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Detecting determinism in univariate and multivariate time series is difficult if the underlying
process is nonlinear, and the noise level is high. In a previous paper, the authors proposed a
method based on observable ordinal patterns. This method exploits the robustness of admissible
ordinal patterns against observational noise, and the super-exponential growth of forbidden
ordinal patterns with the length of the patterns. The new method compared favorably to the
Brock–Dechert–Scheinkman independence test when applied to time series projected from the
Hénon attractor and contaminated with Gaussian noise of different variances. In this paper, we
extend this comparison to higher fractal dimensions by using noisy orbits on the attractors of
the Lorenz map, and the time-delayed Hénon map. Finally, we make an analysis that enlightens
the robustness of admissible ordinal patterns in the presence of observational noise.
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1. Introduction

Permutation entropy has attracted much atten-
tion among the researchers in time series analy-
sis since it was introduced by Bandt and Pompe
[2002]. In short, permutation entropy replaces the
probabilities for symbol blocks in the outputs of
a data source by the probabilities of the corre-
sponding ordinal patterns, in the formula of Shan-
non entropy. An ordinal pattern of length L ≥ 2,
or ordinal L-pattern, is a permutation π of the
numbers {0, 1, . . . , L − 1}, that will be written as

π = 〈π0, π1, . . . , πL−1〉; the set of all L! ordinal
L-patterns will be denoted by SL. Given a length-
L symbol block xk+L−1

k = xkxk+1 · · · xk+L−1, where
the symbols (or ‘letters’) xn are drawn from a finite
and linearly ordered alphabet S = {s1, s2, . . . , s|S|},
we say that xk+L−1

k defines (realizes, is of type, . . . )
π ∈ SL if

xπ0 < xπ1 < · · · < xπL−1
.

In the case that xπi = xπj , we agree that xπi <
xπj if and only if i < j (other conventions are,
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of course, possible). Notice that real-world and
computer-generated data belong to finite alphabets
on account of the finite precision of observation
devices and real-number representation in com-
puters. This setting extends to multivariate time
series, the data being now, say, lexicographically
ordered.

Permutation entropy can also be extended to
dynamical systems in metric [Bandt & Pompe,
2002; Amigó et al., 2005] and topological [Bandt
et al., 2002; Amigó & Kennel, 2007] versions. Inter-
estingly enough, it can then be shown that, under
certain mathematical assumptions, the orbits gen-
erated by the dynamics cannot realize all possible
ordinal patterns. That is, there are always ordinal
patterns of sufficient length, such that they cannot
occur in any orbit whatever the initial condition.
The existence of these “forbidden” ordinal patterns
makes a difference between randomly (and with-
out constraints) generated sequences, in which any
ordinal L-pattern has probability one to occur, and
deterministically generated sequences. The robust-
ness of forbidden ordinal patterns against observa-
tional noise and their super-exponential growth rate
with length [Amigó et al., 2008a], make them a prac-
tical tool to detect dependence even in very noisy
time series [Amigó et al., 2007; Amigó et al., 2008b].

The method proposed by the authors in [Amigó
et al., 2008b], for detecting determinism in noisy
time series, calls for counting visible ordinal pat-
terns and performing a subsequent chi-square test,
the null hypothesis being that the data are white
noise (i.e. outcomes of an independent and identi-
cally distributed process). The rationale for such a
null hypothesis is that, as usual in physics, we mean
by determinism that the data of a random-looking
sequence are actually not independent. In order to
check the quality of this forbidden pattern-based
approach, we compared it with the Brock–Dechert–
Scheinkman (BDS) test [Brock et al., 1996] using
series numerically generated by the Hénon map,
whose attractor has fractal dimension D0 = 1.28 ±
0.01 [Sprott, 2006]. The BDS statistic was chosen
because it has become a benchmark for indepen-
dence testing in nonlinear series. In this paper we
extend this comparison to the Lorenz map (D0 ≥ 2)
and the family of time-delayed Hénon maps [Sprott,
2006], which provide attractors with high fractal
dimensions.

