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Abstract. We study, both numerically and experimentally, the synchronization
of uncoupled excitable systems due to a common noise. We consider two
identical FitzHugh–Nagumo systems, which display both spiking and non-
spiking behaviours in chaotic or periodic regimes. An electronic circuit provides
a laboratory implementation of these dynamics. Synchronization is tested with
both white and coloured noise, showing that coloured noise is more effective
in inducing synchronization of the systems. We also study the effects on the
synchronization of parameter mismatch and of the presence of intrinsic (not
common) noise, and we conclude that the best performance of coloured noise
is robust under these distortions.
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1. Introduction

The FitzHugh–Nagumo (FHN) system [1] has been broadly investigated in the past. In spite
of its mathematical simplicity, many of the characteristics observed in neuronal cells are
reproduced by this system, which is one of the systems that is most utilized to study the spiking
activity of a neuron [2]. In particular, the periodically driven FHN system has been used to
investigate the effects of external perturbations on the generation of electrical pulses in neurons,
as well as the role of noise in the encoding process [3]. The FHN system has become the
paradigm of an excitable system in which to explore control methods enabling us to tame or
enhance the spiking dynamics [4].

On the other hand, the study of synchronization phenomena has many applications in
different branches of science [5, 6]. Following the pioneering work of Pecora and Carroll [7],
several types of synchronization phenomena have been observed. In particular, the phenomenon
of common noise synchronization has received great attention. From a theoretical point of
view, such a problem is related to global convergence of trajectories in an ensemble of random
dynamical systems, that is, the presence of a negative leading Lyapunov exponent, which is an
indicator of synchrony within the ensemble (see [8–10]). From a more physical point of view,
such an issue received great attention too, and it has been discussed in several works, using
models displaying both limit cycles and chaotic attractors [10–16].

Resonance effects on neural spike time reliability [17] and synchronization in uncoupled
systems due to a common input in neuronal dynamics have been observed in neuroscience ex-
periments [18, 19]. Different investigations with a common noise have been carried out on a pair
of integrate-and-Fire systems (IF) [20, 21] and on a single IF neuron model subjected to a broad-
band noise containing a frequency resonance [17]. However, in such cases there is no chaos to
start with (indeed, in IF systems, chaos implies mutual coupling of different individuals [22]).

In this paper, we aim to improve the understanding of the interactions between the coloured
noise correlation time and the intrinsic excitable chaotic condition of the noiseless system
in common noise synchronization; thus we revisit a chaotic situation. However, at variance
with the previous approaches [10, 13–16] we also implement a laboratory circuitry, in order to
compare numerical and experimental results. Due to the widespread use of the FHN models in
neuron dynamics, we consider here these systems as a paradigm, making as well a laboratory
implementation of two identical uncoupled excitable FHN systems [1].

Considering this, the basic setting that we use in order to explore the common noise
synchronization throughout this paper consists of two FHN systems subjected to both a common
periodic driving and a common noise, which can be either white or coloured.
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In this context, the main goal of this paper is to provide evidence that chaotic
synchronization induced by noise in uncoupled excitable systems is better realized by coloured
(Ornstein–Uhlenbeck) noise than by white noise. Although it has recently been shown that
the onset of synchronization depends on the type of chosen noise [23], we can give a
heuristic argument explaining this fact based on the following considerations. A driven FHN
model displays low-amplitude oscillations due to the forcing term. Whenever the induced
oscillation amplitude overcomes the excitability threshold, a large isolated spike emerges.
Chaotic behaviour in the FHN system is mainly the result of the erratic distribution of interspike
intervals. If we look at the chaotic power spectrum, we have a broad spectrum around the sharp
peak of the forcing. In order to get synchronization, one must deal with the interspike interval
that develops at frequencies below the peak. Thus, if we compare coloured and white noise at
the same amplitude, the former has a larger contribution at low frequencies and hence is more
effective. Both numerical and experimental evidence of this fact is provided in this paper.

Another important issue that we address in this paper is the effect of a parameter mismatch
on this type of synchronization of the two FHN systems. We also evaluate the effect of intrinsic
noise on the systems, a noise that is different in each FHN system and uncorrelated with the
common noise. All the results are tested in an electronic circuit that captures the dynamics of
the two neurons. Notice that since the FHN neuron model is paradigmatic in neuronal dynamics,
the results obtained in this work can be, in principle, generalized to higher-dimensional systems
as the Hodgkin–Huxley model [24].

