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Abstract. The partial control technique allows one to keep the trajectories of a
dynamical system inside a region where there is a chaotic saddle and from which
nearly all the trajectories diverge. Its main advantage is that this goal is achieved
even if the corrections applied to the trajectories are smaller than the action of
environmental noise on the dynamics, a counterintuitive result that is obtained
by using certain safe sets. Using the Hénon map as a paradigm, we show here
the deep relationship between the safe sets and the sets of points with different
escape times, the escape time sets. Furthermore, we show that it is possible to
find certain extended safe sets that can be used instead of the safe sets in the
partial control technique. Numerical simulations confirm our findings and show
that in some situations, the use of extended safe sets can be more advantageous.
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1. Introduction

One of the most important phenomena found in nonlinear dynamics is transient chaos [1]. The
main characteristic of a system showing transient chaos is that almost all the trajectories passing
through a square Q in the phase space behave chaotically for a while before eventually leaving
it. The topological structure inside Q that causes this behaviour is a zero measure set known as
a chaotic saddle. This situation arises in dynamical systems that act like a horseshoe map on
a given square Q, a situation that is typically related to the existence of transverse homoclinic
intersections [2], which are quite common in nonlinear dynamical systems.

There are several contexts in science and engineering where it would be desirable to
make this transient chaotic behaviour permanent. In mechanics for example, the preservation
of transient chaos can prevent the appearance of undesired resonances. In lasers, it has been
shown that maintaining transient chaos can help one to avoid undesired intensity peaks. In
engineering, it is known that the thermal pulse combustor operates chaotically, but when one
tries to achieve high efficiency this can destroy the chaos and cause flameout. In population
dynamics, the transition from transient chaos to periodicity is usually related to pathological
situations (extinctions). These are examples that can be found in the techniques that have been
proposed in recent years to achieve the goal of preserving transient chaos [3]–[9]. But two
important issues must be addressed to solve this problem: one is the repulsive nature of the
chaotic saddle and the other is the environmental noise present in many physical situations,
which typically makes the orbits escape even faster (although in some cases, noise can slow
down the escape process; see [10]).

Recently, an advantageous technique was proposed for this type of situation, referred to as
the partial control technique [11, 12]. A remarkable achievement of the partial control technique
is that it allows us to control the system even when the amplitude of the corrections applied to
the trajectories (the control) is smaller than the maximum deviation of the trajectories from their
deterministic path due to the presence of environmental noise (the noise). The basic ingredient
for obtaining this somehow counterintuitive result is the use of certain sets referred to as safe
sets [11] in Q. These sets have certain particular geometrical properties that are related to the
typical stretching and folding action of the horseshoe-like mapping of Q. This advantageous
control technique has been applied to well-known physical models such as an open billiard [11],
the bouncing ball map [13] and a system with fractal basin boundaries [14]. This technique
has also been used to make permanent chaotic some transient chaotic one-dimensional
maps [15, 16]. In the case of a three-disc open billiard, this technique is used by applying
small perturbations each time the trajectory of the systems hits one particular disc, which
causes the trajectory to stay inside the billiard forever. An overview of the method can be found
in [17].

In this context, an important question arises: Are there other sets inside Q that can play
a role analogous to the safe sets in the partial control technique? In this paper we provide a
positive answer to this question, by defining a generalization of the safe sets: the extended safe
sets. We show here that these sets can be built using an algorithm discarding points from another
important family of sets, the escape time sets inside Q, that corresponds to points in the square
that escape from it under different numbers of iterations. We show here how these extended safe
sets also allow one to keep trajectories inside Q with a control smaller than noise, and we discuss
the advantages of using these types of sets. We also compare numerically the performance of
the partial control technique using both safe sets and extended safe sets. An interesting result is
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that the use of extended safe sets requires a smaller control than the use of safe sets for certain
values of the noise, so the results of [11, 12] are partially improved. As we will discuss later,
our results imply an important step forward in two interesting issues: the detection of extended
safe sets in dynamical systems and its generalization to higher dimensional dynamical systems.