This paper is organized as follows. In order to
make this paper as self-contained as possible, we
review briefly the theoretical background in Sec. 2.

In the subsequent sections, the context, method and
benchmark are presented. The results of the numer-
ical simulations are illustrated in Sec. 5 with orbits
on attractors with approximated fractal dimensions
2.0, 10 and 20. The actual study comprised of sev-
eral cases more than those presented in Sec. 5, also
different types of additive noise were considered,
but the results were similar in all cases. In Sec. 6
we clarify the robustness of ordinal patterns against
observational noise by means of a simple exam-
ple. In the last section, the main conclusions are
summarized.

2. The Theory

Suppose that the univariate time series xN−1
0 =

x0, x1, . . . , xN−1 has been generated by a deter-
ministic map, say, f : I → I, where I is a one-
dimensional closed interval. That is, xn+1 =
f(xn) = fn(x0), where f0(x) := x, and fn(x) :=
f(fn−1(x)) for n ≥ 1. Then, we say that x0 ∈ I real-
izes the ordinal L-pattern π = 〈π0, π1, . . . , πL−1〉 if
the initial segment xL−1

0 is of type π, i.e.

fπ0(x0) < fπ1(x0) < · · · < fπL−1(x0).

Ordinal patterns that are realized by an x0 ∈ I,
are called allowed or admissible patterns for f .
Otherwise, they are called forbidden patterns for f .
Allowed ordinal patterns are the main ingredient of
the permutation entropy of a map. For brevity, we
will refer only to the properties of ordinal patterns
that follow from theoretical results on permutation
entropy.

A one-dimensional interval map f is said to be
piecewise monotone if there is a partition of the
interval into subintervals such that f is continuous
and strictly monotone on each of those subintervals.
In this case, it can be proved (based on the concept
of topological permutation entropy) that

|{π ∈ SL : π is realized by x ∈ I}|∼ eLhtop(f)

where |·| denotes cardinality, ∼ stands for “asymp-
totically when L → ∞”, and htop(f) is the topolog-
ical entropy of f . Since, on the other hand, |SL| =
L! grows super-exponentially with L (according to
Stirling’s formula), we conclude that, at variance
with random sequences, there always exist ordinal
patterns of sufficient length L that are forbidden in
deterministic time series, and moreover, their num-
ber grows super-exponentially with L.

The theoretical situation in higher dimensions
is less satisfactory in the sense that the existence
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of forbidden patterns has been proved so far only
under the somewhat restrictive condition of expan-
siveness [Amigó & Kennel, 2007]. The baker map
B : [0, 1]2 → [0, 1]2, defined as

B(x, y) =




(
2x,

1
2
y

)
, 0 ≤ x ≤ 1

2
,

(
2x − 1,

1
2
y +

1
2

)
,

1
2
≤ x ≤ 1,

provides a simple example of an expansive two-
dimensional interval map, hence with forbidden pat-
terns. Indeed, B is order-isomorphic (up to a set
of measure 0) to the two-sided Bernoulli shift on
two symbols, both the unit square [0, 1]2 and the
space of binary bisequences being endowed with lex-
icographical order. Since the latter can be shown
[Amigó et al., 2008a] to have forbidden patterns of
length L ≥ 4, the same happens to B. In particu-
lar, it follows that the ordinal 4-patterns 〈0, 2, 3, 1〉,
〈1, 0, 2, 3〉, 〈2, 0, 1, 3〉 and their “mirrored patterns”
〈1, 3, 2, 0〉, 〈3, 2, 0, 1〉, 〈3, 1, 0, 2〉 are forbidden for
the baker map. Moreover, numerical simulations
with multidimensional maps support the claim that
the existence of forbidden patterns is a general fea-
ture of deterministic multivariate time series.

