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Abstract – Basin boundary metamorphoses are characteristic in some kinds of chaotic dynamical
systems. They take place when one parameter of the system is varied and it passes through a
certain critical value. In this paper we show that a parametric harmonic perturbation can produce
basin boundary metamorphoses in periodically driven chaotic dynamical systems even when its
amplitude is smaller than the amplitude of the main driving. The physical context of this work is
related with the phenomenon of trajectories escaping from a potential well, which is illustrated by
using as prototype model the Helmholtz oscillator. One of the main contributions of our research
is to analyze the role of the phase difference between the parametric harmonic perturbation and
the main driving in the appearance of a basin boundary metamorphosis. We also analyze the
variation of the size of the basins and the fractal dimension of the corresponding boundaries
when this phenomenon occurs. Finally, Melnikov analysis of this phenomenon is carried out. We
expect that this work can be useful for a better understanding of basin boundary metamorphoses
phenomena.

Copyright c© EPLA, 2010

Introduction. – In the past years several works have
been carried out on the mechanisms for which attractors
arise and their basins change insofar as one specific para-
meter of the system is varied. One of these mechanisms,
for which basin boundaries can go from a fractal to a non-
fractal structure (or vice versa) once a parameter crosses
a certain critical value, is called basin boundary meta-
morphosis (BBM) [1,2]. In this sense some works have
analyzed how fractal basin boundaries arise and change
as a parameter of the system is varied, as for example in
the case of the forced damped pendulum [1]. One of the
main consequences of the BBM is the drastic change in the
size of the basin boundary. On the other hand, the BBM
phenomenon is also related with the phenomenon of explo-
sions of chaotic sets [3]. In this paper, we study in detail
the BBM produced by a parametric harmonic perturba-
tion of an open dynamical system. In an open dynamical
system, there is a region in phase space where nearly all
the trajectories diverge asymptotically to infinity. They
have attracted a great deal of attention in the context of
transient chaos [4] and, particularly, in chaotic scattering
problems [5–8], among others.
In our case, we investigate a problem that arises in

the context of the phase control [9–15] of trajectories
escaping from a potential well [16]. The main idea of

the phase control method is to apply a small harmonic
perturbation in periodically driven nonlinear oscillators,
either parametrically or as an external perturbation. This
harmonic perturbation has an amplitude ε and a phase
difference φ. We consider the amplitude to be always less
than the amplitude of the driving force and the phase φ
corresponds to the phase difference (phase) with respect to
the main driving. This phase φ plays a crucial role in the
dynamical behavior of our system, as shown in ref. [16].
This technique has been used to avoid escapes in open
dynamical systems, in which the authors suggested that a
phenomenon related to this control was a BBM. Here, our
main goal is to investigate this BBM, produced by a small
harmonic perturbation.
Despite a large body of existing literature on the study

of BBM, a thorough study of the fractal dimension and the
size of the basin boundaries has received relatively little
attention [1,2,17,18] and it is one of the objectives of this
work. In ref. [18], the authors analyze both the area and
the fractal dimension of the basins in the context of driven
oscillators and their relevance to safe engineering design.
In this paper we make a study in depth of this phenom-

enon by considering the variation of both, the size of
the basins and the fractal dimension of the correspond-
ing boundaries due to the effect of adding a parametric
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Fig. 1: (Color online) (a) Basin of attraction of the Helmholtz
oscillator, ẍ+0.1ẋ−x−x2 = 0.21 cos t. We denote by blue
(black) dots the set of points that escape from this region
of phase space, including points inside the potential well, to
infinity, and cyan (pale gray) dots as the points that fall into
the attractor(s). Note that in this picture all initial conditions
escape after some period of time. (b) Basin of attraction of the
Helmholtz oscillator, ẍ+0.1ẋ−x−x2 = 0.12 cos t. Here the
basins in phase space have a fractal structure where cyan points
(pale gray) denote the set of points falling into the attractors.

harmonic perturbation. A Melnikov analysis is carried out
in order to explain the role of the phase φ since it is crucial
to produce the BBM.