The paper is organized as follows. In section 2, we describe the two uncoupled FHN
systems with a common noisy input. Section 3 shows numerical evidence of mutual spike
synchronization induced by noise. The effects of a parameter mismatch and intrinsic noise in
each FHN system are also studied. In section 4, we describe the electronic analogue simulation
with the experimental confirmation of noise-induced synchronization. Finally, discussions of
the main results and conclusions are presented in section 5.

2. Model description

As we said in the Introduction, we are interested in the common noise synchronization effect
in two chaotic excitable systems. For this reason, in this paper we are going to consider two
periodically driven chaotic FHN systems. The equations of this type of system are the following:

dx

dt
= c(−y + x − (x3/3) + S(t)),

dy

dt
= x − by + a,

(1)

where, with reference to neurophysiology, x(t) is called the voltage variable, y(t) the recovery
variable, S(t) = A sin( 2π

T t) is an external forcing of period T and amplitude A, and a, b and
c are real positive constants. By increasing the amplitude of the external forcing, the system
undergoes a cascade of period doubling bifurcations and, for sufficiently high values of A,
a spiking regime appears. This regime is characterized by the fact that x(t) > 1 for different
t values. This is shown in the bifurcation diagram of figure 1, where the voltage variable x is
represented as a function of A, and the spiking begins at A > 0.465. The parameters used in
this bifurcation diagram as well as in the rest of the numerical simulations are a = 0.7, b = 0.8,
c = 12.5 and T = 0.636.
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Figure 1. Numerical bifurcation diagram for the voltage variable x by taking as
control parameter the amplitude of the external forcing A. The spiking regime is
observed for high values of A, whereas the non-spiking regime is observed for
low values of A. Parameter values are a = 0.7, b = 0.8, c = 12.5 and T = 0.636.

Thus, we can distinguish two different behaviours, spiking and non-spiking [4]. In
figures 2(a) and (b), two experimental trajectories in phase space corresponding to the two
different regimes are shown. A time series corresponding to the spiking situation is shown in
figure 2(c). Notice that in both cases the dynamics are chaotic.

Since our purpose is to study the synchronization induced by common noise in two
uncoupled excitable systems, we consider two identical FHN systems with external noise. The
equations are

dxi

dt
= c(−yi + xi − (x3

i /3) + S(t) + ξ(t)),

dyi

dt
= xi − byi + a,

(2)

where i = 1, 2, and ξ(t) is a Gaussian random process. Notice that ξ(t) is the same for the two
systems; in other words, we have a common noise acting on both systems.

For white noise, ξ(t) has the following properties: 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = 2Dδ(t −

s) = σ 2δ(t − s), where D is the noise intensity and σ is its standard deviation. As usual, δ is
Dirac’s delta function and 〈· · ·〉 denotes averaging over the realizations of ξ .

In this paper, we also consider the effect of a common Ornstein–Uhlenbeck (coloured)
noise [25]. In this situation, we replace ξ(t) in (2) by ε(t), where the dynamical evolution of
ε(t) is represented by

ε̇ = −γ ε(t) + γ ξ(t), (3)

γ being a positive constant and ξ(t) being a white Gaussian noise with σ = 1. The coloured
noise is an exponentially correlated noise with the following properties: 〈ε(t)〉 = 0, and
〈ε(t)ε(s)〉 = Dγ exp[ − γ |t − s|]. Note that the standard deviation of this type of noise is
σ =

√
Dγ , where γ is the inverse of the noise correlation time and D is the intensity of the

white noise used in (3).
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Figure 2. Experimental trajectories in the phase space corresponding to (a) the
spiking regime, (b) the non-spiking regime and (c) the time sequence from which
(a) is extracted. One can see that the low amplitude between large spikes is
mainly a forced limit cycle and is perturbed by the chaotic dynamics.

In order to see more clearly why coloured noise should be expected to enhance more
easily the synchronization of the systems, we report in figure 3 the numerical power spectra for
the noiseless forced FHN system, figure 3(a), together with power spectra for coloured noise,
figure 3(b), and for white noise, figure 3(c) (both noises with the same value of the variance σ ).
As we explained in the Introduction, the power spectrum of the coloured noise is steeper around
frequencies smaller than the frequency of the periodic forcing (1/T ≈ 1.57), corresponding to
spiking frequencies. That is the reason why we should expect coloured noise to be better suited
to enhance common noise synchronization.