This paper is organized as follows. In section 2 we describe the basic situation in which our
control strategy applies and we describe the system that we use in our explorations: the Hénon
map. In section 3 we revise the partial control technique and describe the safe sets. In section 4
we define the escape time sets and explore their relation to the safe sets, and in section 5 we
show the conditions that extended safe sets need to fulfil. In section 6 we explain how to use the
extended safe sets in the partial control technique. Section 7 provides a numerical exploration
of our control technique and a comparison between the results obtained with extended safe sets
and safe sets. In section 8 we draw the main conclusions of this work.

2. Basic setting

We consider here dynamical systems of the form pn+1 = f (pn), where pn ∈ R2. We assume
that the map f acts on a square Q like a horseshoe map; for details see [12]. This implies that
nearly all the trajectories inside Q (except a zero measure set) escape from it after iterations. On
the other hand, the behaviour inside the square Q is erratic because of the existence of a zero
measure nonattractive set, the chaotic saddle.

An example of this type of dynamical system is the Hénon map with an adequate
selection of the parameters. The Hénon map is a paradigmatic system in the nonlinear dynamics
community, and for that reason we have chosen it, from now on, to show how the partial
technique works. The Hénon map is defined as{

xn+1 = a − byn − x2
n yn+1 = xn. (1)

For a = 2.12 and b = 0.3 we can obtain one of the most famous attractors, the Hénon attractor,
as in figure 1(a), where its basin of attraction (with fractal boundary) and the basin of attraction
of infinity are shown. This is not the situation that we focus on here. We are interested here
in the situation where a = 6 and b = 0.4. The basin of attraction of infinity for these values of
the parameters is shown in figure 1(b): we can see that all trajectories (except a zero measure
set) diverge to infinity. This is due to the fact that the Hénon map f acts like a horseshoe map
on the square Q ≡ [−4, 4] × [−4, 4], as shown in figure 2. The results that we have obtained
are valid for maps acting on a square like a horseshoe map, i.e. satisfying the Conley–Moser
conditions [12]. For these values of the parameters, the Hénon map satisfies these conditions,
so we use it here both to illustrate and to numerically test our results.

In figure 2, we also show the two fixed points of this horseshoe-like map, p∗ and p∗∗; the
former will later play an important role (remember that every horseshoe map has associated
with it two fixed points). The chaotic saddle responsible for transient chaos is shown in figure 3;
it has been computed using DYNAMICS software [18]. Due to the horseshoe mapping, this set
is topologically equivalent to an intersection of two Cantor sets of vertical and horizontal lines,
as expected. Thus, nearly all the points inside the square (except a zero measure set, the chaotic
saddle and its stable manifold) escape from it under iterations. The dynamics inside the set is
chaotic, but due to its nonattracting nature for a typical trajectory starting inside Q we have
transient chaos.
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Figure 1. Basins of attraction for bounded attractors (white) and infinity (black)
for the Hénon map: (a) xn+1 = 2.12 − 0.3yn − x2

n , yn = xn where the attractor is
shown in grey and (b) xn+1 = 6 − 0.4yn − x2

n , yn = xn, both in the square Q =

[−4, 4] × [−4, 4]. For the second set of parameters, nearly all the trajectories
escape. The main goal of our control technique is to avoid those escapes from Q.

Figure 2. The square Q = [−4, 4] × [−4, 4] (grey) and its image under the
Hénon map xn+1 = 6 − 0.4yn − x2

n , yn = xn (black). These are the parameters
used in the paper, for which the map acts like a horseshoe map on Q. The two
saddle fixed points p∗ and p∗∗ are shown.

As we said before, we consider systems with this kind of escaping dynamics pn+1 = f (pn)

and also affected by noise. This is modelled here by adding at each iteration a random
perturbation un ∈ R2 that we refer to as the noise, which is bounded by the constant u0,
‖un ‖6 u0. Thus, the system to be controlled is pn+1 = f (pn) + un. The effect of noise is that
all the trajectories inside the square Q will now escape from it under iterations. In order to
test our results, we use here a noise with a uniform probability distribution, but the control
technique has to work for any other kind of distribution.
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Figure 3. Chaotic saddle for the Hénon map xn+1 = 6 − 0.4yn − x2
n , yn = xn.

