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Abstract – We call permutation complexity the kind of dynamical complexity captured by any
quantity or functional based on order relations, like ordinal patterns and permutation entropies.
These mathematical tools have found interesting applications in time series analysis and abstract
dynamical systems. In this letter we propose to extend the study of permutation complexity
to spatiotemporal systems, by applying some of its tools to a time series obtained by coarse-
graining the dynamics and to state vectors at fixed times, considering the latter as sequences.
We show that this approach allows to quantify the complexity and to classify different types
of dynamics in cellular automata and in coupled map lattices. Furthermore, we show that our
analysis can be used to discriminate between different types of spatiotemporal dynamics registered
in magnetoencephalograms.

Copyright c© EPLA, 2010

Introduction. – Permutation entropy was introduced
in [1] as a complexity measure for time series. Roughly
speaking, permutation entropy replaces the probabilities
of length-L symbol blocks in the definition of Shan-
non’s entropy by the probabilities of length-L ordinal
patterns —a digest of the ups and downs of L consecu-
tive elements of a time series. Permutation entropy was
later extended, both in metric and topological versions,
to one-dimensional dynamical systems in ref. [2], and to
higher-dimensional systems in refs. [3,4]. Since then, differ-
ent techniques based on the analysis of ordinal patterns,
that we refer to as permutation complexity analysis, have
found a number of interesting applications: Estimation of
metric and topological entropy [4,5], complexity analysis
of time series [6], detection of determinism in noisy time
series [7,8], recovery of control parameters in symbolic
sequences of unimodal maps [9] and characterization of
synchronization [10]. In all these applications, compu-
tational simplicity and robustness against observational
noise have been a crucial advantage.
In this letter we propose to extend the study of permuta-

tion complexity to spatiotemporal systems. We apply our
ideas to two well-known models of spatiotemporal dynam-
ics, cellular automata (CA) and coupled map lattices
(CML), as well as to the experimental spatiotemporal
data provided by magnetoencephalograms (MEGs). Our
analysis is divided into two (complementary) parts. The
first part is an analysis of a time series obtained by

coarse-graining the dynamics considered. The second part
is an analysis of the state vector at fixed times. We show
that the first part provides an estimation of the dynami-
cal complexity, and its combination with the second one
provides further insights, especially when it comes to
the classification of different types of dynamical behav-
ior. Considering this, and similarly to recent works where
tools of network analysis were used for time series analy-
sis [11,12], our work reveals a link between the analysis
of spatially extended systems and novel ideas from time
series analysis.

Models of spatiotemporal systems. – The analy-
sis that we propose can be applied to spatiotemporal
data of the form {xt}

T
t=1 = {x1,x2, . . . ,xT }, where xt =

(xt(1), xt(2), . . . , xt(N)) is the state vector at time t of a
system of N sites, each component xt(i) being the state of
the i-th site at time t. The numerical data that we consider
in this letter are generated with one-dimensional CA and
CMLs featuring a next-neighbor local rule of evolution,

xt+1(i) = f(xt(i− 1), xt(i), xt(i+1)), (1)

and the periodic boundary condition xt(1) = xt(N +1).

Some tools of permutation complexity. – The
basic tools that we use in our analysis are the following.
Consider for simplicity that {zn}

M
n=1 = {z1, z2, . . . , zM} is

a sequence of real numbers. We say that a length-L block
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(word, window, . . . ) {zj}
n+L−1
j=n = {zn, zn+1, . . . , zn+L−1}

defines the ordinal pattern π= 〈π0, . . . , πL−1〉 of length
L if

zn+π0 < zn+π1 < . . . < zn+πL−1 , (2)

where in case zi = zj and i < j, we set zi < zj for defi-
niteness. Alternatively we say that {zn}

M
n=1 is of type π.