Model description. – A simple paradigmatic example
of a dynamical system with escapes is the Helmholtz
oscillator. It describes the motion of a unit mass particle
in a cubic potential V (x) = ax2/2+ bx3/3 [19], which
eventually can be externally perturbed by a sinusoidal
driving. By adding a linear dissipative force, the equation
of motion for a suitable choice of the parameters is [16]

ẍ+0.1ẋ−x−x2 = F cos t. (1)

This system presents different behaviors depending on
the value of the forcing amplitude F . For example, a plot of
the basins of attraction for F = 0.21 is depicted in fig. 1(a)
and for F = 0.12 in fig. 1(b), where blue (black) color
represents the set of points that escape from this region
of phase space, including points inside the potential well,
to infinity and cyan (pale gray) color represents the set of
points that fall into the attractors. In general, a trajectory
escapes from this region of phase space when it diverges
to infinity.
For the forcing amplitude F = 0.21 it is possible to avoid

escapes in a certain region of the phase space according
to the strategy described in ref. [16], that was there
implemented in an electronic circuit.
This means that if we add a parametric perturbation in

the quadratic term of the equation of motion we have

ẍ+0.1ẋ−x− (1+ ε cos (t+φ))x2 = F cos(ωt), (2)

where ε is the modulation amplitude and φ (phase) is the
phase difference with respect to the main forcing.
Figure 2(a) shows a single trajectory for the Helmhotz

oscillator when F = 0.21 and no control is applied. We
can see how the trajectory escapes after a certain lapse
of time. Figure 2(b) shows the trajectory for the same
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Fig. 2: (a) Single trajectory for the Helmholtz oscillator,
ẍ+0.1ẋ−x−x2 = 0.21 cos t, with initial condition at the point
(x0, ẋ0) = (−0.5,−0.1) as indicated by the star. The trajectory
escapes after a lapse of time. (b) The same initial condi-
tion for the Helmholtz oscillator with control, ẍ+0.1ẋ−x−
(1+0.05 cos(t+π))x2 = 0.21 cos t. The perturbation keeps the
particle in the well forever.

initial condition when the phase control method is applied.
In particular, we are considering φ= π (this is the most
suitable value of the phase to prevent the majority of the
escapes from the single well [16]) and we can see how for a
certain value of ε the particle stays inside the well forever.

Effects of the parametric perturbation on the

escaping dynamics. – In this section we provide numer-
ical evidence showing that, by using an adequate value of
φ and ε, we can avoid escapes for the Helmholtz system,
and we relate it with a BBM phenomenon.
We have performed a numerical integration of trajecto-

ries whose initial conditions belong to a 60× 60 grid in the
phase space region x∈ [−1.5, 0], ẋ∈ [−0.7, 0.7] for different
sets of parameter values of ε and φ, and observe which of
them escape. The diagrams plotted in figs. 3(a)–(c) show
the rate of trajectories that escape from the well as a
function of ε and φ. Note that in some regions of these
diagrams, e.g., for ε≈ 0.12 and φ= π more than 60% of
the initial conditions are kept bounded inside the well.
However, if we take another value of the phase, such as
φ= 0, nearly all trajectories escape. Thus, the role of the
phase φ is crucial if we want to keep the trajectories inside
the well.
In order to have a deeper insight of this phenomenon

we have estimated the escape times of the trajectories
for different initial conditions fixing the phase φ and the
modulation amplitude ε, separately. For our numerical
simulations, we consider the escape time T as the time that
a certain initial condition in phase space spends before
crossing a far away point from the potential well, that
we have taken as x= 1. Notice that a certain rate of the
trajectories never escapes, having infinite escape times.
Since it is not possible to numerically compute most of the
escape times, the integration times have been bounded.
In particular, we have taken the integration time equal
to tmax = 6× 10

4 time units as a reasonable bound to
assure the trajectories to be kept inside the well forever.
We have plotted in figs. 4(a)–(d) the behavior of the
average escape times T for 100 different initial conditions
chosen in the region x∈ [−1.5, 0] and for ẋ= 0. In fig. 4(a)
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Fig. 3: (Color online) Color plots of the fraction of trajectories
with initial conditions in the region of phase space [−1.5, 0]×
[−0.7, 0.7] that escape to infinity for different values of ε and φ.
(b),(c) show zooms of (a) in which we clearly observe the
drastic transition for the trajectories to escape from the well.
Taking φ= π, this takes place at ε≃ 0.05.

