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Fractal structures appear in many situations related to the dynamics of conservative
as well as dissipative dynamical systems, being a manifestation of chaotic behaviour.
In open area-preserving discrete dynamical systems we can find fractal structures in
the form of fractal boundaries, associated to escape basins, and even possessing the
more general property of Wada. Such systems appear in certain applications in plasma
physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main
purpose of this paper is to show how such fractal structures have observable consequences
in terms of the transport properties in the plasma edge of tokamaks, some of which
have been experimentally verified. We emphasize the role of the fractal structures in the
understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Keywords: fractal sets; tokamaks; magnetic field lines; area-preserving maps;
open Hamiltonian systems

1. Introduction

Fractal geometry, which took its present form in the second half of the twentieth
century, has received a great deal of attention after being proved to be necessary
to tackle many problems of nonlinear dynamics [1]. An outstanding example is the
well-known stretch-and-fold mechanism producing strange attractors, which leads
to the fact that most (but not all) chaotic attractors have fractal geometry [2,3].
There are also other fractal chaotic sets of great importance in nonlinear
dynamics, such as the so-called strange saddles, which are non-attracting and play
a key role in both conservative and dissipative dynamical systems [2]. Moreover,
when the dynamical system is multi-stable, i.e. it has more than one coexisting
*Author for correspondence (viana@fisica.ufpr.br).
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attractor (not necessarily chaotic), it often turns out that the basin boundaries
are fractal, leading to difficult issues related to the ability to predict to which
attractor a given trajectory will asymptote [4].

The basic building block of fractal structures in nonlinear dynamics is the
horseshoe set discovered by Smale [5]: it is constructed from an infinite number
of transformations consisting of smoothly stretching and folding onto itself a two-
dimensional point set [5]. The set resulting from this infinite sequence of smooth
transformations is Cantor-like (self-similar with fractal dimension) and non-
attracting. Moreover, the horseshoe set can be shown to contain: (i) a countable
set of periodic orbits, (ii) a non-countable set of bounded non-periodic orbits, and
(iii) a dense orbit [6].

The ubiquitous presence of fractals in nonlinear dynamics leads to a wealth of
fractal structures in nonlinear systems of physical, technological and biological
interest [7]. In this paper, we focus on applications in fusion plasmas, specifically
the confinement of hot plasmas by externally applied magnetic fields in tokamak
devices [8,9]. Tokamak plasmas present many turbulent processes of particle
and energy transport, which need to be understood and controlled in order
to allow long-lasting plasma confinement for future fusion applications [10,11].
Electromagnetic turbulence in plasmas is a mesoscale phenomenon, characterized
by wavelengths intermediate between the ion gyroradius (approx. 1 mm) and
the tokamak typical size (approx. 1 m) and time-scales between the Alfvén time
(approx. 1–10 ns) and the plasma confinement time (approx. 0.1–10 s) [12].

In this work, we will focus on the magnetic field line structure in tokamaks,
which is a lowest order description for the charged particle motion in confined
plasmas [8,13,14]. The magnetic field line Lagrangian dynamics gives us
valuable hints for the description of the particle behaviour in the presence of
electromagnetic turbulence, like its transport properties and anomalous diffusion
[10,11,15]. Since the magnetic field is divergence-free, the magnetic field line flow
is volume-preserving in phase space, which coincides with the configuration space.
Hence, from now on, we identify a trajectory, or orbit, with a field line itself. The
configuration may be static, but in this case the role of time is then played by a
cyclic (ignorable) spatial coordinate.

Although a symmetric toroidal magnetic confinement configuration is an
integrable system (in the Liouville sense), a non-symmetric perturbation turns
it into a non-integrable Hamiltonian system where Lagrangian chaos is not only
possible but typically found [14,16,17]. This is the case, for example, of the
plasma confined in a toroidal scheme (tokamak) with so-called ergodic limiters,
which are external electric currents with the purpose of creating a peripheric
region of chaotic field lines near the tokamak wall [18–21]. The interest in
creating (rather than avoiding) a chaotic region of field lines is the obtaining
of a ‘cold’ boundary layer so as to uniformize heat and particle loadings on the
tokamak wall, thus improving the confinement quality through a reduction of
impurity releasing [22,23]. Another example of practical application of chaotic
field lines in the fusion context is the divertor concept, which needs a chaotic
region to drive out undesirable particles from the plasma edge to a collector
plate [24–30].

The underlying structure in a chaotic area-preserving orbit is a non-
attracting chaotic saddle, and there are many observable manifestations of
its fractal character, some of them even having been experimentally verified
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[31–34]. An example of a fractal set one can mention is the escape basin,
which is the set of initial conditions leading to chaotic orbits which hit
the tokamak wall [20,31,35,36]. Besides the escape basin boundaries being
fractal sets, they often have the so-called Wada property: every boundary
point has an arbitrarily small neighbourhood containing points of all the
basins [37–40].

Another example of fractal structure of interest in a toroidal plasma is
the magnetic footprints, which is the set of points at which the escaping
chaotic orbits reach the tokamak wall [41]. Since charged particles tend to
gyrate and drift along magnetic field lines, escaping field lines are preferential
transport channels for charged plasma particles [42]. Hence magnetic footprints
generate hot spots in barriers like divertor plates with an abnormally high
concentration of energy and heat, a feature that has been observed in
experiments [31,32].

The main purpose of this paper is to present some fractal structures of interest
in the magnetic field line (Lagrangian) dynamics in a tokamak with ergodic
limiters. We will show that the chaotic region generated near the tokamak
wall does not actually uniformize the loading on the tokamak wall. This non-
uniformity is a consequence of the fractal structures associated with the chaotic
field line region near the wall, and we show various manifestations of this
character, like the connection lengths and magnetic footprints.

This paper is organized as follows. In §2, we make a brief description of the
physical system consisting of the symmetric toroidal plasma in a tokamak and
the non-symmetric perturbation caused by external electric currents generated
by grid-shaped coils called ergodic limiters. In §3, we present the magnetic
field line map describing the non-integrable system. Section 4 exhibits some
of the fractal structures occurring in the chaotic field line region, namely
escape channels and regions of equal connection lengths. Section 5 discusses the
relation between the fractal structures and the invariant manifolds of the chaotic
saddle corresponding to the chaotic region near the tokamak wall. Section 6
presents escape basins possessing the Wada property and displays examples
of magnetic footprints in the tokamak wall. Our conclusions are left to the
last section.

2. Model fields

(a) Plasma equilibrium field

There are many coordinate systems to describe magnetic field lines in a tokamak,
its choice depending on the symmetries exhibited by the system [43]. A cylindrical
system (R, Z , 4) may be used to describe the tokamak, in which the symmetry (Z -
) axis is the major axis of the torus, R is the radial distance from this axis, and 4
is the azimuthal angle (figure 1a). The torus axis has radius R0 and a section with
4 = const. is a circle of radius b, where a point is located by its polar coordinates
(r , q) [13]. These so-called local coordinates (r , q, 4), in spite of being simple to
define, are not very useful to describe the tokamak equilibrium magnetic field,
since a coordinate surface r = const. does not represent accurately the shape of
the confined plasma cross section. To remedy this problem we use a polar toroidal
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Figure 1. (a) Schematic showing the coordinates used to describe magnetic field lines in a tokamak.
(b) Coordinate curves at a surface intersecting the torus.

coordinate system (rt, qt, 4t) [44,45] defined by rt = c(r , q)r , sin qt = c(r , q) sin q
and 4t = 4, where

c2 = 1 − r
R′

0
cos q −

(
r

2R′
0

)2

(2.1)

and

R2 = R′2
0

[
1 − 2rt

R′
0

cos qt −
(

rt

R′
0

)2

sin2 qt

]
, (2.2)

such that, in the limit r/R′
0 � 1, these coordinates tend to the local ones. The rt =

const. coordinate curves have a pronounced curvature in the interior region of the
torus, reflecting an outward displacement of the entire plasma. The intersections
of some coordinate surfaces with the plane 4 = 0 are plotted in figure 1b. The
rt = 0 degenerate surface will be called magnetic axis.