An interesting property of forbidden patterns
is the fact that each single one elicits a trail of
longer forbidden patterns, called outgrowth forbid-
den patterns. Indeed, as noted in [Amigó et al.,
2006] together with the forbidden pattern π =
〈π0, π1, . . . , πL−1〉 all longer patterns of the form

〈∗, π0 + n, ∗, π1 + n, ∗, . . . , ∗, πL−1 + n, ∗〉 ∈ SN ,
(1)

(N > L) are also forbidden for f . Here n =
0, 1, . . . , N − L, where N − L ≥ 1 is the number
of wildcards ∗ ∈ {0, 1, . . . , n − 1, L + n, . . . ,N − 1}
(with ∗ ∈ {L, . . . ,N − 1} if n = 0 and ∗ ∈
{0, . . . , N − L − 1} if n = N − L). If Sout

N (π)
denotes the family of length-N outgrowth patterns
of π ∈ SL, then it can be proven [Amigó et al.,
2008a] that there exist constants 0 < c, d < 1 such
that (1 − dN )N ! < |Sout

N (π)| < (1 − cN )N ! There-
fore, the number of outgrowth forbidden patterns
grows super-exponentially with the length.

Other instrumental property of ordinal pat-
terns for time series analysis is their robustness
against observational noise. In the case of univariate
series, this robustness follows readily from the fact
that ordinal patterns are defined by inequalities.

In the numerical simulations below, we project
orbits belonging to higher-dimensional attractors,
on their first coordinate, hence we will effectively
deal with univariate sequences. Yet, this property
alone would not explain the persistence of forbid-
den ordinal patterns in deterministic sequences per-
turbed with high levels of noise, as shown below
and in [Amigó et al., 2008b]. Indeed, in determin-
istic sequences there is a second, more important
mechanism in place for the said robustness, also in
higher dimensions: the dynamics itself. This point
will be illustrated in Sec. 6 with the logistic map.

3. The Method

Our method to discriminate random from determin-
istic sequences builds on the existence of forbidden
ordinal patterns in the latter. However, the imple-
mentation of this simple fact in practice has to
overcome two major challenges: finiteness of the
time series and observational noise. Finiteness
entails false forbidden patterns, i.e. ordinal pat-
terns missing in a finite random sequence just by
chance [Amigó et al., 2007]. Observational noise
can destroy true forbidden patterns, although it
can create also new forbidden patterns. We expect
though that the robustness of ordinal patterns
against observational noise and their proliferation
with increasing length will make the difference.

Consider a time series of the form

ξn = fn(x0) + wn, (2)

(0 ≤ n ≤ N − 1) where wn is white noise, i.e. out-
comes of an independent and identically distributed
(i.i.d.) random process. In order to tell white noise
from a noisy deterministic (univariate or multivari-
ate) time series of the form (2), we have proposed in
[Amigó et al., 2008b], a chi-square test based on the
count of observable or “visible” ordinal patterns.
The null hypothesis reads:

H0 : The ξn are i.d.d.

With this objective, take sliding windows of
length L ≥ 2, overlapping at a single point (i.e.
the last point of a window is the first point of the
next one) down the sequence ξN−1

0 = ξ0, . . . , ξN−1.
For brevity, we will call them “nonoverlapping” win-
dows (although they do overlap at the endpoints).
The number of such windows is

K =
⌊

N − 1
L − 1

⌋
, (3)
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each comprising the entries

ηk := ξkL−k, . . . , ξ(k+1)L−(k+1), 0 ≤ k ≤ K − 1.

Notice that if the values ξ0, ξ1, . . . , ξN−1 are inde-
pendently drawn from the same probability dis-
tribution, then the ordinal L-patterns realized by
the components of ηk ∈ R

L, which we denote by
π(ηk) ∈ SL, will also be independent and, moreover,
be uniformly distributed random variables. There-
fore, if one or several ordinal patterns of length L
are missing in a sample obtained using nonoverlap-
ping windows, this might be a statistically signifi-
cant signal that independence and/or the equality
of the distribution are/is not fulfilled.