Note that π0, . . . , πL−1 is a permutation of the numbers
0, 1, . . . , L− 1. We denote by SL the set of ordinal patterns
of length L —or ordinal L-patterns.
Given {zn}

M
n=1 we can compute N(L), the number of

ordinal patterns of length L found in the sequence. For
an i.i.d sequence and L!≪M , we expect N(L)≈L!. If
zn+1 = f(zn) with f a piecewise monotone map (e.g.,
the logistic or tent map), then there is an L such that
N(L)<L!, i.e., there exist forbidden ordinal patterns [7].
Furthermore, if L!≪M , the topological entropy of f ,
htop(f), can be estimated by the topological permutation
entropy of order L, h∗top(L) =

1

L
logN(L) [2], since

lim
L→∞

h∗top(L)≡ lim
L→∞

1

L
logN(L) = htop(f). (3)

Thus, a simple method to quantify the complexity of a
sequence consists in counting N(L) [7].
Another tool is related to the detection of determinism

in noisy time series {zn}
M
n=1 [8]. In this case, one can

perform a chi-square test of independence of the sequence
with the null hypothesis

H0 : the zn are white noise.

Let K be the number of non-overlapping sliding
windows of size L, {zn}

j+L−1
j , in the series {zn}

M
n=1,

1� j �M −L+1, with L≪M . Let νπ be the number of
visible windows of type π ∈ SL. Then the parameter (or
“statistic”)

χ2(L) =
L!

K

∑

π∈SL:visible

ν2π −K (4)

provides a way to accept or reject the null hypothesis with
a significance level 1−α: Accept if χ2 <χ2L!−1,1−α, reject

if χ2 >χ2L!−1,1−α, where χ
2
L!−1,1−α is the upper 1−α

critical point for the chi-square distribution with L!− 1
degrees of freedom. For this test, it is recommended to
use values of L such that 5L!�K (see [8] for details). The
parameter χ2(L) acts as a quantifier of the complexity
of the sequence: The closer the sequence is to an i.i.d.
sequence, the more similar the values of the νπ are for all
π ∈ SL, which leads to lower values of χ

2(L).
There are, of course, other more sophisticated tools, but

we show below that these modest ones are already useful to
quantify the dynamical complexity of spatially extended
systems.

Permutation complexity analysis of spatiotem-

poral dynamics. – We describe now the two types of
analysis that we apply to spatiotemporal data {xt}

T
t=1.

The first one, which we call temporal analysis, applies
to a symbolic sequence obtained via discretization of

the spatiotemporal dynamics. We consider here binary
sequences {st}

T
t=1, where st = (st(1), st(2), . . . , st(N)),

st(i) =

{

0, if xt(i)<xc(i),

1, if xt(i)>xc(i),
(5)

and xc(i) is a given threshold for the site i. With this
symbolic sequence we can build a univariate time series
{φt}

T
t=1 = {φ1, φ2, . . . , φT }, where

φt = φ(st) =

N
∑

i=1

st(i)

2i
∈ [0, 1). (6)

The temporal analysis is performed by either counting the
number of ordinal L-patterns N(L) in {φt}

T
t=1 (using, in

general, overlapping sliding windows) or by calculating the
parameter χ2(L) for {φt}

T
t=1, for different values of L. We

call χ2time(L) the result.
We propose as well a spatial analysis that consists

in calculating χ2(L) for the state vector xt, viewed
as a sequence {xt(j)}

N
j=1, for different fixed times t.

Then average over t and set 〈χ2(L)〉= χ2space(L). We call
χ2time(L) and χ

2
space(L) regularity parameters.

Application to CA. – As a first example of applica-
tion of permutation complexity analysis to spatiotemporal
systems we consider one-dimensional elementary CA. This
means that xt is a string of 0s and 1s, of finite length N in
simulations; hence, f(p, q, r)∈ {0, 1}, where f is the local
rule of evolution, and p, q, r ∈ {0, 1}. Since the states of
CA are already discrete, we set st = xt in eq. (6) to obtain
{φt}

T
t=1. Note that the local rule f of any CA induces

a selfmap F of the whole configuration space, called the
global transition map.
First consider the CA with f(p, q, r) = p+ r mod 2,

which is an instance of a positively expansive CA, thus
with complicated dynamics. A space-time diagram of this
system is shown in fig. 1(a). The topological entropy for
this CA is htop(F ) = 2 log 2 = 2 bit/iteration [13].
We can compute N(L) for {φt}

T
t=1. If L!≪ T , we can as

well define the topological permutation entropy of the CA
as h∗top(L) = log(N(L))/L, and similarly to eq. (3), it can
be proved that limL→∞h

∗
top(L) = htop(F ), the topological

entropy of the CA. This is numerically confirmed in
fig. 1(b), where we can observe h∗top(L) = log(N(L))/L
converging to the value 2 (bit/iteration) as L increases.
The above tools of permutation complexity can also be

used for the classification of CA. The 256 possible elemen-
tary CA were extensively studied in a series of papers by
Chua and collaborators; see, e.g., [14]. Wolfram proposed
to classify them [15,16] according to their asymptotic
behavior as:
Class W1 : The configurations converge to a fixed point

as, e.g., f(p, q, r) = 1
2
[1+ sign(2p+4q+2r− 5)].