A tokamak plasma in a state of static ideal magnetohydrodynamic (MHD)
equilibrium must satisfy the condition B0 · Vp0 = 0, where B0 and p0 are the
equilibrium magnetic field and plasma kinetic pressure, respectively. It turns
out that the equilibrium magnetic field lines lie on constant pressure surfaces
with topology of nested tori, known as magnetic surfaces [9,46]. The existence
of magnetic surfaces is a necessary (but not sufficient) condition for plasma
confinement. In addition, to present closed magnetic surfaces the system must
have some spatial symmetry. In tokamaks, we assume symmetry with respect to
the azimuthal angle 4 [9]. Accordingly, we have chosen a system for which the
coordinate surfaces coincide with magnetic surfaces.

Instead of the pressure, we may label magnetic surfaces with other surface
quantities, like the poloidal magnetic flux Jp(rt, qt), defined as the flux of B0
through a ribbon from the magnetic axis to a coordinate curve, such that the
equilibrium condition is B0 · VJp = 0. The ideal MHD equations, when applied to
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this situation, lead to the so-called Grad–Shafranov–Schlüter equation for the
poloidal magnetic flux [9]. It reads, in the polar toroidal system [44,45]

1
rt

v

vrt

(
rt

vJp

vrt

)
+ 1

r2
t

v2Jp

vq2
t

= m0J30(Jp) + m0R′
0
2 dp0

dJp

(
2

rt

R′
0

cos qt + r2
t

R′
0
2 sin2 qt

)

+ rt

R′
0

[
cos qt

(
2

v2Jp

vr2
t

+ 1
rt

vJp

vrt

)

+ sin qt

(
1
r2
t

vJp

vqt
− 2

rt

v2Jp

vqtvrt

)]
, (2.3)

where J30 is the toroidal component of the equilibrium plasma current density
given by

J30(Jp) = −R′2
0

dp0

dJp
− d

dJp

(
1
2

m0I 2
)

, (2.4)

where I = I (rt, qt) is the poloidal current function, which is the current density
flux through the same surface used in the definition of Jp. The equilibrium
magnetic field contravariant components, in terms of the surface functions Jp
and I , are

B0
1(rt, qt) = − 1

R′
0rt

vJp

vqt
, B0

2(rt, qt) = 1
R′

0rt

vJp

vrt
, B0

3(rt, qt) = −m0I
R2

. (2.5)

In order to solve equation (2.3) we have to assume a specific form for the spatial
profile of the toroidal current density J30, like

J30(rt) = IpR′
0

pa2
(g + 1)

(
1 − r2

t

a2

)g

, (2.6)

where Ip is the total plasma current, a the plasma radius and g a positive constant.
Solving equation (2.3) through a perturbation scheme (where the small parameter
is the ratio b/R0) gives a poloidal flux function, from which the equilibrium
field is given by (2.5) [44,45]. Another way to display the equilibrium field is
to characterize the magnetic surfaces Jp = const. by the so-called safety factor
q = q(rt, qt), which gives the average poloidal angle swept by the field line after
one complete toroidal turn, and which exhibits a monotonic radial profile given by

q(rtqt) = Ie

Ip

r2
t

R′
0
2

[
1 −

(
1 − r2

t

a2

)g+1
]−1(

1 − 4
r2
t

R′
0
2

)−1/2

, (2.7)

where in lowest order, I ≈ −Ie/2p.

(b) Ergodic limiter field

As stated in §1, the main goal of the ergodic limiter is to create an outer layer
(i.e. near the tokamak wall) of chaotic magnetic field lines [22,23,47]. When this
concept appeared, the word ‘chaos’ was not widely used by plasma physicists,
and the word ‘ergodic’ was used instead. Although the meaning of these words
is different, the latter denomination was often maintained for historical reasons.
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Figure 2. Schematic showing the ergodic limiter in (a) toroidal and (b) periodic
cylindrical configurations.

One of the designs proposed for the ergodic limiter consists of Na current rings
located symmetrically along the toroidal circumference of the tokamak, each of
them being a slice of length � of a helical winding characterized by the ‘mode
numbers’ (m0, n0), where m0 and n0 are co-prime integers, and carrying an electric
current Ih (figure 2a) [48–50]. In figure 2b, we show schematically Na = 4 equally
spaced rings along the tokamak in the periodic cylindrical geometry.

The meaning of the mode numbers (m0, n0) for a helical winding is that a
conductor is wound around the tokamak such that it closes on itself after m0
turns around the poloidal direction and n0 turns around the toroidal direction.
These mode numbers have to be chosen carefully so as to produce the required
chaotic region in the proper region of the plasma (i.e. near the tokamak wall). The
procedure involved is based on Hamiltonian theory, since the field line dynamics
is a one-degree-of-freedom system with a ‘time’-dependent perturbation, which
enables us to use powerful theoretical results like KAM theory and so on [13].
A perturbation generated by a helical winding with mode numbers (m0, n0) will
influence chiefly the resonant magnetic surface for which the safety factor is a
rational number m0/n0 [19,21,51]. In the cylindrical (lowest order) approximation,
if the helical windings were continuous, the only effect would be the appearance of
pendular-shaped islands centred at the radius r̄ given by q(r̄) = m0/n0 [19,21,51].
Choosing r̄ to be near the plasma radius a we have several possibilities for the
mode numbers, like m0 = 5 and n0 = 1, which we will use hereafter. However,
since the winding is sliced into discontinuous pieces of small length � � 2pR0,
the axisymmetry is broken and chaotic field lines appear near the separatrices of
these islands.

Larger regions of chaotic field lines can appear by interaction of the main island
related to (m0, n0) and its satellite islands created by the toroidal effect. According
to the Poincaré–Birkhoff theorem all rational surfaces are destroyed under a non-
integrable perturbation [13]. However, even though a non-symmetric perturbation
would create periodic islands over all the places of the plasma column, this effect
is noticeable only near the plasma edge, where the magnetic field of the limiter is
more pronounced. In fact, this magnetic field decays very fast with the distance
from the wall, such that the chaotic region produced by the ergodic limiter does
not destroy the inner plasma core.

On neglecting the plasma response to the field generated by an ergodic
limiter (an acceptable approximation provided the plasma is not at a marginal
equilibrium state), the latter may be considered a vacuum field given by B1 = VF1,
where F1(rt, qt, 4) is a magnetic scalar potential satisfying the Laplace equation.
Ignoring at first the finite extension of the limiter rings, boundary conditions
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are fixed in the form of a helical winding the pitch of which emulates the
actual field line curvature in the equilibrium configuration, such that the angle
ut ≡ m0(qt + l sin qt) − n04 must be constant along such a helical winding, which
is accomplished by conveniently choosing the parameter l. For a 5/1 helical
winding, such as that used in this work, we choose l = 0.5902 [21].

The magnetic field B1 = V × A1 produced by such a configuration is given, in
lowest order, by A1 = (0, 0, A13), where [21]

A13(rt, qt, 4) = −m0IhR′
0

p

+m0∑
k=−m0

Jk(m0l)
(rt

b

)m0+k
ei[(m0+k)qt−n04], (2.8)

from which the limiter field contravariant components are given by

B1
1(rt, qt) = − 1

R′
0rt

vA13

vqt
, B2

1(rt, qt) = 1
R′

0rt

vA13

vrt
, B3

1 = 0, (2.9)

and the model field will be the superposition of the equilibrium and limiter fields:
B = B0 + B1.