Given the realization {ηk ∈ SL : k ≥ 0} corre-
sponding to an arbitrarily long time series {ξn :n ≥
0}, suppose that some ordinal patterns of length L
are missing in the initial segment ξ0, ξ1, . . . , ξN−1.
Let νj be the number of ηk’s such that ηk is of type
πj (i.e. π(ηk) = πj ∈ SL), 1 ≤ j ≤ L! Thus, νj = 0
means that the pattern πj has not been observed.

In order to accept or reject the null hypothesis
H0, Eq. (3), based on our observations, we apply a
chi-square goodness-of-fit hypothesis test with the
statistic [Amigó et al., 2008b]:

χ2 =
L!∑

j=1

(
νj − K

L!

)2

K

L!

=
L!
K

∑
j:πj visible

ν2
j − K.

If H0 is true, then χ2 converges in distribution
(as K → ∞) to a chi-square distribution with L!−1
degrees of freedom. Thus, for large K, a test with
approximate level α is obtained by rejecting H0 if
χ2 > χ2

L!−1,1−α, where χ2
L!−1,1−α is the upper 1−α

critical point for the chi-square distribution with
L! − 1 degrees of freedom [Law & Kelton, 2000].
Notice that since this test is based on distributions,
it could happen that a deterministic map has no
forbidden L-patterns, thus νj 
= 0 for all j, however,
the null hypothesis be rejected because the νj’s are
not evenly distributed.

4. The Benchmark

For benchmarking we have selected the BDS test
[Brock et al., 1996; Sprott, 2003; Liu et al., 1992]
for independence in a time series, which is based
on the correlation dimension. Since we have used

the algorithm provided in [LeBaron, 1997], we will
follow this reference for the basics of the BDS test.

Let Xt, t ≥ 1, be i.i.d. random variables, and

Iε(x, y) =
{

1 if |x − y| < ε,

0 otherwise.

The probability that two length-m vectors are
within ε can be estimated by the correlation sum

Cm,n(ε) =
2

n(n − 1)

n∑
s=1

n∑
t=s+1

m−1∏
j=0

Iε(Xs−j ,Xt−j).

It is shown in [Brock et al., 1996] that

Wm,n(ε) =
√

n
Cm,n(ε) − Cm

1,n(ε)
σm,n(ε)

,

where σm,n(ε) is a complicated normalization (see
[LeBaron, 1997]), converges in distribution to a
standard normal distribution. A statistically signifi-
cant nonzero value of Wm,n(ε) is evidence for deter-
minism in the univariate time series {Xt : t ≥ 1}.

Note that this method relies on the selection of
the parameters m and ε. Following the usual pro-
cedure [Liu et al., 1992], we take ε = 0.9 j with
j = 0, 1, 2, . . . . A combination of m and ε is adequate
if a random time series is accepted as deterministic
using this test the number of cases prescribed by
the level of the test α.

5. Numerical Simulations

For the underlying deterministic time series we use
projections on the first coordinate of orbits gener-
ated by the Lorenz and time-delayed Hénon maps.
As for the additive noise wn, we use Gaussian white
noise,

〈wm · wn〉 = σ2δmn,

with different standard deviations σ. Simulations
with uniformly distributed noise yields similar
results (not shown).

We present two types of results: (i) Plots of the
number of forbidden (or, rather, missing) ordinal
patterns, and (ii) plots of the distribution of the
values of the χ2 statistic. Although the first ones
provide only qualitative information, they can even-
tually complement the information provided by the
second ones, as we will see in the case of the Lorenz
map.