Class W2 : Time evolution yields a sequence of simple
stable or periodic structures as, e.g., f(p, q, r) = p.
Class W3 : The behavior is “chaotic” as, e.g., f(p, q, r) =

p+ q+ r+ qrmod 2.
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Fig. 1: (a) Space-time plot of a trajectory of the expansive
CA with local rule f(p, q, r) = p+ r mod 2 and N = 250 (white
dots are 0, black dots are 1). (b) Computation of h∗top(L) for
different L values (�). A convergence to the expected value of
2 bits/iteration is observed. (c) χ2time(5) vs. χ

2

space(4) for 100
different random initial conditions of Class W1 (�), Class W2
(♦), Class W3 (▽) and Class W4 (△).

Class W4 : Time evolution yields a regular spatiotem-
poral pattern with localized structures that move around
and interact in very complicated ways as, e.g., f(p, q, r) =
(1+ p)qr+ q+ rmod 2.
Here we are dealing with CA of finite length N =

250 and thus with 2250 ≈ 1.8 · 1075 possible states, which
imposes an upper bound in their period (2250 iterations).
However, we analyze them in much shorter time scales, so
the classification above makes full sense. To our knowl-
edge there is no quantitative way to distinguish these
four complexity classes. With this scope in mind, we
have calculated the regularity parameters for each of the
instances provided above. Let us point out that χ2space(L)
has to be modified from the form of eq. (4), because xt
is now a binary sequence. For a sequence of two symbols,
0 and 1, the χ2 for windows of size L is

χ2(L) =
(2Lν0−L− 1)

2

2L(L+1)
+

(

1−
L+1

2L

)

(2Lν1− 1)
2

with ν0 the number of times the pattern π0 =
〈0, 1, 2, . . . , L− 1〉 has been observed, and ν1 is the
number of patterns of length L such that π �= π0.
To avoid too small samples in our numerical simula-

tions with N = 250, we take L� 4 for χ2space(L) (so as
L!≪N). For χ2time(L) we may choose L larger. In fig. 1(c)
we plot the values of χ2time(5) against those of χ

2
space(4)

for 100 different realizations of each of the representa-
tives given above; they clearly cluster in different, non-
overlapping regions. It is also interesting to notice that
the lower values of χ2time(5) are obtained for the Class
W3 CA, which displays spatiotemporal chaotic behaviour.
We have repeated the same calculations with a few more
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Fig. 2: (Colour on-line) Colormap of (a) χ2time(5) and
(b) χ2space(4). The first test allows to identify the region of
spatiotemporal chaos (dark/red region), whereas the second
one gives important information about the spatial regularity
of the system for ε and a. Both parameters combined can
distinguish between different phases of the CML.

representatives, with similar results, showing that our
regularity parameters capture the basic features of the
different complexity classes of CA.

Application to CMLs. – A similar analysis can be
applied to CMLs, introduced by Kaneko [17,18] as a simple
test bed for spatiotemporal chaos. We consider here CMLs
of the type

xt+1(i) = (1− ε)g(xt(i))+
ε

2
[g(xt(i− 1))+ g(xt(i+1))]

(7)

which correspond to diffusive CMLs with coupling
constant ε > 0. In our simulations, 0� ε� 0.5 and g is
the map [21]

g(x) = 1− ax2, x∈ [−1, 1]. (8)