3. Magnetic field line map

(a) Hamiltonian form

Combining the results of the previous section for both equilibrium and limiter
fields, there results that the magnetic field line equations are [21]

drt

d4
= − 1

rtBT

(
1 − 2

rt

R′
0

cos qt

)
v

vqt
[Jp0(rt) + A13(rt, qt, 4)] (3.1)

and
dqt

d4
= 1

rtBT

(
1 − 2

rt

R′
0

cos qt

)
v

vrt
[Jp0(rt) + A13(rt, qt, 4)], (3.2)

where BT ≡ m0Ie/2pR′
0 is the toroidal magnetic field on the magnetic axis.

It has been long known that this problem can be cast into a Hamiltonian form,
by defining a time-like variable as the ignorable coordinate in the equilibrium
(axisymmetric) case 4. The canonical angle is chosen as a function of the
equilibrium safety factor [52]

w(rt, qt) = 1
q(rt)

∫ qt

0

B3
0(rt, qt)

B2
0(rt, qt)

dq = 2 arctan
[

1
U(rt)

(
sin qt

1 + cos qt

)]
, (3.3)

where

U(rt) =
(

1 − 2
rt

R′
0

)1/2(
1 + 2

rt

R′
0

)−1/2

, (3.4)

in such a way that the resonant helical windings are characterized by m0w(rt, qt) −
n04t = constant. Expanding equation (3.3) in Fourier series, and retaining only
the lowest order non-vanishing correction, there results w(qt) = qt + l sin qt.
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The action canonically conjugated to the angle w is defined in terms of the
normalized toroidal magnetic flux

J (rt) = 1
2pR′2

0 BT

∫
B0.ds3 = 1

4

[
1 −

(
1 − 4

r2
t

R′2
0

)1/2
]
, (3.5)

where ds3 = R′
0rt drt dqtê3.

With these formal identifications the field line equations (3.1) can be expressed
in a canonical form [43,46]

dJ
d4

= −vH
vw

,
dw

d4
= vH

vJ , (3.6)

where we defined the Hamiltonian

H (J , w, 4) = H0(J ) + H1(J , w, 4) = 1

BTR′
0
2 Jp0(J ) + 1

BTR′
0
2 A13(J , w, 4). (3.7)

Up to now, we have not taken into account the finite extension of the limiter
rings, which is an essential ingredient in the formalism since it is the source of the
‘time’ dependence of the Hamiltonian, and thus to the integrability breakdown
necessary to have chaotic field lines [50]. If the ring length � is small enough,
we can model the perturbation associated to the limiters as a sequence of delta-
functions centred at each ring position

HL(J , w, 4) = H0(J ) + �

R′
0
H1(J , w, 4)

+∞∑
k=−∞

d

(
4 − k

2p

Na

)
. (3.8)

(b) Map equations

Discrete-time dynamical systems, also called maps, are important tools for
both Hamiltonian and dissipative dynamical systems, since many general results
are nicely illustrated by using them, besides being much more easily solved
numerically than differential equations [17,46,53,54]. Accordingly, we call Jk and
wk the action and angle variables, respectively, at the kth crossing of a field line
with the plane 4k = 2pk/Na corresponding to each limiter ring along one toroidal
turn along the torus, for which k = 0, 1, 2, . . . , Na − 1. The impulsive character
of the perturbation in the Hamiltonian (3.8) enables us to obtain analytically
such functions. From the Hamilton equations (3.6) we obtain by integration the
following area-preserving mapping for the near-integrable system [21]:

Jn+1 = Jn − e

(
vH1

vw

)
(Jn+1, wn , 4n) (3.9)

and

wn+1 = wn + 2p

Naq(Jn+1)
+ e

(
vH1

vJ

)
(Jn+1, wn , 4n), (3.10)
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where 4n+1 = 4n + (2pn/Na), and e ≡ −2(�/2pR′
0)(Ih/I ) is a dimensionless

perturbation parameter, and the perturbation owing to the ergodic limiter can
be expressed as a Fourier series

H1(J , w, 4) =
2m0∑
n=0

H ∗
n (J ) ei(nw−n04), (3.11)

with coefficients given by [21]

H ∗
m(J ) =

2m0∑
m′=0

Hm′(rt(J ))Sm,m′(J ), (3.12)

in which we defined

Hm′(rt) = −Jm′−m0(m0l)
(

rt

bt

)m′
(3.13)

and

Sm,m′(J ) = (−1)m
(

c1(J )
c2(J )

)m+m′ m∑
n=0

(−1)n
an(m, m′)

(
c1(J )
c2(J )

)−2n

, (3.14)

where Jm is the Bessel function of order m and

c1(J ) = 1 − 1
U(rt(J ))

, c2(J ) = 1 + 1
U(rt(J ))

, (3.15)

and

an(m, m′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if m = 0 and n = 0,
m′ if m = 1 and n = 0 or n = 1,

m′ (m + m′ − n − 1)!
(m − n)!(m′ − n)!n! if m > 1 and n ≤ m′,

0 if m > 1 and n > m′.
(3.16)

(c) Phase portraits

In the following numerical results we choose the equilibrium safety factor q ≈ 1
at the magnetic axis and q ≈ 5 at the plasma radius (rt = a). We also normalize
lengths to the minor radius (b = 1) and choose parameters so that a/R′

0 = 0.26
and g = 3, which are values typical for tokamak discharges. We consider Na = 4
limiter rings, each of them with length � = 0.08 m and mode numbers m0 = 5 and
n0 = 1, for the reasons explained in the previous section. The control parameter
is the normalized perturbation strength e.

The effect of increasing perturbation on the field line structure, as revealed by
the Poincaré surface of section fixed at the 4 = 0 plane, can be appreciated from
figure 3, where we rectified the curvature along w for ease of visualization. The
tokamak radius, where the limiter rings are mounted, corresponds to the upper
boundary of the diagrams, at J ≈ 0.055. For a weak perturbation (figure 3a,
corresponding physically to a limiter current of 1.14% of the plasma current) we
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Figure 3. Phase portraits of the field line map (3.9)–(3.10) for increasing perturbation strengths:
(a) e = 1.00 × 10−5; (b) e = 1.20 × 10−4; (c) e = 2.14 × 10−4. The upper horizontal line represents
the tokamak wall.

observe a pendular chain of five islands centred at J ≈ 0.04, which corresponds
to the magnetic surface most influenced by the perturbation caused by a (5, 1)
mode. Other rational surfaces are likewise perturbed, causing the appearance of
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many other chains, like those with three, four and six islands at both sides of
the (5, 1) chain. Since, from (2.8), the limiter field falls off with decreasing J the
wider islands are those closer to the tokamak wall.

The finite extension of the limiters causes the breakdown of integrability that
makes possible the existence of area-filling chaotic field lines (in the Lagrangian
sense). As the perturbation increases (figure 3b, for a limiter current of 2.73%
of the plasma current), neighbour islands interact such that the chaotic layer,
previously attached to the islands’ separatrices, becomes wider and eventually
touches the tokamak wall (figure 3c, where IH is 4.86% of IP). The resulting
chaotic boundary layer is ‘cold’ in the sense that particle transport there is faster
than within the plasma it encircles [20].