The control technique that we propose here in order to keep trajectories in Q is a targeting
technique like other techniques proposed to sustain transient chaos, as in for example [8]. The
idea behind this type of technique is that at each iteration, we apply an accurately chosen control
rn ∈ R2 to correct the system’s trajectory considering the joint effect of the system’s dynamics
and the noise. The control is also bounded, so ‖rn‖6 r0. We can express this in a mathematical
way using the formula

{qn+1 = f (pn) + un pn+1 = qn+1 + rn. (2)

This means that at each iteration the map and the noise act. Then, we apply a control rn that
corrects slightly the trajectory and places it in its new position, pn+1. The technique that we
describe here allows one to keep trajectories in an arbitrary square Q (if there is a horseshoe
map) with r0 < u0.

Before describing the partial control technique we propose here, we note that different
approaches can be used to keep pn inside Q. A first approach would be to use the control
rn to steer the trajectories towards points inside Q with long-lived transient chaos (close to
the chaotic saddle), as in [8]. Another approach [3] would be to use this control to steer the
trajectories towards the stable manifold of one of the saddle fixed points, for example p∗. Simple
geometrical considerations show that these two methods would allow one to keep the trajectories
inside Q only if r0 > u0. This is somehow an intuitive result: in order to control an unstable
system with noise, one might need a control at least equal to the noise.

Remarkably, the partial control technique that we describe below allows us to achieve this
goal even if the control is smaller than the noise, that is, if r0 < u0. As will become clear later,
this is due to the existence of certain sets inside the square Q: the safe sets. One of the main
contributions of this paper will be to generalize these sets to some new extended safe sets.

3. The partial control technique and safe sets in a nutshell

As mentioned, the partial control technique was originally designed making use of certain safe
sets. We describe this here in some detail. We call vertical curves the curves going from the top
to the bottom of the square Q. We call S0 the vertical curve (segment) that divides the square Q
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Figure 4. Basic action for generating inductively the safe sets in a map showing
horseshoe-like behaviour in the phase space. We begin with a vertical segment
(S0) that splits the square into two equal halves and we compute the preimages
of that line in Q. The intersections of the kth preimage of S0 with Q gives the
set Sk , which consists of 2k curves.

into two halves, such that f (S0) is not on Q. The presence of a horseshoe map guarantees (for
a general system) the existence of the safe sets Sk for k = 1, 2, . . . that are defined as

Sk
= f −1(Sk−1) ∩ Q = f −k(S0) ∩ Q. (3)

The basic operation giving rise to the safe sets is illustrated in figure 4: the set Sk would
be the preimage inside Q of Sk−1. In figure 5 the safe sets Sk from k = 1 to k = 4 are shown
for the Hénon map. We can note that as k grows the sets get closer to the stable manifold of
the invariant set inside Q. This is not surprising, provided that by definition, as k grows, points
on Sk take a longer time to escape from Q. In this picture, it is also easy to see that the basic
properties of the safe sets are the following [11]–[14, 16, 17]:

(i) Sk consists of 2k vertical curves, which can be grouped in 2k−1 consecutive pairs of curves
from left to right.

(ii) There is a curve of Sk−1 between any pair of curves of Sk .

(iii) The maximum distance between any of the curves of the 2k−1 pairs of curves of Sk goes to
zero as k → ∞.

In order to properly describe the partial control technique, we need some extra definitions,
which are illustrated in figure 6 for S2. For each set Sk we define the middle curves ζi ,
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Figure 5. The sets S1, S2, S3 and S4 that are the result of computing the
corresponding pre-image of S0, which would be the vertical segment splitting
the square into two equal rectangles. The set S1 consists of a pair of curves, the
set S2 has two pairs of curves, the set S3 consists of four pairs of curves and so
on. Their geometrical properties are key to the application of the partial control
technique.