(i) Let Nmax denote the length of the data sequence
under scrutiny, and let n(L,N) be the number of
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forbidden L-patterns in the initial segment ξN−1
0 =

ξ0, ξ1, . . . , ξN−1 of variable length N ≤ Nmax. For
plotting the number of forbidden patterns, we use
overlapping sliding windows of widths 4 ≤ L ≤ 7
and

5L! � N ≤ Nmax. (4)

In order to estimate an average number 〈n(L,N)〉 in
sequences of the form (2) with 0 ≤ n ≤ N−1 and N
complying with the condition (4), we generate 100
sequences of length Nmax = 8000, and normalize
the corresponding count of missing L-patterns.

(ii) For the chi-square test of independence based
on the distributions of ordinal L-patterns, we use
nonoverlapping windows of widths L = 4, 5 and lev-
els α = 0.1, 0.05. The corresponding critical points
χ2

L!−1,1−α are the following:

χ2
L!−1,1−α α = 0.1 α = 0.05

L = 4 32.007 35.172

L = 5 139.15 145. 46

In order for the sample to be statistically significant,
it is sufficient to have

5L! � K, (5)

where K is the number of windows. From (3) we
have

5L! � Nmax

L − 1
,

i.e. Nmax � 5(L− 1)L! This being the case, we take
Nmax = 1000 for L = 4, and Nmax = 8000 for L = 5.
In order to plot the χ2-value distribution, a sample
of 10 000 sequences was used.

The numerical results are the following.

5.1. The Lorenz map

The Lorenz (three-dimensional symplectic) map
[Sprott, 2003] is defined as

xn+1 = xnyn−zn, yn+1 = xn, zn+1 = yn. (6)

It has an attractor with Kaplan–Yorke dimension
DKY = 2 [Sprott, 2003]. Assuming the well-tested
Kaplan–Yorke conjecture DKY = D1, where D1 is
the information dimension, then the fractal dimen-
sion D0 satisfies

D0 ≥ D1 = 2.

Figure 1 shows the return map ξn+1 versus
ξn for a typical orbit of the Lorenz map on its

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

ξ
n

ξ n+
1

Fig. 1. Return map for a time series of the Lorenz map
contaminated with Gaussian white noise with σ = 0.25
(SNR � 10 dB). The structure of the underlying chaotic
attractor has been totally blurred. However, the count of for-
bidden order patterns is sensibly higher than in the purely
random case.

attractor for Gaussian white noise with σ = 0.25
(SNR � 10 dB). The geometry of the attractor
has been completely washed-out by the noise, but
the underlying determinism can be still detected
because of the different count of forbidden patterns
before (Fig. 2) and after (Fig. 3) switching off the
deterministic signal. Not only the count of forbid-
den ordinal patterns is different, but also the decay
rate of the false forbidden patterns with N . The
different behavior in Fig. 2 of the curve L = 4, on
one hand, and the curves L ≥ 5, on the other hand,
strongly indicates that the Lorenz map has no true
forbidden 4-patterns.

Figure 4 shows the distribution of the statistic
χ2 obtained for 10 000 sequences generated by the

0 2000 4000 6000 8000
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10
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N

<
n(

L,
N
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L=7

L=6
L=5

L=4

Fig. 2. Average number of forbidden patterns of length L
found in a time series of length N , 〈n(L, N)〉, (in logarithmic
scale) for a noisy series of the Lorenz map with σ = 0.25
(SNR � 10 dB).



October 14, 2010 16:26 WSPC/S0218-1274 02745

2920 J. M. Amigó et al.
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Fig. 3. Average number of forbidden patterns of length L
found in a time series of length N , 〈n(L, N)〉, (in logarithmic
scale) for time series of Gaussian white noise.

Lorenz map contaminated with additive Gaussian
noise with σ = 0.25, 0.50 (SNR � 10, 4 dB resp.).
In (a) we have used sequences of length N = 1000
and nonoverlapping windows of length L = 4,
while in (b) sequences of length N = 8000 and
nonoverlapping windows of length L = 5 were used.
Since the rejection threshold of the null hypothe-
sis H0 at level α = 0.05 is χ2

23,0.95 = 35.17 in (a)
and χ2

119,0.95 = 145.46 in (b), the chi-square test
clearly detects determinism. It is worth noticing
that the rejection of H0 in case (a) is due to the
nonuniform distribution of the νj since, according
to Fig. 2, all 4-patterns are visible in noisy time
series generated by the Lorenz map with N � 500
and σ = 0.25.