4. Escape channels and connection lengths

The ergodic limiter concept was essentially based on the appealing idea that the
chaotic field line region would make uniform the heat and particle loading on
the tokamak wall, thus reducing localized attacks which could provoke plasma
contamination through sputtering processes and releasing of impurities from the
plasma wall [22,23]. This claim is only partially correct though, for the chaotic
region is not uniform. There are parts of the plasma wall that turn out to be
more intensely hit by particles released from the plasma core and a non-uniform
(actually fractal) pattern is produced there [31,32].

We consider now the situation depicted in figure 3b, for which there is a wide
chaotic region that encircles the plasma and touches the tokamak wall. We remark
that, for figure 3a, the chaotic region does not reach the tokamak wall and so
this case is not suitable for operation of an ergodic limiter. For most initial
conditions (J0, w0) picked up within this region, the subsequent iterations of the
map generate field lines that eventually hit the tokamak wall. From the physical
point of view, these lines are lost and are not reinjected to the tokamak region.
Hence we deal with an open Hamiltonian system, like a billiard with holes by
which particles can escape through after some time [55–58].

In order to quantify the non-uniformity of the chaotic region depicted in
figure 3b, we plot in figure 4 the connection lengths, or the ‘time’ it takes (rather
the number of toroidal turns along the tokamak divided by Na) for a given initial
condition (J0, w0, 40 = 0) to generate a field line that eventually hits the tokamak
wall. The region comprising the tokamak interior was covered with a fine mesh
of points, each of them representing an initial condition that is iterated until
the corresponding field line is lost, the corresponding connection length being
represented in a colour scale.

As we would expect, most of the points immediately near the tokamak wall
have small connection lengths (much less than ca 100 toroidal turns), but we can
find many regions touching the wall with higher connection lengths (of the order
of 1000 turns and even higher). There are, however, very large connection lengths
that are not related to the chaotic region itself but rather to the interior of the
remnant island, which are trajectories bounded by KAM tori and that will never
reach the tokamak wall (infinite connection length). The chaotic region near the
tokamak wall is clearly non-uniform for there are points with widely different
connection lengths, a fact already appreciated in earlier works [32,59,60].
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Figure 4. Connection lengths for e = 1.2 × 10−4. The colour scale indicates the ‘time’ (measured in
number of toroidal turns) it takes for a given field line to hit the tokamak wall. (Online version
in colour.)

Another noteworthy feature of the connection length distribution is that not
only is it not uniform throughout the chaotic region but regions of different
connection lengths are intermixed in fine scales [32,60]. This is illustrated in
figure 5, where the connection lengths are plotted for the case of a stronger
perturbation, the phase portrait of which is shown in figure 3c, where we also
present two magnifications of regions inside the highly non-uniform chaotic layer,
suggesting that regions of large and small connection lengths are densely mixed.
The apparent self-similarity by these magnifications is, in fact, a fractal structure.

The regions of large connection lengths touching the tokamak wall may be
thought of as ‘low spots’ where relatively less particles collide with the vessel,
whereas the small connection lengths are ‘hot spots’, where more particles hit
the tokamak wall [28,41,61]. Moreover, there are regions of small connection
lengths also in the vicinity of the plasma core (where the connection lengths
are infinitely large), forming escape channels by which energetic particles from
the plasma core are drained rapidly towards the tokamak wall [28,61]. Recent
investigations show that the fractal structure of the escape channels affects the
overall transport properties in the plasma edge, leading to an abnormal increase
of the diffusion coefficient of plasma particles [14,32,49]. This may be one of
the reasons why conventional transport (e.g. neoclassical) theories fail to predict
the experimentally observed diffusion coefficients of tokamak plasmas [8].

Another feature of the non-uniform character of the chaotic region is shown
in figure 6, where we plot (in colour scale) the connection lengths of points
immediately close to the tokamak wall (i.e. the strip (J = 0.055, 0 ≤ w ≤ 2p))
as a function of an equilibrium parameter q(a), which is the safety profile at the
plasma radius. For the same perturbation strength, the hot and cold spots on the
tokamak wall change their positions according to the equilibrium properties of
the magnetic field, for both weak (figure 6a) and strong (figure 6b) perturbations.
Regions with same connection lengths have the shape of ‘boomerangs’ but the
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Figure 5. (a) Connection lengths for e = 2.14 × 10−4. The colour scale indicates the ‘time’
(measured in number of toroidal turns) it takes for a given field line to hit the tokamak wall.
(b,c) Magnifications of selected rectangles in (a). (Online version in colour.)

ordering of the colours is not monotonic, inasmuch as there are abrupt jumps
among regions of small and large connection lengths that can be regarded as yet
another consequence of fractality.

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


384 R. L. Viana et al.

q (a)
5.0

0

1.57

3.14

J 
(r

ad
)

4.71

6.28

(b)

0

1.57

3.14
J 

(r
ad

)

4.71

6.28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a)

4.5 4.0 3.5 3.0

Figure 6. The colour scales indicate the connection lengths just below the tokamak wall
as a function of the equilibrium safety factor at plasma edge for (a) e = 1.2 × 10−4 and
(b) e = 2.14 × 10−4. (Online version in colour.)

5. Invariant manifolds and chaotic saddle

The results shown in the previous section can be explained by the periodic orbit
structure underlying the chaotic orbits of Hamiltonian systems. Let us consider
an unstable periodic orbit (period-k saddle) embedded in the chaotic region of any
of the phase portraits depicted in figure 3. The stable (unstable) manifold at this
point is the set of points which asymptote to the periodic orbit under the forward
(backward) iterations of the map (3.9)–(3.10) as ‘time’ n goes to infinity [13]. The
sets are invariant for map iterations of points belonging to these manifolds remain
there for all times. A chaotic saddle is a non-attracting chaotic invariant set
formed by the intersection of the stable and unstable manifolds of unstable saddle
points, and also contains a dense orbit [62]. The stable and unstable manifolds
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Figure 7. (a) Stable and (b) unstable manifolds for two unstable fixed points embedded in the
chaotic region obtained for e = 2.14 × 10−4. (Online version in colour.)

intersect transversally at homoclinic or heteroclinic points, and these points map
one another, such that there is an infinite number of unstable points embedded
in the chaotic saddle [2,3].

Numerical approximations of these manifolds can be obtained from several
techniques, like the sprinkler method [63], by which we partition the phase portrait
in the chaotic region of interest using a fine mesh of points, and iterate each grid
point n times. Once the resulting field line trajectory reaches the wall for finite n
it is considered lost and the further iterates are not plotted. We pass to the next
grid point and so on. For sufficiently large n and a fine enough grid, trajectories
that do not hit the wall in n iterates can be used to generate an approximation
to the unstable manifold. The unstable manifold structures related to the chaotic
regions depicted in figure 3c are shown in figure 7a. The red and magenta curves
correspond to approximations of the unstable manifold branches stemming from
unstable fixed points labelled as P4 and P5 in figure 7a, and belonging originally
to the chains with mode numbers (4/1) and (5, 1), respectively.

Although, for time n large enough, both manifolds will reach the tokamak wall,
for a fixed n the manifold coloured as magenta will hit the tokamak boundary
many times, whereas the red manifold seems to be bound to the chaotic region
immediately surrounding the plasma magnetic surfaces with a few excursions
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Figure 8. Chaotic saddle related to the invariant manifolds depicted in figure 7.

achieving the wall. This is ultimately a consequence of the non-uniformity of
the limiter field, since the latter decays exponentially with the distance from the
tokamak wall.