Figure 6. These are the parameters needed in the partial control technique using
the S2 sets. The curves ζ1 and ζ2 are the curves whose points are at the same
distance from a curve of each pair of curves of S2. We can also see that δmax(i) is
the maximum distance from each pair of curves of S2 to the curves ζi and δmin(i)

is the minimum distance.
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Figure 7. The basic idea of the partial control technique. The point p lies on S2.
If u0 satisfies condition (4) on S2, then f (p) lies on a curve of S1 that has two
adjacent curves of S2. Independently of the noise deviation u, a smaller control
r can put the trajectory back on S2.

i = 1, . . . , 2k−1, as the vertical curve equidistant to each of the curves of a pair of Sk . Then
we call δmax(i) and δmin(i), i = 1, . . . , 2k−1, the maximum and minimum distances, respectively,
between each of the curves of each pair and the corresponding middle curve ζi .

If we label δmax as the largest δmax(i) and δmin as the smallest δmin(i), then a partial control
strategy for keeping trajectories bounded with a control smaller than noise can be obtained if

u0 > δmax. (4)

With all these parameters defined we can finally introduce the partial control strategy [11]:
assume that an iteration p lies on S2 and u0 satisfies the above condition for S2. Then f (p)

will lie on a vertical curve of S1, which has two adjacent curves of S2 by (ii). The deviation
induced by noise leads to q = f (p) + u. However, due to property (ii), no matter what the noise
deviation is, a control such that ‖r‖6 r0 with

r0 = max{δmax, u0 − δmin} (5)

can make the next iteration p′
= q + r lie again on S2, and this can be repeated for each iteration.

This is illustrated in figure 7. The control applied obviously satisfies r0 < u0 and trajectories are
kept inside Q forever.

In order to find out if there are other sets in Q that can be used instead of safe sets to keep
trajectories inside Q with r0 < u0, we introduce in the next section an important family of sets:
the escape time sets.

4. Safe sets and escape time sets

Our aim now is to show the relationship between the safe sets and the escape time sets T n. The
escape time sets are the sets of points in a square with a horseshoe dynamics that stay inside the
square under n iterations or more, that is,

T n
≡ {p ∈ Q/ f n(p) ∈ Q} = f −n(Q) ∩ Q. (6)
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Figure 8. The escape time set T 3, i.e. the set of points that escape from Q after
three or more iterations. It consists of four pairs of strips, and it is reminiscent of
S3.

By making some considerations on the inverse horseshoe map, it is not difficult to see that:

(i) T n consists of 2n vertical strips, which can be grouped in 2n−1 consecutive pairs of strips
from left to right.

(ii) T m
⊂ T n if m > n.

(iii) As the order n increases, the width of the strips of the T n sets decreases.

The escape time set T 3 is shown in figure 8. It is clear that there is a resemblance between
T 3 and S3. In fact, the above properties are similar to those of the safe sets sketched in the
previous section. Furthermore, it is easy to see from equations (3) and (6) that Sn

⊂ T n (provided
that S0

⊂ Q), as shown in figure 9 for S2 and T 2.
These similarities, however, do not imply that by using T n instead of the sets Sn in the

partial control technique, trajectories can be kept inside Q with r0 < u0. As we can see from
figure 10 for T 2, the forward iterates of its four strips do not fall in the space between each pair
of strips of T 2 (including them). Simple geometrical considerations using the ideas sketched
in the previous section show that this implies that trajectories can be kept inside Q using T 2

instead of S2 only if r0 > u0. Thus, some points on T n need to be discarded, giving rise to the
extended safe sets.

5. Obtaining extended safe sets from escape time sets

Considering this, clearly the escape time sets T n are not a good substitute for safe sets Sn in the
partial control technique. The next question would be: Which points on T n have to be discarded
so that the partial control strategy can be applied with r0 6 u0? In this section we address this
question. We describe here the maximal extended safe set En

max, which is a subset of T n that can
be used in the partial control technique so that trajectories can be kept bounded with r0 = u0.
From these sets we can easily define the extended safe sets En, and for any En we show that
there is a u0 so that trajectories can be kept inside Q with r0 < u0.
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Figure 9. The black curves of this figure are points of the S2 set, whereas the
grey bars represent T 2. Here we can see how the safe sets S2 are inside the space
filled by T 2.

Figure 10. In this picture, we can see in grey the set of points of T 2 (the set of
points that stay in the square under two or more iterations). We have also plotted
in black the images of those points under one iteration. Because the images of
the strips do not lie between the pairs of strips, it is impossible to use the set T 2

to keep trajectories inside Q with a control smaller than noise.