The next section provides numerical evidence of this fact.

3. Numerical results on noise-induced synchronization

In this section, we study numerically the synchronization induced by noise in two uncoupled
FHN systems under two different kinds of noise: white noise and coloured noise. We analyse
two different situations: identical systems and systems with a mismatch parameter. In the
simulations performed in this section, we use the Heun algorithm, which is one of the standard
routines for integration of stochastic differential equations [26], using a sampling of 500
integration steps per cycle of the forcing.

In order to have a first insight into the synchronization induced by common noise, we
plot in figures 4(a)–(c) x1(t) against x2(t) for different values of the common white noise.
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Figure 3. Plots of (a) the power spectrum of the noiseless forced FHN; the main
peak is observed at the forcing frequency 1/T ; (b) the power spectrum of the
coloured noise whose γ matches the half-width of the spectrum of the noiseless
forced FHN; and (c) the power spectrum of white noise. Both spectra ((b) and
(c)) correspond to noise with the same σ .

Figure 4(a) represents the noiseless case in which the spikes are not synchronized. By adding a
small amount of noise, σ = 0.01, as in figure 4(b), the synchronization degree of both systems
increases, but the systems are not yet fully synchronized. However, for σ = 0.05, we observe
total synchronization between both neurons, as in figure 4(c): x1(t) = x2(t) for all t .

Synchronization can be quantified by using different indicators, but here we are going
to use a simple indicator that can be easily computed, something that will be useful later
when we consider experimental data. This indicator is the synchronization rate R, which we
define as the number of synchronized spikes in both neurons in a time series divided by the
maximum number of spikes observed in any of the two systems in the same time interval. This
is a simple measure that is perfectly suited to the situation that we consider here. Taking into
account that we are dealing with two forced FHN oscillators, we can consider that two spikes
are synchronized when they coincide within a period T of the external forcing. In this way, there
is an intrinsic discretization on the time scale of the dynamics and it is quite natural to assume
spike synchronization when two spikes fall inside the same T (it would mean that both systems
have responded equally to the common periodic input). Furthermore, simulations show that the
shapes of two synchronized spikes are very similar; in particular, their (local) maxima occur
for very similar t values, and this feature is preserved when the system is affected by the noise
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Figure 4. Effect of white noise in the synchronization phenomenon between
the two FHN systems. Parameter values are as follows: A = 0.471, a = 0.7 and
T = 0.636 and (a) σ = 0, (b) σ = 0.01 and (c) σ = 0.05. The intensity of noise
plays a crucial role in the synchronization.

values considered here. In that case, we consider that there has been synchronized spiking. This
is illustrated in figure 5, where a plot of x1 and x2 against time is shown for a common white
noise of σ = 0.02. We can observe there how some of the spikes of both systems coincide within
the same period of the forcing. In this figure, we also observe two synchronized spikes out of
four possible ones; so in this case, R = 0.5.

In order to estimate the effect of noise in these systems, we have calculated the
synchronization rate R for our systems for 50 values of the standard deviation of the common
noise σ . We point out that the synchronization rate R observed in a time series strongly depends
on the initial conditions in both systems. Thus, in order to observe in a clearer way how R
depends on the noise intensity, the values of R shown for each σ are the average values over
100 calculations done with random initial conditions in both systems. For each calculation of
R the first 1000 cycles were discarded in order to avoid transient behaviours. The results of our
calculation are shown in figure 6, together with the statistical error for some σ values (just some
of them are shown for the sake of clarity). We take here (and throughout the paper) the statistical
error as three times the standard error of the mean, i.e. 3S(R)/

√
100, where S(R) is the standard

deviation of the R values obtained. As claimed, we can clearly observe in this figure that, with
coloured noise, smaller σ values are needed to have a high synchronization rate R.