If we repeat the above-mentioned process for the backward iterates and retain
only the grid points generating trajectories that do not hit the wall after n
backward iterates, we have the stable manifold of the chaotic saddle (figure 7b).
We have again a marked difference from the manifolds (coloured as light and
deep blue) stemming from points with different radial locations with respect to
the wall. The chaotic saddle can be also obtained from the sprinkler method
by using a fraction of the iterates: n ′ = cn, with 0 < c < 1 (see figure 8 for an
example corresponding to the previously displayed manifolds). Points exactly on
the chaotic saddle would remain there for all forward and backward iterations
of the map. If a field line starts off but near the chaotic saddle, it will wander
erratically along the homoclinic tangle, so as to approach arbitrarily close any
unstable orbit embedded in the chaotic saddle.

The convoluted nature of the regions with same connection lengths, as revealed
by figures 4 and 5, can be understood as a consequence of the dynamical properties
of the chaotic saddle which underlies the chaotic layer near the tokamak wall
and the corresponding manifold structure, more specifically the so-called lambda
lemma [3]. We can make a ‘coarse graining’, by replacing the continuous colour
scale used in figures 4 and 5 by a discrete scale with only two regions, namely
one with connection lengths less than, say, 200 and the other one with more than
200. As a consequence there will be only two regions, to which we can assign
black and white pixels. The boundary between the black and white region is a
partitioning line.

We suppose now that this partitioning line crosses the stable or unstable
manifold of the chaotic saddle. Thus, the boundary between the black and white
regions is fractal. Since we may think of an arbitrarily large number of regions with
values of connection length, the coloured regions in figures 4 and 5 form incursive
fingers with the same fractal properties of the single partitioning line. A finite
segment of the partitioning line is smoothly deformed before reaching the chaotic
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Figure 9. Schematic showing the formation of incursive fingers for regions with the same
connection length.

saddle. Points lying exactly on its stable and unstable manifolds would remain
attached to the chaotic saddle for any time. On the other hand, the segments of
the partitioning line in between the manifolds become increasingly elongated and
converge to the manifolds.

According to the scheme of figure 9, the forward images of the partitioning line
approach the fixed point such that: (i) the intersection points between the stable
manifold and the partitioning line converge exponentially fast according to the
corresponding eigenvalue of the linearized map at the fixed point (with modulus
less than unity), (ii) the lengths of the lobes increase exponentially in order to
preserve areas, and (iii) the lobes tend to follow the unstable manifold [64]. The
union of all images of the partitioning line is a wildly oscillating curve as it
approaches the unstable fixed point, such that segments of the partitioning line
accumulate on the filaments of the unstable manifold. If we consider the backward
iterations the same conclusions hold, i.e. backward images of the partitioning line
accumulate asymptotically on the filaments of the stable manifold.

6. Wada basins and magnetic footprints

In figures 4 and 5, the regions for which the connection lengths belong to a same
interval are examples of the so-called exit or escape basins. These are defined as
the sets of initial conditions which generate field lines escaping through a given
exit [41,54,60]. This exit can be a material surface, such as a divertor plate, or
simply a region we choose from any position along the tokamak region. As an
example, we consider the tokamak wall as subdivided into three poloidal sections
of equal length: 0 ≤ w < 2p/3, 2p/3 ≤ w < 4p/3 and 4p/3 ≤ w < 2p, corresponding
to different exits for a chaotic field line.

To obtain the exit basins we used a fine grid of points chosen within the region
depicted in figure 4c. The result, shown in figure 10a, is such that we colour
the initial condition pixel in red, yellow or blue, depending on whether the field
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Figure 10. (a) Exit basins corresponding to the regions 0 ≤ w < 2p/3 (red), 2p/3 ≤ w < 4p/3
(yellow), and 4p/3 ≤ w < 2p (blue) of the tokamak wall, for points belonging to the region shown in
figure 4c. We depict in green a part of the unstable manifold stemming from the point P5 indicated
in figure 7a. (b) Magnification of the box shown in (a). (Online version in colour.)

line hits the wall at one of the w-intervals defined above. The regions with these
colours are, thus, numerical approximations for the exit basins corresponding to
these sections we choose at the wall. They are clearly intertwined in fine scales
for some regions of the plasma. We illustrate this point by showing in figure 10b
a magnification of a rectangle chosen in figure 10a. Inasmuch as the three exit
basins are intermixed, the zoomed figure also shares the property, which repeats
itself at any scale, no matter how fine. This property is actually stronger than that
of fractal basin boundaries: the exit basins drawn in figure 10 have the so-called
Wada property [7].
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Figure 11. (a) Field line final poloidal angle at the tokamak wall versus initial poloidal angle;
(b) a magnification of a rectangle picked up from (a).

In order to characterize this property we outline some basic definitions. Let us
consider an exit basin B, which may be any of those represented in figure 10a.
A point p is a boundary point of the basin B if every open neighbourhood of p
intersects the basin B and at least another basin. The basin boundary vB is the
set of all boundary points of that basin. Moreover, the boundary point p is also
a Wada point if every open neighbourhood of p intersects at least three different
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Figure 12. (a) Escape time versus initial poloidal angle for the case shown in figure 11. (b,c) Two
magnifications of the fractal peak structure are shown. (Online version in colour.)

basins. A basin boundary vB has the Wada property if every boundary point of B
is a Wada point [37–39]. A necessary (but not sufficient) condition that indicates
that a basin boundary has the Wada property is that the unstable manifold of
an unstable periodic point p must intersect every basin [40,65].

In our specific example this means that, after choosing an unstable fixed point
p belonging to the boundary between exit basins, if it is a Wada point it is
necessary that the unstable manifold which stems from this point intersects
all other basins. From a rigorous point of view, at least one of the following
complementary conditions has to be satisfied: (i) the stable manifold of the saddle
point p must be dense in the boundary of the three regions, (ii) the periodic orbit
p must be the only accessible orbit from the basin B. Otherwise, every unstable
manifold of other periodic orbits that are accessible from B must intersect all
basins, and (iii) the periodic orbit p must generate a basin cell [63,66]. However,
these conditions are extremely difficult to verify in practice.

Another fractal structure of interest for area-preserving maps related to field
line diffusion through the tokamak wall is the magnetic footprints, having been
intensively studied in the conceptual designs of divertor plates. A divertor has
the function of channelling the field lines from undesired regions to a specific
target with the goal of removing undesirable energetic particles from the plasma
edge [24–28,30]. The divertor surface is thus hit by these particles such that, if
the field line traces are too narrowly concentrated, this could lead to overheating
and even damage of portions of the collector plate.

A slightly different version of this situation appears if we choose a given
boundary (like those used for defining exit basins) and consider the magnetic
footprints as traces of field lines with some specified property. Let us consider
a field line originating from a point belonging to the tokamak wall at some
‘initial’ angle wi, which occurs after a number of map iterations, which is
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different for each point in general. We then follow this field line until it reaches
back to the tokamak wall, and save the corresponding ‘final’ angle wf . In
figure 11a we plot the initial angle versus the final angle for a number of initial
conditions originated from the wall, revealing a striped pattern with a self-
similar structure along the angular direction, as suggested by the magnification
shown in figure 11b. A further example of this self-similarity is the angular
dependence of the number of the map iterations it takes for a field line to
return to the wall after being commenced there (figure 12a, with magnifications
in figure 12b,c). We may think of t as being an escape time, and its dependence
on the angle is likely to have the same characteristics of the fractality inherent
to the chaotic saddle.