we fixed the phase to φ= π increasing the value of ε
from 0 to 0.1. We can observe some fluctuations in the
escape times for small values of ε. This fact is due to the
effects of the appearance and disappearance of different
attractors in the system as we show in next section. Once
the modulation amplitude ε reaches the critical value
εc ≃ 0.05 (see fig. 4(b) for a zoom of this region) T has a
steep increase limited by the integration time tmax. In this
picture we have distinguished two different regions, region
I (ε < εc) and region II (ε > εc). This result is in agreement
with the BBM phenomenon that we will describe in next
section in more detail. For ε < εc, only a fraction of
the initial conditions yields confined trajectories and the
complementary fraction escape at times less than tmax.
Thus, T results as a weighted sum, where the confined
fraction enters with the value tmax. The observation of
fig. 4(a) in the region of ε > εc suggest that almost all
trajectories get confined inside the well. For ε < εc, the
irregular T vs. ε profile is due to the fractal structure of
the basins, as shown in fig. 5(a). Figures 4(c), (d) show, for
ε= 0.043< εc and for ε= 0.057> εc the crucial role of the
phase φ in the escape times showing that the optimal value
takes place at φopt ≈ π, where the confined trajectories
are clustered around this value. Notice that this is not
so clearly observed in fig. 4(c) due to the presence of the
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Fig. 4: (a) Plot of the average escape times T vs. the modulation
amplitude ε for a fixed value of the phase φ= π and 100
different initial conditions chosen in the region x∈ [−1.5, 0]
and ẋ= 0. In this figure we can observe some fluctuations
of the average escape times for low values of ε and a rapid
increasing to infinity (the integration time) for the escape
times once that ε is large enough (above its critical value
εc ≃ 0.05). (b) This figure represents a zoom of (a). (c) Plot
of the average escape times T vs. the phase φ for a fixed value
of the modulation amplitude ε= 0.043 and 100 different initial
conditions chosen in the region x∈ [−1.5, 0] and ẋ= 0. (d) Plot
of the average escape times T vs. the phase φ for a fixed value
of the modulation amplitude ε= 0.057 and 100 different initial
conditions chosen in the region x∈ [−1.5, 0] and ẋ= 0.

fluctuations of the average escape times that occurs in
region I (see fig. 4(a)). In the next section we show that
this phenomenon is related to a BBM.

Fractal dimension and size of the basins. – The
metamorphosis implies a drastic change in the size of
the basin boundaries and also in the fractal dimension
[1,17,18] due to the basin transition from a fractal to a
non-fractal structure or vice versa. Here, we study how
these changes take place in our model once we vary the
parameter ε. For this purpose, we plot the basins of
attraction of our system for different parameter values ε
and we analyze the different dynamical behaviors.
The basins of attraction of the controlled Helmholtz

oscillator, ẍ+0.1ẋ−x− (1+ ε cos(t+π))x2 = 0.21 cos t,
for values of ε= 0.045 and ε= 0.0497 (region I),
and ε= 0.09 and ε= 0.13 (region II), are plotted in
figs. 5(a)–(d), respectively. We observe multiple attractors
in fig. 5(b) (for values of ε in region I) which are denoted
by using different colors. This explains the fluctuations
in the escape times shown in figs. 4(a), (b). Insofar we
increase ε, the only observable attractor is the fixed point
at the bottom of the potential well which has a strong
effect because most of trajectories remain inside the well
forever. On the other hand, figs. 6(b),(c) show a drastic
change in the size of the basins of attraction once ε
crosses a certain critical value εc. We can also observe
qualitatively a loss of the fractality in the boundaries
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Fig. 5: (Color online) Basins of attraction of the controlled
Helmholtz oscillator, ẍ+0.1ẋ−x− (1+ ε cos(t+π))x2 =
0.21 cos t, with modulation amplitudes located at region I,
ε= 0.045 (a) and ε= 0.0497 (b) and at region II, ε= 0.09 (c)
and ε= 0.13 (d), respectively. Blue (black) dots denote the
initial conditions that escape from the potential well and cyan
(pale gray) dots the ones that fall into the attractor(s). We
observe multiple attractors in (b) which are denoted by using
different colors.
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Fig. 6: Boundaries of the basins of attraction shown in fig. 5
with modulation amplitudes located at region I, ε= 0.045 (a),
ε= 0.0497 (b) and at region II, ε= 0.09 (c) and ε= 0.13 (d),
respectively.