0 50 100 150 200
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120

χ2

N
(χ

2 )

500 1000 1500 2000 2500 3000 3500
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χ2

N
(χ

2 )

(a) (b)

Fig. 4. Distribution N(χ2) of χ2 for 10 000 noisy sequences generated with the Lorenz map, for L = 4, N = 1000, σ = 0.25
(continuous line) and σ = 0.50 (dashed line) (SNR � 10, 4.0 dB resp.) (a), and for L = 5, N = 8000, σ = 0.25 (continuous
line) and σ = 0.50 (dashed line) (SNR � 10, 4.0 dB resp.) (b).

Finally, the comparison with the BDS test is
depicted in Fig. 5. There, we show the probabil-
ity P of rejecting the null hypothesis H0 for the
27 possible adequate BDS tests on a time series
of length N = 1000 of the Lorenz map, contami-
nated with Gaussian white noise with 0 ≤ σ ≤ 2
(thus with SNRs down to approximately −8.9 dB).
In the same figure, we have also plotted the prob-
ability P of rejecting H0 using our chi-square test
with the same level α. Notice that our test rejects
the null hypothesis more often for high noise values
(σ ≥ 1), and its performance is comparable to the
best one of the BDS test for smaller noise values.
We conclude also from Fig. 5 that the BDS test per-
formance strongly depends on the combination of ε
and m; for some of those combinations, this method
wrongly accepts the null hypotheses even for small
values of σ.

5.2. The time-delayed Hénon map

The time-delayed Hénon map [Sprott, 2006] is
defined as

xn = 1 − ax2
n−1 + bxn−d, (7)

where a, b are real constants and d ≥ 1. For d = 1,
the time-delayed Hénon map is equivalent to the
logistic map xn+1 = Axn−1(1−xn−1), with [Sprott,
2006]

A =
b − 1
2a

± 1
2a

√
(b − 1)2 + 4a.
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0
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0.4

0.6

0.8

1

σ

P

Fig. 5. The continuous lines indicate the probability of
rejecting the null hypotheses H0 (the time series is i.i.d.)
for a time series of the Lorenz map contaminated with Gaus-
sian white noise with σ up to σ = 2 (and thus for SNR down
to approximately −8.9 dB) when applying the BDS test with
level α = 0.05. In total, 27 tests for different combinations of
ε and m were performed. The lighter the gray color is, the
bigger is the value of ε used (see the text for details). The
dashed line indicates the probability of rejecting H0 when
using our chi-square test at the same level α = 0.05. We can
see that our test rejects the null hypotheses more often.

For d = 2 and a = 1.4, b = 0.3, we recover the
familiar two-dimensional dissipative Hénon map.

For a = 1.6 and b = 0.1, Sprott [2006] found
the following linear relation between DKY and d
over the range 1 ≤ d ≤ 100:

DKY
∼= 0.192d + 0.699.

By using again the Kaplan–Yorke conjecture, we
infer

D0 ≥ D1 = DKY
∼= 0.192d + 0.699

for the fractal dimension D0 of the attractor over
the range 1 ≤ d ≤ 100. In particular, D0 ≥ 1.083
for d = 2, D0 ≥ 10.299 for d = 50 and D0 ≥ 19.899
for d = 100. Thus, this family of maps can be used
to see the performance of the methods described
above for different values of D0.