7. Conclusions

Fractal structures are ubiquitous in nonlinear dynamics, particularly in chaotic
invariant sets like strange attractors. In area-preserving maps, one outstanding
example of fractal structure is the chaotic saddle, which is a non-attractive
invariant set possessing an infinite number of unstable periodic orbits. In area-
preserving maps with physical interest, we are naturally inclined to seek for
observable manifestations of such chaotic saddles. It turns out that, in the plasma
physics context, we can investigate such fractal structures in the chaotic region of
the field line Lagrangian flow in a tokamak with ergodic limiters. In this specific
context, the formation of the chaotic region is essential to the ultimate goal of
such devices, namely to create a ‘cold’ boundary layer of field lines so as to
distribute uniformly heat and particle loadings on the tokamak wall. However,
the experimental evidences do not quite agree with these expectations, for the
deposition patterns, while still requiring a chaotic region to be obtained, are not
uniform and rather present a self-similar structure. This fact is a consequence
of the fractal structures like the chaotic saddle underlying the chaotic region of
the field line map.

We considered in this work some of these structures. First, connection lengths
measure the ‘time’ (in number of tokamak turns) it takes for a field line, originated
in the chaotic region, to hit the wall. The fractal nature of these regions is a direct
consequence of the behaviour of a partitioning line which crosses an invariant
manifold of an unstable orbit belonging to the chaotic saddle. Second, we have
shown the formation of magnetic footprints, which are traces of field lines hitting
the tokamak wall, and which exhibit a self-similar dependence on the angular
position there. Third, we have verified the Wada property when three exit basins
are considered. An exit basin is the set of initial conditions originating field lines
hitting the wall at some specified angular position interval.

Although we have considered the presence and effect of fractal structures
in the dynamics of magnetic field lines, we believe that our findings will shed
some light on the (more difficult) problem of how plasma particles would behave
in chaotic magnetic fields. Moreover, the latter problem opens a new horizon
for it allows us to relate the statistical properties of diffusion with the field
line dynamics. One example is the relation between the connection lengths and
the recurrence times [67–69]. The information we get from the magnetic field
line description can be thus used to investigate charged particle behaviour,

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


392 R. L. Viana et al.

particularly in situations involving electromagnetic turbulence, which is an
intrinsically mesoscopic phenomenon in plasmas. For example, transport barriers
are regions in the tokamak plasma where the turbulent transport is significantly
reduced. Such transport barriers are present when there are dimerized magnetic
islands owing to non-monotonic plasma current profiles and reversed magnetic
shear [60,70,71].

This work was made possible with partial financial help from FAPESP, CNPq, CAPES and
FINEP/CNEN (Brazilian Fusion Network). M.A.F.S. acknowledges financial support from the
Spanish Ministry of Education and Science under project no. FIS2006-08525 and from the Spanish
Ministry of Science and Innovation under project no. FIS2009-09898, and the hospitality of
Beijing Jiaotong University under the Key Invitation Program for Top-Level Experts of the State
Administration of Foreign Experts Affairs of China.

References

1 Mandelbrot, B. B. 2004 Fractals and chaos: the Mandelbrot set and beyond. New York, NY:
Springer.

2 Ott, E. 1993 Chaos in dynamical systems. New York, NY: Cambridge University Press.
3 Alligood, K. T., Sauer, T. D. & Yorke, J. A. 1996 Chaos: an introduction to dynamical systems.

New York, NY: Springer.
4 McDonald, S. W., Grebogi, C., Ott, E. & Yorke, J. A. 1985 Fractal basin boundaries. Physica D

17, 125–153. (doi:10.1016/0167-2789(85)90001-6)
5 Smale, S. 1967 Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817.

(doi:10.1090/S0002-9904-1967-11798-1)
6 Devaney, R. L. 2003 An introduction to chaotic dynamical systems, 2nd edn. Boulder, CO:

Westview Press.
7 Aguirre, J., Viana, R. L. & Sanjuán, M. A. F. 2009 Fractal structures in nonlinear dynamics.

Rev. Mod. Phys. 81, 333–386. (doi:10.1103/RevModPhys.81.333)
8 Wesson, J. 1987 Tokamaks. Oxford, UK: Oxford University Press.
9 Hazeltine, R. D. & Meiss, J. D. 1991 Plasma confinement. Reading, MA: Addison-Wesley.

10 Kadomtsev, B. B. 1992 Tokamak plasma: a complex physical system. Bristol, UK: Institute of
Physics.

11 Itoh, K., Itoh, S.-I. & Fukuyama, A. 1999 Transport and structural formation in plasmas. Bristol,
UK: Institute of Physics.

12 Thyagaraja, A., Knight, P. J. & Loureiro, N. 2004 Mesoscale plasma dynamics, transport
barriers and zonal flows: simulations and paradigms. Eur. J. Mech. B 23, 475–490. (doi:10.1016/
j.euromechflu.2003.10.009)

13 Lichtenberg, A. J. & Lieberman, M. A. 1992 Regular and chaotic dynamics, 2nd edn. New York,
NY: Springer.

14 Spatschek, K. H. 2008 Aspects of stochastic transport in laboratory and astrophysical plasmas.
Plasma Phys. Contr. Fusion 50, 124027. (doi:10.1088/0741-3335/50/12/124027)

15 Balescu, R., Vlad, M. & Spineanu, F. 1998 Tokamap: a Hamiltonian twist map for magnetic
field lines in a toroidal geometry. Phys. Rev. E 58, 951–964. (doi:10.1103/PhysRevE.58.951)

16 Caldas, I. L., Viana, R. L., Araujo, M. S. T., Vannucci, A., da Silva, E. C., Ullmann, K. &
Heller, M. V. A. P. 2002 Control of chaotic magnetic fields in tokamaks. Braz. J. Phys. 32,
980–1004. (doi:10.1590/S0103-97332002000500023)

17 Abdullaev, S. S. 2006 Construction of mappings for Hamiltonian systems and their applications.
New York, NY: Springer.

18 Martin, T. J. & Taylor, J. B. 1984 Ergodic behavior in a magnetic limiter. Plasma Phys. Contr.
Fusion 26, 321. (doi:10.1088/0741-3335/26/1B/005)

19 Ullmann, K. & Caldas, I. L. 2000 A symplectic mapping for the ergodic magnetic
limiter and its dynamical analysis. Chaos, Solitons Fractals 11, 2129–2140.
(doi:10.1016/S0960-0779(99)00138-1)

20 da Silva, E. C., Caldas, I. L. & Viana, R. L. 2001 Field line diffusion and loss in a tokamak
with an ergodic magnetic limiter. Phys. Plasmas 8, 2855–2865. (doi:10.1063/1.1371769)

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/0167-2789(85)90001-6
http://dx.doi.org/doi:10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/doi:10.1103/RevModPhys.81.333
http://dx.doi.org/doi:10.1016/j.euromechflu.2003.10.009
http://dx.doi.org/doi:10.1016/j.euromechflu.2003.10.009
http://dx.doi.org/doi:10.1088/0741-3335/50/12/124027
http://dx.doi.org/doi:10.1103/PhysRevE.58.951
http://dx.doi.org/doi:10.1590/S0103-97332002000500023
http://dx.doi.org/doi:10.1088/0741-3335/26/1B/005
http://dx.doi.org/doi:10.1016/S0960-0779(99)00138-1
http://dx.doi.org/doi:10.1063/1.1371769
http://rsta.royalsocietypublishing.org/


Fractal structures in plasma physics 393

21 da Silva, E. C., Caldas, I. L. & Viana, R. L. 2001 The structure of chaotic magnetic field lines
in a tokamak with external nonsymmetric magnetic perturbations. IEEE Trans. Plasma Sci.
29, 617–631. (doi:10.1109/27.940957).

