteria for the existence of homoclinic
bifurcations and chaos. The Melnikov integral is defined as
Mðt0Þ ¼ l
Z

y2
h dt � l

Z
y4

h dt þ F
Z

yh cos xðt þ t0Þdt; ð11Þ
where t0 is the cross-section time of the Poincaré map and t0 can be interpreted as the initial time of the forcing term.
After substituting the equations of the homoclinic orbits xh and yh given in Eq. (10) into Eq. (11) and evaluating the
corresponding integral, we obtain the Melnikov function given by
Mðt0Þ ¼ lI0 � lI1 þ FI2 sin xt0; ð12Þ
where
I0 ¼ 2

Z þ1

�1
sech2ðtÞtanh2t dt;

I1 ¼ 4

Z þ1

�1
sech4ðtÞtanh4t dt;

I2 ¼ �
ffiffiffi
2
p Z þ1

�1
sechðtÞ tanh t sin xt dt:

ð13Þ
After evaluation of these elementary integrals, the Melnikov function is computed. It is known, that the intersections of
the homoclinic orbits are the necessary conditions for the existence of chaos. The Melnikov function theory measures
the distance between the perturbed stable and unstable manifolds in the Poincaré section. If M(t0) has a simple zero,
then a homoclinic bifurcation occurs, signifying the possibility of chaotic behavior. This means that only necessary con-
ditions for the appearance of strange attractors are obtained from the Poincaré–Melnikov–Arnold analysis, and there-
fore one has always the chance of finding the sufficient conditions for the elimination of even transient chaos. Then the
necessary condition for which the invariant manifolds intersect themselves is given by
l ¼ 3
ffiffiffi
2
p

F px
8

sech
px
2
: ð14Þ
This implies that if the perturbation is sufficiently small, the reduced Eq. (9) has transverse homoclinic orbits resulting in
possible chaotic dynamics. We study the chaotic threshold as a function of only the frequency parameter x. A typical
plot of l against x is shown in Fig. 3, in which the critical homoclinic bifurcation curves are plotted versus the fre-
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Fig. 3. Critical amplitude l versus frequency for two different external amplitude parameter values.
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quency parameter x. The threshold of chaotic motion increases with the increasing of the external amplitude l (Fig. 3).
The region below the homoclinic bifurcation curve corresponding to F = 0.3 [region (I) of Fig. 3] represents the periodic
orbits. When l crosses its first critical value, a homoclinic bifurcation takes place, so that a hyperbolic Cantor set ap-
pears in a neighborhood of the saddles [regions (II) and (III) of Fig. 3]. The dynamics should therefore be chaotic only
for large values of the damping. At the same time, when F = 0.5 [regions (I) and (II) of Fig. 3] it represents the periodic
orbits, while the dynamics should therefore be chaotic in the region (III).

From Eq. (12), the chaotic behavior is guaranteed for the trajectories whose initial data are sufficiently near the
unperturbed separatrix equation (9) if
Fig. 4.
functio
€x� lð
l 6 lcr ¼
3
ffiffiffi
2
p

F px
8

sech
px
2
; ð15Þ
where lcr is the threshold function.
4. Bifurcation analysis and fractal basins

4.1. Bifurcation diagram and Lyapunov exponent

Now we study the behavior of the system given by Eq. (2) as a function of the damping parameter for different values
of the external perturbation. The bifurcation diagram and the maximal Lyapunov exponents have been represented for
the variable x, and they can be seen in Fig. 4. A positive Lyapunov exponent for a bounded attractor is usually a sign of
(a,c) Bifurcation diagram and corresponding Maximal Lyapunov exponent of equation €x� lð1� _x2Þ _x� xþ x3 ¼ 0:5 cos t as a
n of l; (b,d) bifurcation diagram and corresponding Maximal Lyapunov exponent of equation