Figure 6 shows the return map ξn+1 versus ξn

for a typical orbit on the attractor of the time-
delayed Hénon map with d = 50, both in the
absence of noise [Fig. 6(a)] and with Gaussian
white noise with σ = 0.5 (SNR � 1.3 dB). Again,
the geometry of the attractor has been completely
blurred by the presence of this strong noise. How-
ever, we can see in Fig. 7 that also in this case, the
number of forbidden patterns of length L detected
on a time series of length N , 〈n(L,N)〉, is sensibly
larger than in the white noise-only case.
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(a)
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3

ξ
n

ξ n+
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(b)

Fig. 6. Return map for a time series of the time-delayed
Hénon map with d = 50 in the absence of noise (a) and con-
taminated with Gaussian white noise with σ = 0.5 (SNR �
1.3 dB) (b). The structure of the underlying chaotic attrac-
tor has been totally blurred. However, again here the count of
forbidden order patterns is sensibly higher than in the purely
random case.
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Fig. 7. Average number of forbidden patterns of length L
found in a time series of length N , 〈n(L, N)〉, (in logarithmic
scale) for a noisy series of the time-delayed Hénon map with
σ = 0.5 (SNR � 1.3 dB).
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Fig. 8. Comparison of our method and the BDS test for d = 2 (a), d = 50 (b) and d = 100 (c). Again, the continuous lines
indicate the probability of rejecting the null hypotheses H0 (the time series is i.i.d.) using the BDS test for a time series of
the time-delayed Hénon map contaminated with white noise with σ up to σ = 2 (and thus for SNR down to approximately
−10.8 dB for the three cases) when applying the BDS test with level α = 0.05. In total, 27 tests for different combinations of
ε and m were performed. The lighter the gray color is, the bigger is the value of ε used (see the text for details). The dashed
line indicates the probability of rejecting H0 when using our chi-square at the same level α = 0.05. We can see that our test
rejects the null hypotheses more often than the BDS for all noise values and for the three values of d.

Figures 8(a)–8(c) depict the comparison of our
method with the BDS test for d = 2 and d = 50
and d = 100, respectively. Again, the probability
of a false positive is higher with the BDS test.
Since we are interested in the detection of deter-
minism, we may conclude that our method is more
reliable.

6. On the Robustness of the
Forbidden Patterns

The results above are mainly due to the robust-
ness of the admissible and forbidden ordinal pat-
terns against observational noise. For instance, if a
map f has a forbidden pattern of length L, then it
is likely that this pattern will also be forbidden in

the presence of noise, or that it will appear with a
frequency smaller than the frequency expected for
white noise. In this section we are going to use a sim-
ple example to illustrate the origin of this robust-
ness from a dynamical point of view.

In the following we deal with time series of
the form (2), where f is the logistic map f(x) =
4x(1−x) and now wn is uniform noise in the inter-
val [−η, η]. We know [Amigó et al., 2007] that for
η = 0 this system has one forbidden pattern of
length L = 3, namely, 〈2, 1, 0〉. In other words, there
is no x for which f2(x) < f(x) < x. This can be
checked in Fig. 9.

Consider now a time series of this system of
length N , ξN−1

0 = ξ0, ξ1, . . . , ξN−1, with its K =

N/3� length-3 windows whose elements do not
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Fig. 9. Plot of the graph of y = x (black), y = f(x) (gray)
and y = f2(x) (light gray) for the logistic map f(x) =
4x(1 − x).

overlap, of the form

[ξk, ξk+1, ξk+2], k = 0, 3, 6, . . . (8)

The question that we want to answer is: if we pick
one of these windows randomly, what is the prob-
ability of having ξk+2 < ξk+1 < ξk? We know that
P (〈2, 1, 0〉) = 0 for η = 0. For η > 0 it becomes
nonzero: it is equal to the probability for

xk+2 + wk+2 < xk+1 + wk+1 < xk + wk (9)

to occur.
If η is small, this can only happen if xk is suf-

ficiently close to any of the two fixed points of the
map, x = 0 or x = 3/4. In that case, xk ≈ xk+1 ≈
xk+2, so noise can make the order relation (9) pos-
sible. How close is “sufficiently close” will obviously
depend on the value of η. In order to estimate it,
assume for example that xk is close to x = 0, and
write xk = δ > 0. Then xk+1 = f ′(0)δ + O1(δ2) and
xk+2 = (f ′(0))2δ+O2(δ2). Since ξl ∈ [xl−η, xl+η] ≡
Il, Eq. (9) can be fulfilled only if the intervals Ik,
Ik+1 and Ik+2 overlap. In particular, in order for
Eq. (9) to hold, the intervals Ik and Ik+2 must over-
lap. By noting that |O2(δ2)| ≤ M2δ