22 Karger, F. & Lackner, K. 1977 Resonant helical divertor. Phys. Lett. A 61, 385–387.
(doi:10.1016/0375-9601(77)90341-3)

23 Engelhardt, W. & Feneberg, W. 1978 Influence of an ergodic magnetic limiter on the impurity
content in a tokamak. J. Nucl. Mater. 76/77, 518–520. (doi:10.1016/0022-3115(78)90198-8)

24 Punjabi, A., Verma, A. & Boozer, A. 1992 Stochastic broadening of the separatrix of a tokamak
divertor. Phys. Rev. Lett. 69, 3322–3325. (doi:10.1103/PhysRevLett.69.3322)

25 Punjabi, A., Ali, H. & Boozer, A. 1997 Symmetric simple map for a single-null divertor tokamak.
Phys. Plasmas 4, 337–346. (doi:10.1063/1.872094)

26 Abdullaev, S. S., Finken, K. H., Kaleck, A. & Spatschek, K. H. 1998 Twist mapping for the
dynamics of magnetic field lines in a tokamak ergodic divertor. Phys. Plasmas 5, 196–210.
(doi:10.1063/1.872689)

27 Abdullaev, S. S., Finken, K. H. & Spatschek, K. H. 1999 Asymptotical and mapping methods
in study of ergodic divertor magnetic field in a toroidal system. Phys. Plasmas 6, 153–174.
(doi:10.1063/1.873270)

28 Ali, H., Punjabi, A., Boozer, A. & Evans, T. E. 2004 The low MN map for single-null divertor
tokamaks. Phys. Plasmas 11, 1908–1919. (doi:10.1063/1.1691455)

29 Evans, T. E., Roeder, R. K. W., Carter, J. A. & Rapoport, B. I. 2004 Homoclinic tangles,
bifurcations and edge stochasticity in diverted tokamaks. Contrib. Plasma Phys. 44, 235–240.
(doi:10.1002/ctpp.200410034)

30 Kroetz, T., Roberto, M., Caldas, I. L., Viana, R. L., Morrison, P. J. & Abbamonte, P. 2010
Integrable maps with topological applications to divertor configurations. Nucl. Fusion 50,
034003. (doi:10.1088/0029-5515/50/3/034003)

31 Evans, T. E., Moyer, R. A. & Monat, P. 2002 Modelling of stochastic magnetic flux loss from the
edge of a poloidally diverted tokamak. Phys. Plasmas 9, 4957–4967. (doi:10.1063/1.1521125)

32 Wingen, A., Jakubowski, M., Spatschek, K. H., Abdullaev, S. S., Finken, K. H. & Lehnen, M.
2007 Traces of stable and unstable manifolds in heat flux patterns. Phys. Plasmas 14, 042502.
(doi:10.1063/1.2715548)

33 Abdullaev, S. S., Jakubowski, M., Lehnen, M., Schmitz, O. & Unterberg, B. 2008 On
description of magnetic stochasticity in poloidal divertor tokamaks. Phys. Plasmas 15, 042508.
(doi:10.1063/1.2907163)

34 Borgogno, D., Grasso, D., Pegoraro, F. & Schep, T. J. 2008 Stable and unstable invariant
manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection.
Phys. Plasmas 15, 102308. (doi:10.1063/1.2999539)

35 da Silva, E. C., Caldas, I. L., Viana, R. L. & Sanjuán, M. A. F. 2002 Escape patterns,
magnetic footprints, and homoclinic tangles due to ergodic magnetic limiters. Phys. Plasmas
9, 4917–4928. (doi:10.1063/1.1518681)

36 Wingen, A., Spatschek, K. H. & Abdullaev, S. S. 2005 Stochastic transport of magnetic
field lines in the symmetric tokamap. Contrib. Plasma Phys. 45, 500–513. (doi:10.1002/ctpp.
200510056)

37 Kennedy, J. & Yorke, J. A. 1991 Basins of Wada. Physica D 51, 213–225. (doi:10.1016/
0167-2789(91)90234-Z)

38 Nusse, H. E. & Yorke, J. A. 1996 Basins of attraction. Science 271, 1376–1380. (doi:10.1126/
science.271.5254.1376)

39 Nusse, H. E. & Yorke, J. A. 1996 Wada basin boundaries and basin cells. Physica D 90, 242–261.
(doi:10.1016/0167-2789(95)00249-9)

40 Aguirre, J., Vallejo, J. C. & Sanjuán, M. A. F. 2001 Wada basins and chaotic invariant sets in
the Hénon–Heiles system. Phys. Rev. E 64, 066208. (doi:10.1103/PhysRevE.64.066208)

41 Abdullaev, S. S., Eich, T. & Finken, K. H. 2001 Fractal structure of the magnetic field in the
laminar zone of the dynamic ergodic divertor of the torus experiment for technology-oriented
research (TEXTOR-94). Phys. Plasmas 8, 2739–2749. (doi:10.1063/1.1371954)

42 Schmidt, G. 1979 Physics of high-temperature plasmas, 2nd edn. New York, NY: Academic
Press.

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1109/27.940957
http://dx.doi.org/doi:10.1016/0375-9601(77)90341-3
http://dx.doi.org/doi:10.1016/0022-3115(78)90198-8
http://dx.doi.org/doi:10.1103/PhysRevLett.69.3322
http://dx.doi.org/doi:10.1063/1.872094
http://dx.doi.org/doi:10.1063/1.872689
http://dx.doi.org/doi:10.1063/1.873270
http://dx.doi.org/doi:10.1063/1.1691455
http://dx.doi.org/doi:10.1002/ctpp.200410034
http://dx.doi.org/doi:10.1088/0029-5515/50/3/034003
http://dx.doi.org/doi:10.1063/1.1521125
http://dx.doi.org/doi:10.1063/1.2715548
http://dx.doi.org/doi:10.1063/1.2907163
http://dx.doi.org/doi:10.1063/1.2999539
http://dx.doi.org/doi:10.1063/1.1518681
http://dx.doi.org/doi:10.1002/ctpp.200510056
http://dx.doi.org/doi:10.1002/ctpp.200510056
http://dx.doi.org/doi:10.1016/0167-2789(91)90234-Z
http://dx.doi.org/doi:10.1016/0167-2789(91)90234-Z
http://dx.doi.org/doi:10.1126/science.271.5254.1376
http://dx.doi.org/doi:10.1126/science.271.5254.1376
http://dx.doi.org/doi:10.1016/0167-2789(95)00249-9
http://dx.doi.org/doi:10.1103/PhysRevE.64.066208
http://dx.doi.org/doi:10.1063/1.1371954
http://rsta.royalsocietypublishing.org/


394 R. L. Viana et al.

43 D’haeseleer, W. D., Hitchon, W. N. G., Callen, J. D. & Shohet, J. L. 1991 Flux coordinates and
magnetic field structure. Berlin, Germany: Springer.

44 Kucinski, M. Y. & Caldas, I. L. 1987 Toroidal helical fields. Z. Naturforsch. A 42, 1124.
45 Kucinski, M. Y., Caldas, I. L., Monteiro, L. H. A. & Okano, V. 1990 Toroidal plasma

equilibrium with arbitrary current distribution. J. Plasma Phys. 14, 303–311. (doi:10.1017/
S0022377800015191)

46 Morrison, P. J. 2000 Magnetic field lines, Hamiltonian dynamics, and nontwist systems. Phys.
Plasmas 7, 2279–2289. (doi:10.1063/1.874062)

47 Hinton, F. L. & Hazeltine, R. D. 1974 Kinetic theory of plasma scrape-off in a divertor tokamak.
Phys. Fluids 17, 2236–2240. (doi:10.1063/1.1694697)

48 McCool, S. C. et al. 1989 Electron thermal confinement studies with applied resonant fields on
TEXT. Nucl. Fusion 29, 547–562.