Recall the fixed point p∗ shown in figure 2. We call W s(p∗) its stable manifold, and W s
L(p∗)

the vertical curve that is a piece of W s(p∗) inside Q containing p∗. Consider now the set T 1 and
the four vertical curves of f −2(W s

L(p∗)) ∩ Q shown in figure 11. We call E1
max the set resulting

from ‘cutting’ the two strips of T 1 into two thinner strips as these four curves indicate. The
strips of E1

max are mapped as shown in figure 11. This is due to the horseshoe mapping and to
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Figure 11. The set T 1 (light grey) is subdivided using four pieces of the stable
manifold of p∗ (black curve), so we obtain the maximal extended safe set E1

max
(grey). The image of E1

max under f is shown (black); each of its two pieces falls
in the space between the pair of strips of E1

max.

the fact that points in the stable manifold map into points of the stable manifold under f . This is
the limit point of the ‘good mapping’ that we are searching for: the image of each strip of E1

max
falls into the space between the pair of strips of E1

max.
Considering this, we define inductively

En+1
max = f −1(En

max) ∩ Q = f −n(E1
max) ∩ Q. (7)

Clearly the set En
max consists of 2n strips, which also can be grouped in 2n−1 pairs of strips

from left to right. Note that by definition it will be contained in T n. Furthermore, it can be seen
that the curves that bound each vertical strip of En

max are pieces of the stable manifold (since
preimages of points of the stable manifold also belong to the stable manifold). These sets will
reproduce the good kind of mapping observed for E1

max: the image of each strip of En
max falls in

the space between each pair of strips of En
max. This is shown for example in figure 12 for the set

E2
max. Using the geometrical considerations provided above, we can see that by using the sets

En
max instead of Sn, the partial control strategy trajectories can be kept inside Q with r0 = u0.

With these elements in mind, we can define the extended safe sets En as follows: an
extended safe set En is a set of 2n vertical strips, each of them inside a different strip of En

max, so
that their vertical bounds do not intersect with the vertical bounds of the strips of En

max. Thus, an
extended safe set is obtained when the width of all the strips of the extended safe sets is reduced.
If we take a zero-width strip we would obtain safe sets as the ones described in section 3. An
example of an extended safe set E2 obtained from E2

max is shown in figure 13. In the next section,
we show that applying the partial control technique with an extended safe set it is possible to
keep trajectories bounded with r0 < u0.

Before concluding this section we would like to point out that the same procedure that has
been carried out with the Hénon map to obtain the extended safe sets could be repeated with the
same level of difficulty for any dynamical system topologically equivalent to it, i.e. a dynamical
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Figure 12. The set T 2 (light grey) is cut using eight pieces of the stable manifold
of p∗ (black curve) and gives rise to the maximal extended safe set E2

max (grey).
The images of each strip of E2

max under f are shown (black); they fall in the space
between each pair of strips of E2

max.

Figure 13. In this figure we can see an extended safe set E2 and the parameters
needed in the partial control technique using the extended safe set E2.

system acting as a horseshoe on a (topological) square Q. It is important to note that in order to
find the extended safe sets one needs to find the chaotic saddle, a square enclosing it, the escape
time sets and the stable manifold of the fixed point of the horseshoe. These can be calculated
using time series of the system, and do not require us to know exactly the form of the map f .
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Thus, we consider that this is the main advantage of using extended safe sets from the point of
view of applicability.

6. Partial control with extended safe sets

Now that we have described the extended safe sets En, we need some parameters to describe
how they can be used in the partial control technique. For a set En the curves ζi , i = 1, . . . , 2n−1,
represent the curve equidistant to any pair of strips. We define the maximum distance δmax(i)

from ζi to the inner part of the pairs of strips for i = 1, . . . , 2n−1. Analogously, we define the
minimum distance δmin(i) from the forward iteration of En to the outer part of the closer pair
of strips (between which it has fallen) for i = 1, . . . , 2n−1. We can see all of them illustrated in
figure 13.