when ε > εc, which is clearly observed in fig. 6(c) and
fig. 6(d). The onset of this phenomenon takes place for
values of εc ≃ 0.05, which is in complete agreement with
the numerical evidence provided in the previous section,
in which most of trajectories are trapped (see fig. 3).
Figures 6(a)–(d) show the boundaries of the corre-

sponding basins of attraction plotted in figs. 5(a)–(d),
respectively. We have computed the fractal dimension
(box-counting dimension [20]) of the boundaries for
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Fig. 7: (a) Size of the basins of attraction vs. the modulation
amplitude ε as in fig. 5. (b) Variation of the fractal dimension
of the basin boundaries (see fig. 6) vs. ε.

different values of ε, D(ε), obtaining: D(0.045) = 1.243,
D(0.0497) = 1.371, D(0.09) = 1.296 and D(0.13) = 1.05,
respectively. Notice that in spite of the apparent smooth-
ness of the boundary, as seen in fig. 5(d), this boundary
is slightly fractal, as shown in these computations. As
we expected, we also observe a decreasing in the fractal
dimension once the onset of BBM occurs.
The drastic change in the basins is shown in figs. 5(b),(c)

where a rapid increase of the size of the basin of attraction
is easily observed. The physical meaning of this increase is
also due to the strong effect of the attractors once ε > εc,
for which most of trajectories are trapped into the well
and never escape. To estimate the variation of the size of
the basins of attraction we compute n=N0/Nt, where N0
denotes the number of initial conditions trapped into the
well and Nt is the total number of initial conditions. The
computation of the value of n is a good way to estimate
the relative variation of the size of the basin of attraction.
Figures 5(a)–(d) show in a qualitatively manner the

variation of the size of the basin of attraction for different
values of ε, n(ε), that is: n(0.045) = 0.051, n(0.0497) =
0.052, n(0.09) = 0.41 and n(0.13) = 0.47, respectively. We
observe a rapid increasing in the size of the basin of
attraction when ε becomes larger.
The variation of both, the size and the fractal dimension

of the boundaries, against the parameter ε are plotted in
figs. 7(a),(b), respectively. We observe a rapid increase in
the size of the basins and a rapid decrease in the fractal
dimension due to the effect of the metamorphosis, which
takes place at εc ≃ 0.05. A similar behavior for the fractal
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dimension by using both a one-dimensional map and a
continuous-time system in the absence of the parametric
perturbation were found in refs. [17,18], respectively.
The increasing in the basin size implies that, since the
trajectories are trapped into the well when ε increases, the
system loses the unpredictability (due to most trajectories
never escape) and therefore the boundaries become non-
fractal. For this reason, we expect that once ε� εc ≃
0.05 the fractal dimension decreases. This phenomenon
is illustrated in fig. 7(b). This loss of unpredictability
produces an increasing in the size of the basin of attraction
due to the fact that most initial conditions are trapped
into the well and they never escape from it, which is
illustrated in fig. 7(a). We conjecture this result to be
valid for a large number of systems since the effect of
introducing a parametric perturbation in this kind of
systems has, qualitatively, the same physical consequences
independently of the chosen system.