Since in realistic situations it is impossible to have two identical systems, we have studied
the influence of a parameter mismatch on the synchronization phenomenon. The study of the
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Figure 5. Temporal evolution of the variable x1 (continuous (orange) grey
line) and the variable x2 (dash-dotted (blue) black line) for identical systems
and common white noise with σ = 0.02. Below them we plot the common
forcing ((green) black line). We can observe that when two spikes coincide
within a period T of the forcing, they have very similar shapes. Such spikes
are considered synchronized. For this short time series, the synchronization rate
is R = 0.5.
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Figure 6. Plot of the synchronization rate R (see text for details) versus the
standard deviation of noise for white (continuous (blue) black line, ◦) and
coloured noise (dashed (orange) grey line, �). Error bars are displayed for one
third of the values of σ for the sake of visualization. In both cases, the intensity
of the noise produces a positive effect on the synchronization, although clearly
at equal σ values there is a higher synchronization degree for coloured noise.

effect of small non-identities (similar to our mismatch) has been performed from an analytical
point of view in the context of nonlinear oscillators in the presence of noise [27], using as
a prototype model the Van der Pol–Duffing oscillator. Here, in order to study our two FHN
models with a parameter mismatch, we have taken different values of the parameter a in the two
FHN systems, labelled a1 for the first FHN system and a2 for the second one, and computed the
synchronization rate R when a1 6= a2. In this situation, a decrease in the synchronization of the
spikes is observed. The synchronization loss is due to the difference in the spiking frequencies of
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Figure 7. Synchronization rate R as a function of σ for white noise (continuous
(blue) black line, ◦) and for coloured noise (dashed (red) black line, �) with
a1 = 0.7 and a2 = 0.702, and for white noise (continuous (cyan) grey line, ◦)
and coloured noise (dashed (orange) grey line, �) with a1 = 0.7 and a2 = 0.705.
Error bars show statistical error for some σ values. The value of R decreases due
to this parameter mismatch, although the synchronization is higher for coloured
noise than for white noise.

the two systems that arise because of the parameter mismatch 1a. However, for the parameter
mismatch considered here and due to the common periodic forcing, the synchronized spikes
(those that occur within the same period of the forcing) have approximately the same amplitude
and timing. Thus, the synchronization rate R is again a good quantifier of the synchronization
of the two systems in this situation.

In order to have a clearer picture of the effect of parameter mismatch, we have computed R
in different situations. In figure 7, we have represented R as a function of the noise standard
deviation σ for two different cases: neurons with a1 = 0.7 and a2 = 0.702 (black line) and
neurons with a1 = 0.7 and a2 = 0.705 (grey line). It is observed that R is very sensitive
to the presence of this mismatch parameter, but the important point is that in any case R
increases as the noise increases. It is also important to note that in the presence of a parameter
mismatch, coloured noise is also more effective at inducing synchronization than white noise.
This result suggests that this better performance of coloured noise is robust under parameter
mismatch.

In order to complete the study concerning the effect of the mismatch parameter, figures 8(a)
and (b) show the synchronization rate as a function of σ and the parameter a2, for white noise
and coloured noise, respectively. We set, in all the simulations, a1 = 0.7. As expected, we can
observe that, for both types of noise, the synchronization rate, R, increases with σ and is
drastically affected by a parameter mismatch, although for large values of noise this mismatch
has less influence. This can be seen clearly also in figure 9, where a sharp drop in R value can
be clearly observed when the value of 1a = a2 − a1 is not zero for different noise values, both
for common white noise (figure 9(a)) and for common coloured noise (figure 9(b)), both with
σ = 0.04 and with σ = 0.1.

Although it is possible to find systems that have a common noise, typically these systems
are also affected by certain intrinsic noise, which we can consider white noise for simplicity and
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Figure 8. Synchronization rate as a function of σ and a2 for (a) white
Gaussian noise and (b) coloured noise. Darker colours indicate higher values
of the synchronization rate. Notice, in both figures, the strong influence of
the parameter mismatch on the synchronization rate. The optimal value of the
synchronization rate takes place for a2 = 0.7, as expected. We also observe, for
any value of a2, an increase in the synchronization rate insofar as the noise level
increases.
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Figure 9. Variation of the synchronization rate R as a function of the parameter
mismatch 1a = a2 − a1 for common (a) white noise and (b) coloured noise,
both with σ = 0.04 (dashed line) and with σ = 0.1 (continuous line). The
synchronization induced by common coloured noise is more robust under
parameter mismatch.

which will typically be uncorrelated with the common noise. In order to model this situation,
we rewrite the equations of the two uncoupled FHN systems in the presence of both common
and intrinsic noise:

dxi

dt
= c(−yi + xi − (x3

i /3) + S(t) + ξ(t) + ξi(t)),

dyi

dt
= xi − byi + a,

(4)

New Journal of Physics 12 (2010) 053040 (http://www.njp.org/)

http://www.njp.org/


11

0 0.05 0. 1 
0 

0.001 

0.002 

σ 

σ in
 t 

White noise 

(a ) 