2, where M2

is estimated using standard techniques (calculating
the remainder of the Taylor series), we find that
those intervals will surely overlap if

δ ≤ δ0(η) =
1 − f ′(0)2 +

√
(1 − f ′(0)2)2 + 8M2η

2M2
.

(10)

In sum, we estimate that xk is sufficiently close to
x = 0 (in the sense that Eq. (9) can hold true for η
small) if xk ∈ [0, δ0(η)].

We can calculate analogously the δ+(η) > 0
and δ−(η) > 0 such that if xk ∈ [3/4− δ−(η), 3/4 +
δ+(η)], then xk is sufficiently close to x = 3/4 in the
same sense as before.

Thus, the probability P (η) for xk (along with
xk+1 and xk+2) to lie sufficiently close to any of the
fixed points, is equal to the measure µ of those two
intervals, that for the logistic map can be calculated
explicitly [Alligood et al., 2001], as

P (η) = µ

(
[0, δ0(η)] ∪

[
3
4
− δ−(η),

3
4

+ δ+(η)
])

,

(11)

so that,

P (〈2, 1, 0〉) ≈ P (η)P (wk+2 < wk+1 < wk) =
P (η)

6
.

(12)

In order to verify these results, we have cal-
culated numerically the probability P of finding
at least once the pattern 〈2, 1, 0〉 in any of the

N/3� windows of the form (8) in a time series
of N elements. Following our reasoning, this prob-
ability should be close to 1 − (1 − P (η)/6)�N/3�
for the logistic map contaminated with observa-
tional noise of amplitude η, whereas for random
time series it should be 1 − (1 − 1/6)�N/3� [Amigó
et al., 2007], which is clearly greater. This is con-
firmed by Fig. 10. We can see that our estimation
of this probability is quite close to the real value, so

0 100 200 300 400 500
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0.2
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0.6

0.8
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Fig. 10. Numerical (continuous line) computation and ana-
lytical estimation (dashed) of the probability P of finding
the order pattern 〈2, 1, 0〉 on any of the �N/3� windows of
the form given by Eq. (8) of a time series of length N , for the
logistic map with noise of η = 0.0001 (light gray), η = 0.01
(gray), η = 0.1 (dark gray), and for a random time series
(black). Clearly the probability of finding such pattern at
least once for noisy time series is smaller than for a random
time series.



October 14, 2010 16:26 WSPC/S0218-1274 02745

2924 J. M. Amigó et al.

we think that the ideas described above enlighten
the robustness of forbidden patterns against noise.
Figure 10 shows that the probability of finding the
pattern 〈2, 1, 0〉 on a noisy time series of the logistic
map is sensibly smaller than for white noise. This
would make a difference when applying a chi-square
test like the one described above.

7. Conclusion

We have presented a method to discriminate white
noise from deterministic time series corrupted with
high levels of white noise. From the comparative
study presented in the last section, we infer that
the method explained in Sec. 3, based on the prop-
erties of ordinal patterns (Sec. 2), compares favor-
ably to the BDS test, one of the standard tests for
independence in time series. Furthermore, the BDS
algorithm is O(N2), see [LeBaron, 1997], whereas a
simple estimation shows that our chi-square test is
approximately O(N). This, together with the fact
that our method does not require to adjust param-
eters like m and ε (we just have to investigate the
distribution of the ordinal L-patterns satisfying the
condition (5)), reinforces the above conclusion.
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