If we label as δmax the largest δmax(i) among all the pairs of strips, we find that the condition
required for the extended safe sets to have a control smaller than noise is the same as that for
the classical safe sets

uo > δmax. (8)

The maximum control needed can also be computed in the same way if we consider δmin as the
smallest of all the δmin(i) among all the pairs of strips

r0 = max{δmax, u0 − δmin}. (9)

The partial control strategy [11] is similar to the one described for the safe sets. Assume
that p lies on E2 and u0 satisfies the above condition. Then f (p) will lie on a strip of E1,
which now falls in the space between two strips of E2. The deviation induced by noise leads
to q = f (p) + u. Now, no matter what the noise deviation is, again a control such that ‖r‖6 r0

with

r0 = max{δmax, u0 − δmin}, (10)

obviously satisfying r0 < u0, can make p = q + r lie again on E2, and this can be repeated
forever. This is illustrated in figure 14. In the next section, we carry out a numerical exploration
of these results.

7. Numerical results

Here we show some numerical simulations showing the performance of the partial control
technique with extended safe sets in comparison with the partial control technique with safe
sets. In our numerical simulations we have used the sets E1, E2 and E3 shown in figure 15.

In figure 16 we show an example of the control needed when stabilizing an orbit on E3

with a maximum amplitude of noise of u0 = 0.25. In this figure we show the amplitude of the
control ‖rn‖ used in 1000 iterations of the map. As we can see for all the iterations, it is satisfied
that ‖rn‖< u0, i.e. the control applied is smaller than the noise, as claimed.

In order to compare the performance of the method using both extended safe sets and safe
sets, we show in figure 17 a plot of the maximum control needed using E3 and S3 for different
values of noise. This maximum control r0 is estimated as the maximum value of the control
applied ‖rn‖ when using our technique for a large number of iterations.
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Figure 14. The basic idea of the partial control technique. If p lies on E2 and u0

satisfies condition 4 on E2, then f (p) lies on a strip of E1 that has two adjacent
strips of E2. Independently of the noise deviation u, a smaller control r can put
the trajectory back on E2.

Figure 15. The extended safe sets used in our numerical simulations. They
can play a role analogous to the safe sets in the partial control technique, so
trajectories can be kept inside the square Q with a control smaller than noise.

Figures 17 and 18 illustrate well some of the basic features of the method. First we can note
that the computed values of r0 for the extended and safe sets are smaller than u0 except for some
ranges of u0. This means that in those ranges the requirements of equation (8) are not fulfilled.
For example, we can see in figure 18 that there is a u0 interval for which the condition r0 < u0

is not fulfilled for S2 or E2, but we can see that the condition is fulfilled for S3 and E3. This
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Figure 16. Control needed in 1000 iterations of the Hénon map where the
maximum amplitude of noise is u0 = 0.25. We can check that the amplitude of
the control applied in each iteration ‖rn‖ is smaller than the noise.

Figure 17. Necessary amplitude of the control r0 needed when using the safe
set S3 and an extended safe set E3. The value of r0 is estimated by computing
the maximum value of the amplitude of the control needed, ‖rn ‖, to keep the
trajectories inside Q. As we can see there is an interval where it is more effective
to use E3, after which it becomes more effective to use S3.

illustrates the property by which, for all values of u0, if k is sufficiently large, trajectories can
be kept on E k (or Sk) with r0 < u0. In other words, there is always a k for which the prescribed
extended safe set E k will fulfil equation (8).

We can also see that there exists a transition point that indicates the limit where the use of
our extended safe set becomes less efficient than using the safe set. An explanation of this fact
is beyond the scope of this paper, but the key idea is that for some values of the noise u0, the fact
that the extended safe sets are ‘thicker’ than the safe sets can be an advantage, whereas for some
other values of u0 it might be a drawback. In figure 18 we can see a more global comparison of
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Figure 18. Here we show the necessary amplitude of the control r0 needed when
using the safe sets for a wider range of values of u0. Here we can check that
around levels of noise between 0.14 and 0.19, E3 is the best option. From 0.19
to 0.65, S3 requires a smaller control. We should use E2 from 0.65 to 0.85. And
we should start using S2 for values of noise beyond 0.85.
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Figure 19. Another kind of comparison between the safe sets and the extended
safe sets using the average value of control over long runs of iterations. Here
for each value u0 2000 iterations of the technique have been carried out and the
mean value of all those iterations plotted on the figure.

both techniques using different safe sets and extended safe sets, which clearly shows that there
are intervals where using extended safe sets requires a smaller control than using safe sets and
that there is always an extended safe set such that trajectories can be kept inside the square with
r0 < u0.