Melnikov analysis: role of the phase. – In order to
complete our study on the phenomena described above,
we are going to perform a Melnikov analysis of our system
elucidating the role of the phase on the escaping dynamics.
Equation (2) can be rewritten as:

ẋ= y,

ẏ= x+x2+(−δy+F cos(ωt)+ ε cos (t+φ))x2),
(3)

with δ= 0.1 and F = 0.21. The Melnikov function M(t0)
is

M(t0) =

∫ +∞

−∞

yh(t)(−δyh(t)+F cos(ωt)

+ ε cos (t+φ))xh(t)
2), (4)

where (xh(t), yh(t)) is the homoclinic loop observed for
F = ε= δ= 0, where

xh(t) =−
3

2
cosh−2

[

t− t0
2

]

,

yh(t) =
3

2

sinh

[

t− t0
2

]

cosh3
[

t− t0
2

] .
(5)

The value of the Melnikov function, which has been
computed by making use of the calculations performed
in ref. [21], is

M(t0) =−F
6π

sinh(π)
sin(t0)− ε

3π

5 sinh(π)
sin(t0+φ)

−δ
6

5
≡−AF sin(t0)−Aε sin(t0+φ)−Aδ, (6)

where AF , Aδ and Aε are positive constants.
As is well known the zeros of the Melnikov function

imply the existence of transverse homoclinic intersections
and thus the appearance of horseshoes and chaotic motion.
In the absence of parametric perturbation, Aε = 0, and for

Fig. 8: (Color online) Color plot of the Melnikov distance as
a function of t0 and φ, for ε= 0.2. For all the φ values the
function M(t0) changes sign for some t0, but for φ= π the
absolute values of M(t0) above and below zero are smaller
than for other values, which suggests that it is the optimal
phase value to avoid escapes.
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Fig. 9: (Color online) Plot of the Melnikov function M(t0) as
a function of t0 for ε= 0.2 and φ= 0 (blue, continuous line),
φ= π/2 (red, dashed line) and φ= π (green, dash-dotted line).
Clearly the oscillation of M(t0) around zero is smaller for the
latter, which suggest that this phase is closer to tame the
homoclinic intersection and thus it is the optimal phase to
avoid escapes, as numerical simulations suggest.

F = 0.21 and δ= 0.1, we have that AF ≈ 0.35>Aδ = 0.12,
so there is a zero in the Melnikov function and a transverse
homoclinic intersection.
The condition for the amplitude of the parametric

perturbation needed to frustrate the homoclinic intersec-
tion is Aε > |AF −Aδ| ≈ 0.22. However, considering the
form of Aε obtained previously, this can be only achieved
when ε > 1.37. In other words, the range of perturbations
that we apply to the system cannot induce the frustration
of homoclinic intersections. In our situation, the critical
value εc ≈ 0.05 for which BBM occurs is characteristic of
our specific system and it cannot be predicted analytically.
We also point out that, from a physical point of view, this
value of εc is only related with the trajectory trapping in
the potential well.
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However, we can observe that the best performance for
the frustration of the transverse homoclinic intersections
with a minimum value of ε occurs for the phase value
φ= π. This can be observed in fig. 8, where the Melnikov
function is plotted as a function of t0 and φ for ε= 0.2.
For all the φ values the function M(t0) changes sign
for some t0, but for φ= π the absolute values of M(t0)
above and below zero are smaller than for other values. In
other words, as we can observe in fig. 9, the oscillation
of the Melnikov function M(t0) around zero is smaller
for φ= π than for other values of φ. All this suggests
that the influence of the homoclinic intersection in the
global dynamics, which is related with the appearance
of a horseshoe and eventually with escaping dynamics, is
particularly tamed if φ= π. This also agrees with the fact
that it is not possible to observe a significant variation in
the basins when a parametric perturbation is applied for
other different values of the phase like φ= 0.

Conclusions and discussion. – In conclusion, we
have studied the BBM phenomenon by using as a proto-
type model the Helmholtz oscillator with an external
harmonic perturbation in the quadratic term of the equa-
tion of motion. We provide numerical support for which
the avoidance of the escapes from the well is directly
related to the metamorphosis in the basin boundaries.
We have also estimated the fractal dimension of the basin
boundaries and the variation in the size of the basin of
the attraction finding a drastic change at the point in
which the metamorphosis takes place. Theoretical analysis
by using Melnikov theory has been carried out and they
are in agreement with the numerical results, showing that
the value of phase π is the most accurate to produce a
change sign in the Melnikov distance. In the context of
physical situations, the problems with escapes are typical
in chaotic scattering problems, which have applications in
many fields in physics. We expect this work to be useful
for a better understanding of BBM phenomena.
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