0. 2 

0. 4 

0. 6 

0. 8 

0 0.05 0. 1 
0 

0.001 

0.002 

σ 

σ in
 t 

Coloured noise

(b ) 

0. 2 

0. 4 

0. 6 

0. 8 
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intrinsic noise. Darker colours indicate higher values of the synchronization rate.
Notice, for both white and coloured noise, the strong influence of the intrinsic
noise, which causes an important decrease in the synchronization rate. We obtain
the best performance for σint = 0 and large values of the common noise σ .

where i = 1, 2, and ξi(t) is the intrinsic noise. This intrinsic white noise is Gaussian with
〈ξi(t)〉 = 0 and 〈ξi(t)ξ j(s)〉 = δi jσ

2
intδ(t − s), where σint is the standard deviation of intrinsic

noise and δi j is a Kronecker’s delta. The intrinsic noise is totally uncorrelated with common
noise; thus 〈ξi(t)ξ(t)〉 = 0 for i = 1, 2.

The effects of the intrinsic noise are summarized in figure 10 for both white (figure 10(a))
and coloured (figure 10(b)) noise. We can see that this intrinsic noise has a negative effect on
the synchronization phenomenon; hence, the bigger the value of σint, typically the smaller the
value of R. Furthermore, we can notice that this intrinsic noise produces a strong decrease in
the synchronization rate. Even if σint � σ , where σ is the standard deviation of the common
noise (for white and coloured noise), the value of R is drastically reduced. However, we can
observe that even in the presence of this intrinsic noise, by using a sufficiently strong common
noise the value of R takes always values significantly bigger than those observed in the absence
of common noise. These figures also show that coloured noise also induces a higher degree of
synchronization than white noise, which suggests that this feature persists in the presence of
intrinsic noise. The mechanism of the synchronization loss here is different from that observed
in the case of parameter mismatch. The spiking rates of the two systems are now the same, but
(4) can be interpreted as if we had two systems with slightly different noisy inputs, ξ(t) + ξi(t)
or ε(t) + ξi(t). This difference is what makes the synchronized spikes more infrequent, thus
decreasing the value of R.

4. Noise-induced synchronization in an electronic circuit

In order to provide further evidence of the synchronization in excitable systems induced by
noise, we have implemented a laboratory version of the two FHN systems with electronic
circuits. The circuit is shown in figure 11. It consists of two electronic analogue simulators
coupled by means of a noise generator Vnoise able to provide white noise and coloured noise
with Gaussian distribution. The variable Vd is the forcing voltage amplitude, applied by means
of a function generator, and Vb is a fixed bias voltage set to −1 V. The integrators I1 and I2
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Figure 11. Layout of the electronic circuit implementing two identical FHN
models, where x ∝ Vx and y ∝ Vy . I : integrators; R: resistors; C : capacitors;
X: multipliers; Vd: sinusoidal forcing signal; and Vb: fixed bias voltage. The
numerical values are R1 = 100 k�, R2 = 125 k�, R3 = 143 k�, R4 = 1 k�,
R5 = 1.08 k�, C1 = 3 nF, C2 = 37.5 nF and Vb = −1 V.

have been implemented using Linear Technology LT1114CN quad operational amplifiers, while
the four quadrant multipliers are Analog Devices MLT04. The acquisition of the experimental
data has been performed by means of a Tektronix TDS 7104 digital oscilloscope connected
to a personal computer. The voltages of the circuit Vx and Vy can be associated with x and
y, respectively. The values for both, the resistors and the capacitors of this circuit, are as
follows: R1 = 100 k�, R2 = 125 k�, R3 = 143 k�, R4 = 1 k�, R5 = 1.08 k�, C1 = 3 nF and
C2 = 37.5 nF, respectively.

As we have seen in previous sections, parameter mismatch has a strong influence on the
phenomenon of noise-induced synchronization. Using typical electronic components, we can
be sure that the system parameters have a mismatch not bigger than 0.1% of their value, yet this
tiny mismatch can have a strong influence on the synchronization. On the other hand, these two
electronic systems will be affected by their own intrinsic noise. Thus, in order to overcome the
joint effect of parameter mismatch and of intrinsic noise and to see more clearly the effect of
common noise synchronization, we opted to vary slightly the value of R2 in one of the circuits
to R2 ≈ 126.8 k�. In this way, the spiking rates of both circuits in the absence of common noise
are almost identical to each other, as it should be when the parameters are equal. Thus, we
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Figure 12. Experimental (x1, x2) diagrams for both neurons in (a) the noiseless
case, (b) white noise (R ≈ 0.6) and (c) coloured noise (R ≈ 0.9). In the
noiseless case, the neurons are not synchronized at all. The synchronization
improves when noise is added to the FHN systems, but it is far from being
perfect.

have decided to use this parameter mismatch in order to observe the synchronization induced
by common noise in this system.