Finally, we have performed a simulation in order to compare both techniques in terms of
the average of the control applied over a long number of iterations. This is what we can see
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in figure 19, where it is possible to see that the average value of the control needed for the En

sets is smaller than for the safe sets Sn for all the values of noise. This can be easily understood
provided that the extended safe sets are ‘thicker’, so typically a smaller perturbation is needed
to steer trajectories towards them.

8. Conclusions and discussion

In this paper, we have shown that it is possible to apply the partial control technique using
certain sets, the extended safe sets, which are deeply related to the escape time sets, in a
square Q where a horseshoe map exists. The notion of extended safe sets generalizes the notion
of safe sets when we use these new sets in the partial control strategy, to keep trajectories
bounded in the square, with a control smaller than the noise. The procedure for obtaining
extended safe sets from escape time sets has been described and it implies the cut of the escape
times using the stable manifold of a saddle fixed point in a horseshoe map (remember that every
horseshoe map has associated with it two fixed points).

We have carried out numerical simulations testing this new technique and showing that it
achieves our desired goal of control smaller than noise. We have also compared the performance
of the partial control technique using safe sets and extended safe sets, finding that the best choice
depends on the amplitude of the noise present in the system. We have also shown that over a
long series of iterations, the mean of the control applied is always smaller when using extended
safe sets than when using safe sets.

From an experimental point of view, the use of extended safe sets, being a nonzero measure
set, is advantageous. Having an area, it is easier to place trajectories on them without making
an error than when dealing with zero measure sets as the safe sets. On the other hand, by
construction they are computed from the escape time sets and using the stable manifold of a
fixed point as a guide, and this information can be inferred from time series of the system.
Finally, we believe that the use of escape time sets might yield extensions of this technique to
more general settings, such as for example to the control of nonhyperbolic transient chaos.

Throughout this paper we have assumed that our control has no errors, that is, for each
iterate, we can place the trajectory exactly where we want. However, this is not a critical
assumption. As with safe sets, it is possible to keep the condition r0 < u0 using extended safe
sets also if we have small control errors [12], i.e. even if at each iteration trajectories are not
placed exactly on the extended safe sets. This tolerance to errors depends basically on the value
of r0 needed in the absence of errors, the value of u0 and the expansiveness of the map f , which
somehow tells us how much we are penalized if we do not apply exactly the required control.
To provide an analytical estimate of such tolerance, however, is complicated. However, due to
the fact that extended safe sets are ‘thicker’ than safe sets, we expect that the tolerance for the
former is bigger.

In spite of the advantages of our technique, there are still some limitations. In the current
form of the technique it is required that all the variables can be measured and controlled, which
might be a strong requirement in some situations, especially in experiments. However, it is
possible to see how this can be achieved. First we can note that in the present technique,
owing to the form of the extended safe sets, corrections would typically be applied only in the
x-direction, generally speaking in the ‘unstable’ direction of the system. This suggests that
the number of variables that need to be controlled for our control technique can be reduced.
On the other hand, the key ingredient of our technique, the horseshoe mapping, is a topological

New Journal of Physics 12 (2010) 113038 (http://www.njp.org/)

http://www.njp.org/


18

feature of the system and thus it should be possible to reproduce it using embedding of an
observable in a proper phase space with delay. Further work on this topic should provide a
rigorous answer to these important issues.

Finally, we want to emphasize that our analysis reveals the deep relationship existing
between the escape time sets and these extended safe sets, so we believe that any algorithm
implemented in order to detect extended safe sets should make use of this relationship: first
searching for the different escape time sets and then discarding the points that are not useful. As
we said, this can be helpful both for an experimental detection of sets that can allow us to obtain
partial control with r0 < u0 and in generalizations of the partial control technique to dynamical
systems in higher dimensions.
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