1� _x2Þ _x� xþ x3 ¼ 0:6 cos t as a function of l.
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chaos. We want to check the threshold of the external amplitude for the onset of possible chaos obtained in Section 3.
For x = 1, the critical value of the external force has been obtained numerically for Fcr = 0.5. Above this value, numer-
ical simulations have been carried out for the selected parameter values F = 0.5 (see Fig. 4a and c) and F = 0.6 (see
Fig. 4b and d). From these figures, one can see that the thresholds of damping amplitude for the onset of chaos increase
when the external amplitude increases above Fcr. As l increases, the Lyapunov exponent changes from a negative value
to a positive value, signifying the appearance of homoclinic chaos motion. The phase portrait of chaotic and periodic
orbits have been plotted in Fig. 5.

4.2. Phase portraits and basins of attraction

In order to verify the analytical results obtained in the previous sections, we have numerically integrated the system
by using a fourth order Runge–Kutta in order to investigate the homoclinic chaos in our model. We want to study what
is the effect of using the nonlinear damping terms on the equation of the oscillator and how the basins of attraction are
affected as the coefficient parameter l is varied. To show the fractal structure, we consider the case of the bifurcation
close to the resonance since it may undergo the limit cycles in the system. Hence we fix F = 0.3 and x = 1, the Melnikov
threshold is given analytically by lcr ’ 0.2. Fig. 6 shows the basins of attraction of the forced Rayleigh–Duffing oscil-
lator when l = 0.6 made by DYNAMICS [21]. Corresponding to the parameter value of l = 0.6 in the region (III)
[Fig. 3], there exist two chaotic attractors represented by the grey and white colors, respectively. As we see from
Fig. 6, the basin boundaries become fractal, which means that the damping parameter value l has contributed to
the fractalization of the boundaries, with the corresponding uncertainty associated to this fact.
Fig. 5. Phase portraits corresponding to the system €x� lð1� _x2Þ _x� xþ x3 ¼ 0:5 cos t; (a) chaotic orbit l = 0.695, (b) Period-1 orbit
l = 0.5.

Fig. 6. Basin of attraction corresponding to the system €x� 0:6ð1� _x2Þ _x� xþ x3 ¼ 0:3 cos t.
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5. Summary and conclusions

We have carried out a detailed analysis of the criteria for the transition to chaotic motion of a combined Rayleigh
and Duffing oscillator. The transition boundaries in the parameter space are obtained, which divide the space into dif-
ferent regions. In each region, the solutions are explored theoretically and numerically. The theory applicable to damp-
ing-induced chaotic dynamics reviewed in this paper rests primarily on the application of the Melnikov theory. The
critical value of damping coefficient l under which the system oscillates chaotically has been estimated, in the first step
by means of the Melnikov method and later confirmed by calculating the corresponding Lyapunov exponent, bifurca-
tion diagrams, and basin of attractions. Results were given for external periodic perturbation. By means of the basin of
attraction, we have shown that for certain regions of parameter space, the deterministic system driven harmonically
experiences behaviors that may be chaotic or non-chaotic.

The Melnikov method, is sensitive to a global homoclinic bifurcation and gives a necessary condition when the
damping coefficient l = lcr1 is larger than the critical homoclinic bifurcation values [19]. On the other hand, the largest
Lyapunov exponent [22], measuring the local exponential divergence of particular phase portrait trajectories gives a
sufficient condition l = lcr2 for this transition which has obviously a higher value of the excitation amplitude
l = lcr2 > lcr1. Under the Melnikov transition prediction (l < lcr1), we have obtained periodic windows as we expected
drifting to transient chaos. This effect can be explained on the one hand by the fact that we have used the first order
approximation perturbation, on the other hand by the nonlinearities of the damping. The present approach can be used
to generalize models of magneto-rheological dampers in novel studies of their influence on vehicle dynamics [23]. To
reduce harmful vibrations one can consider application of dampers composed of Duffing oscillator with the Rayleigh
damping.
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