Figures 12(a)–(c) show (x1, x2) plots of the neurons for (a) the noiseless case, (b) white
noise and (c) coloured noise, respectively. We can observe the effect of the noise on the
synchronization between the neurons. This phenomenon takes place for high values of the noise
amplitude and is independent of the chosen noise. We can observe better synchronization when
noise is added to the FHN systems, although such a synchronization is far from being perfect.
However, we can see that this synchronization is better for the coloured noise than for the
white noise, in which case the synchronization between the neurons is not evident. This point is
clarified by analyzing the synchronization rate R.

Figure 13 shows the synchronization rate R obtained in the experiments versus the standard
deviation of noise σ , for white noise and coloured noise, respectively. The crucial importance
of the noise to obtain better synchronization is noted. This figure is in good agreement with the
numerical simulations shown in section 3 (see figure 6). We emphasize that the experiments
carried out confirm that the synchronization rate R reached is better for the coloured noise, in
which R ' 0.9 for high noise values, whereas for white noise R ' 0.6 at most. This explains
why synchronization is not easily observed in figure 12(b) (white noise) and why in figure 12(c)
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Figure 13. The synchronization rate R (see text for details) versus the standard
deviation of noise σ obtained in the experiments for white noise ((blue) ◦) and
coloured noise ((orange) �). In both cases, the noise produces a positive effect
on the synchronization between the two neurons, which is better for coloured
noise.

(coloured noise) the synchronization is much better. This phenomenon is mainly due to the
effect of the intrinsic noise on these systems. In any case and finally, we can summarize that, in
our experimental implementation, the synchronization is very sensitive to both, the parameter
mismatch and the intrinsic noise. However, as we could observe in the numerical simulations,
the synchronization rate still increases as the noise level is increased.

5. Conclusions and discussion

We have studied the synchronization phenomenon in uncoupled systems due to a common
noisy input, from the numerical and the experimental point of view, by taking as prototype
two identical FHN systems in the presence of external noise, both white and coloured. We
have implemented an electronic circuit that mimics the dynamics of these two neurons in order
to check the results experimentally. We observe that the synchronization rate improves once
we increase the noise level. In order to compare the effects of white and coloured noise, and
at variance with previous works, we have considered the synchronization obtained for equal
values of the standard deviation of the noisy perturbation that acts on the system, which allows
one to make a more appropriate comparison. Our results show that at equal standard deviations
of the injected noise, coloured noise gives rise to a higher synchronization degree than white
noise, and we have argued that this is due to the fact that its power spectrum is higher close
to the spiking frequencies of the systems. This might seem in apparent contradiction with the
results provided in [23], where it was shown that white noise plays a better role in enhancing
synchronization than coloured noise. However, this is due to the fact that in this paper we
compare the synchronization due to the common white noise ξ(t) and the common coloured
noise ε(t) for equal values of their standard deviation σ . In [23], however, the standard deviation
σ of the white noise used to generate coloured noise with (3) was the one taken into account.
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We consider that our procedure is more adequate for objective comparison, provided that we are
considering the value of σ of the noisy inputs of the systems.

We have also studied the effect of a mismatch parameter between the neurons. In this
case, the synchronization is very sensitive to the mismatch; however, the synchronization
rate still increases as the noise level increases. Finally, we have also considered the effect of
intrinsic noise different from the common noise, something that to our knowledge had not been
considered in previous works on this subject, and we have observed that it plays a destructive
effect on the noise-induced synchronization, although the performance of coloured noise is
also better than that of white noise in these situations. Since the FHN model is a paradigmatic
excitable system, we expect that our work might also be applied successfully to other systems
of this kind. On the other hand, the FHN model is a good qualitative neuron model, which
suggests that this work might have interesting consequences in fields where the synchronization
phenomena are relevant, and can be useful for a better understanding of excitable systems that
are relevant in neuronal dynamics.