For the calculation of χ2time(L) in CMLs, the discretization
of the data is done using eq. (5) with xc(i) = 0. This
discretization has been shown to capture most of the
important features of the CML dynamics [19,20].
The results of our analysis are shown in fig. 2. In

fig. 2(a) we can observe χ2time(5). Remarkably, there are
clearly two zones of dark/light colors (red-yellow), and the
dark one (low χ2time(5) values) corresponds to the zone of
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Fig. 3: Space-time plot of discretized MEGs (white dots are
0, black dots are 1) from (a) control patient and (b) patient
with ADHD. (c) χ2time(4) vs. χ

2

space(4) for 10 different data
samples from control patient (�) and patient with ADHD (♦).
They cluster in non-overlapping regions, so this plot clearly
discriminates these two types of data. (d) Computation of
χ2time(L) for three L values for the control patient (�) and
patient with ADHD (♦), error bars are statistical errors.

spatiotemporal chaos sketched by Kaneko in [21]. Thus,
χ2time(5) can be used to quantify the complexity of the
global temporal evolution of the system. A similar result is
obtained with N(L), L� 5. In fact, simulations show that
these two simple measures behave similarly to the largest
Lyapunov exponent. Recall that this is analogous to the
results obtained in CA, where low values of χ2time(L) were
obtained for the chaotic CA. Thus, again, a permutation
complexity analysis of {φ}Tt=1 provides a simple way to
measure the dynamical complexity of a CML.
We can also compute χ2space(L), as shown for L= 4 in

fig. 2(b). It provides a clear picture of the dependence
of the spatial regularity of the system on ε and a, which
is nontrivial although it typically increases with ε. This
is not surprising, since for larger ε values we expect
to see an increasing correlation between the dynamics
of neighbouring sites, which implies that the spatial
regularity increases. Finally, we point out that simulations
performed with instances of the six major “phases” [21]
observed in CMLs, show that they can be classified
combining χ2time(L) and χ

2
space(L).

Application to MEGs. – As a final example of
application of our analysis we consider data sets of MEGs

from two patients, a control patient and a patient with
attention-deficit/hyperactivity disorder (ADHD). MEGs
were acquired for both patients in the same conditions
with a 148-channel whole-head magnetometer (MAGNES
2500 WH, 4D Neuroimaging, San Diego, California). Each
data set consists of 148 noisy time series comprising 1000
measurements per channel, which amounts to a set of
spatiotemporal data {xt}

T
t=1 with N = 148 and T = 1000.

A total of 10 such series were recorded from each patient.
Here we do not know anything about the topology of the
network that connects the sites, although channel i is close
to either channel i− 1, channel i+1 or both (see [22]
for a detailed description). To obtain {φt}

T
t=1 we use again

eq. (6), but now the discretization of eq. (5) is done
with the threshold xc(i) = 〈xt(i)〉, i.e., the time average
of the time series of the considered channel. A space-time
plot of {st}

1000
t=1 for one data set of the control patient is

shown in fig. 3(a), and in fig. 3(b) for the patient with
ADHD.
We have performed a permutation complexity analysis

of the 10 data sets of both patients. In fig. 3(c) we show
χ2time(4) against χ

2
space(4) for each data set. Clearly they

cluster in non-overlapping regions. The value of χ2time(L)
is enough to discriminate between data of the patients,
as shown in fig. 3(d). In fact, we observe for the control
patient lower values of χ2time(L), which suggests that the
spatiotemporal dynamics registered in its MEGs is more
complex than for the patient with ADHD. This agrees
with results obtained with other complexity measures [22].
Our analysis, though, reveals that χ2space is smaller for the
patient with ADHD. Similar results were obtained when
testing our techniques with data sets of different control
and ADHD patients. We believe that this information
might be helpful for the analysis of this type of data in
diagnosis. Finally, we want to point out that the MEGs
data are quite noisy, so we think that these results show
that our analysis is quite robust against observational
noise, a quality that was observed in previous applications
of permutation complexity analysis [7,8].

Conclusions. – We have shown that the concepts and
tools of permutation complexity provide a simple approach
to the study and classification of the dynamical complexity
of spatiotemporal systems. We believe that the compu-
tational simplicity and robustness against observational
noise of this approach makes it particularly advantageous
for the study of large data sets.
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[8] Amigó J. M., Zambrano S. and Sanjuán M. A. F.,
EPL, 83 (2008) 60005.

[9] Arroyo D., Alvarez G. and Amigó J. M., Chaos, 19
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