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science under project
number FIS2006-08525, by the Spanish Ministry of Science and Innovation under project
number FIS2009-09898 and by Universidad Rey Juan Carlos and Comunidad de Madrid
under project number URJC-CM-2007-CET-1601. The INOA group acknowledges the financial
support of Fondazione Ente Cassa di Risparmio di Firenze. JS and SZ acknowledge the warm
hospitality they received at INOA where part of this work was carried out.

References

[1] FitzHugh R 1961 Biophys. J. 1 445
[2] Koch C 1999 Biophysics of Computation: Information Processing in Simple Neurons (Oxford: Oxford

University Press)
[3] Rajasekar S, Murali K and Lakshmanan M 1997 Chaos Solitons Fractals 9 1545
[4] Zambrano S, Seoane J M, Mariño I P, Sanjuán M A F, Euzzor S, Meucci R and Arecchi F T 2008 New J. Phys

9 073030
[5] Kuramoto Y 2003 Chemical Oscillations, Waves, and Turbulence (New York: Dover)
[6] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: A Universal Concept in Nonlinear Sciences

(Cambridge: Cambridge University Press)
[7] Pecora L M and Carroll T M 1990 Phys. Rev. Lett. 64 821
[8] Jan Y le 1987 Ann. l’I.H.P. sect. B 23 111
[9] Baxendale P H 2004 Stoch. Process. Appl. 113 235

[10] Pakdaman K and Mestivier D 2001 Phys. Rev. E 64 030901
[11] Ledrappier F and Young L S 1988 Probab. Th. Rel. Fields 80 217
[12] Namenson A, Ott E and Antonsen T M 1996 Phys. Rev. E 53 2287
[13] Guan S, Lai Y C and Gong X 2006 Phys. Lett. A 353 30
[14] Teramae J N and Tanaka D 2004 Phys. Rev. Lett. 93 204103
[15] Yoshimura K, Valiusaityte I and Davis P 2007 Phys. Rev. E 75 026208
[16] Yoshimura K, Muramatsu J and Davis P 2008 Physica D 237 3146
[17] Hunter J D, Milton J G, Thomas P J and Cowan J D 1998 J. Neurophysiol. 80 1427
[18] Turker K S and Powers R K 2001 J. Neurophysiol. 86 2807

New Journal of Physics 12 (2010) 053040 (http://www.njp.org/)

http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0960-0779(96)00154-3
http://dx.doi.org/10.1088/1367-2630/10/7/073030
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1016/j.spa.2004.05.001
http://dx.doi.org/10.1103/PhysRevE.64.030901
http://dx.doi.org/10.1007/BF00356103
http://dx.doi.org/10.1103/PhysRevE.53.2287
http://dx.doi.org/10.1016/j.physleta.2005.11.067
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevE.75.026208
http://dx.doi.org/10.1016/j.physd.2008.05.013
http://www.njp.org/


16

[19] Binder M D and Powers R K 2001 J. Neurophysiol. 86 2266
[20] de la Rocha J, Doiron B, Shea-Brown E, Josic K and Reyes A 2007 Nature 448 802
[21] Shea-Brown E, Josic K, de la Rocha J and Doiron B 2008 Phys. Rev. Lett. 100 108102
[22] Bressloff P L and Coombes S 1998 Phys. Rev. Lett 81 2384
[23] Wang Y, Lai Y C and Zheng Z 2009 Phys. Rev. E 79 056210
[24] Hodgkin A and Huxley A 1952 J. Physiol. 116 424
[25] Hänggi P and Jung P 1995 Adv. Chem. Phys. 89 239
[26] Kloeden P E and Platen E 1999 Numerical Solution of Stochastic Differential Equations (New York: Springer)
[27] Goldobin D S and Pikovsky A 2005 Phys. Rev. E 71 045201

New Journal of Physics 12 (2010) 053040 (http://www.njp.org/)

http://dx.doi.org/10.1038/nature06028
http://dx.doi.org/10.1103/PhysRevLett.100.108102
http://dx.doi.org/10.1103/PhysRevLett.81.2384
http://dx.doi.org/10.1103/PhysRevE.79.056210
http://dx.doi.org/10.1002/9780470141489.ch4
http://dx.doi.org/10.1103/PhysRevE.71.045201
http://www.njp.org/

	1. Introduction
	2. Model description
	3. Numerical results on noise-induced synchronization
	4. Noise-induced synchronization in an electronic circuit
	5. Conclusions and discussion
	Acknowledgments
	References