49 Ghendrih, P., Grosman, A. & Capes, H. 1996 Theoretical and experimental investigations
of stochastic boundaries in tokamaks. Plasma Phys. Contr. Fusion 38, 1653.
(doi:10.1088/0741-3335/38/10/002)

50 Pires, C. J. A., Saettone, E. A. O., Kucinski, M. Y., Vannucci, A. & Viana, R. L. 2005
Magnetic field structure in the TCABR tokamak due to ergodic limiters with a non-uniform
current distribution: theoretical and experimental results. Plasma Phys. Contr. Fusion 47, 1609.
(doi:10.1088/0741-3335/47/10/003)

51 Viana, R. L. & Vasconcelos, D. B. 1997 Field-line stochasticity in a tokamak with an ergodic
magnetic limiter. Dynam. Stability Syst. 12, 75–88.

52 Boozer, A. & Rechester, A. B. 1978 Effect of magnetic perturbations on divertor scrape-off
width. Phys. Fluids 21, 682–680. (doi:10.1063/1.862277)

53 Meiss, J. D. 1992 Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64,
795–848. (doi:10.1103/RevModPhys.64.795)

54 Portela, J. S. E., Caldas, I. L. & Viana, R. L. 2008 Tokamak magnetic field line structure
described by simple maps. Eur. Phys. J.: Special Topics 165, 195–210. (doi:10.1140/epjst/
e2008-00863-y)

55 Bleher, S., Grebogi, C., Ott, E. & Brown, R. 1988 Fractal boundaries for exit in Hamiltonian
dynamics. Phys. Rev. A 38, 930–938. (doi:10.1103/PhysRevA.38.930)

56 Schneider, J., Tel, T. & Neufeld, Z. 2002 Dynamics of ‘leaking’ Hamiltonian systems. Phys.
Rev. E 66, 066218. (doi:10.1103/PhysRevE.66.066218)

57 Aguirre, J. & Sanjuán, M. A. F. 2003 Limit of small exits in open Hamiltonian systems. Phys.
Rev. E 67, 056201. (doi:10.1103/PhysRevE.67.056201)

58 Sanjuán, M. A. F., Horita, T. & Aihara, H. 2003 Opening a closed Hamiltonian map. Chaos
13, 17–24. (doi:10.1063/1.1528750)

59 Abdullaev, S. S., Finken, K. H., Jakubowski, M. W., Kasilov, S., Kobayashi, V. M., Reiser,
D., Reiter, D., Runov, A. M. & Wolf, R. 2003 Overview of magnetic structure induced
by the TEXTOR-DED and the related transport. Nucl. Fusion 43, 299–313. (doi:10.1088/
0029-5515/43/5/302)

60 Kroetz, T., Roberto, M., da Silva, E. C., Caldas, I. L. & Viana, R. L. 2008 Escape patterns of
chaotic magnetic field lines in a tokamak with reversed magnetic shear and an ergodic limiter.
Phys. Plasmas 15, 092310. (doi:10.1063/1.2988335)

61 Schmitz, O. et al. 2008 Aspects of three dimensional transport for ELM control experiments
in ITER-similar shape plasmas at low collisionality in DIII-D. Plasma Phys. Contr. Fusion 50,
124029. (doi:10.1088/0741-3335/50/12/124029)

62 Péntek, A., Toroczkai, Z., Tél, T., Grebogi, C. & Yorke, J. A. 1995 Fractal boundaries in open
hydrodynamical flows: signatures of chaotic saddles. Phys. Rev. E 51, 4076–4088. (doi:10.1103/
PhysRevE.51.4076)

63 Poon, L., Campos, J., Ott, E. & Grebogi, C. 1996 Wada basin boundaries in chaotic scattering.
Int. J. Bifurc. Chaos 6, 251–265. (doi:10.1142/S0218127496000035)

64 MacKay, R. S., Meiss, J. D. & Percival, I. C. 1987 Resonances in area-preserving maps.
Physica D 27, 1–20. (doi:10.1016/0167-2789(87)90002-9)

65 Aguirre, J. & Sanjuán, M. A. F. 2002 Unpredictable behavior in the Duffing oscillator: Wada
basins. Physica D 171, 41–51. (doi:10.1016/S0167-2789(02)00565-1)

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1017/S0022377800015191
http://dx.doi.org/doi:10.1017/S0022377800015191
http://dx.doi.org/doi:10.1063/1.874062
http://dx.doi.org/doi:10.1063/1.1694697
http://dx.doi.org/doi:10.1088/0741-3335/38/10/002
http://dx.doi.org/doi:10.1088/0741-3335/47/10/003
http://dx.doi.org/doi:10.1063/1.862277
http://dx.doi.org/doi:10.1103/RevModPhys.64.795
http://dx.doi.org/doi:10.1140/epjst/e2008-00863-y
http://dx.doi.org/doi:10.1140/epjst/e2008-00863-y
http://dx.doi.org/doi:10.1103/PhysRevA.38.930
http://dx.doi.org/doi:10.1103/PhysRevE.66.066218
http://dx.doi.org/doi:10.1103/PhysRevE.67.056201
http://dx.doi.org/doi:10.1063/1.1528750
http://dx.doi.org/doi:10.1088/0029-5515/43/5/302
http://dx.doi.org/doi:10.1088/0029-5515/43/5/302
http://dx.doi.org/doi:10.1063/1.2988335
http://dx.doi.org/doi:10.1088/0741-3335/50/12/124029
http://dx.doi.org/doi:10.1103/PhysRevE.51.4076
http://dx.doi.org/doi:10.1103/PhysRevE.51.4076
http://dx.doi.org/doi:10.1142/S0218127496000035
http://dx.doi.org/doi:10.1016/0167-2789(87)90002-9
http://dx.doi.org/doi:10.1016/S0167-2789(02)00565-1
http://rsta.royalsocietypublishing.org/


Fractal structures in plasma physics 395

66 Toroczkai, Z., Károlyi, G., Péntek, A., Tél, T., Grebogi, C. & Yorke, J. A. 1997 Wada
dye boundaries in open hydrodynamical flows. Physica A 239, 235–243. (doi:10.1016/S0378-
4371(96)00482-7)

67 Baptista, M. S., Caldas, I. L., Heller, M. V. A. P., Ferreira, A. A., Bengtson, R. &
Stockel, J. 2001 Recurrence in plasma edge turbulence. Phys. Plasmas 8, 4455–4462.
(doi:10.1063/1.1401117)

68 Altmann, E. G., da Silva, E. C. & Caldas, I. L. 2004 Recurrence time statistics for finite size
intervals. Chaos 14, 975–981. (doi:10.1063/1.1795491)

69 Zaslavsky, G. M. 2005 Hamiltonian chaos and fractional dynamics. Oxford, UK: Oxford
University Press.

70 Marcus, F. A., Kroetz, T., Roberto, M., Caldas, I. L., da Silva, E. C., Viana, R. L. & Guimarães-
Filho, Z. O. 2008 Chaotic transport in reversed-shear tokamaks. Nucl. Fusion 48, 024018.
(doi:10.1088/0029-5515/48/2/024018)

71 Kroetz, T., Marcus, F. A., Roberto, M., Caldas, I. L. & Viana, R. L. 2009 Transport control in
fusion plasmas by changing electric and magnetic field spatial profiles. Comput. Phys. Commun.
180, 642–650. (doi:10.1016/j.cpc.2008.12.025)

Phil. Trans. R. Soc. A (2011)

 on February 10, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/S0378-4371(96)00482-7
http://dx.doi.org/doi:10.1016/S0378-4371(96)00482-7
http://dx.doi.org/doi:10.1063/1.1401117
http://dx.doi.org/doi:10.1063/1.1795491
http://dx.doi.org/doi:10.1088/0029-5515/48/2/024018
http://dx.doi.org/doi:10.1016/j.cpc.2008.12.025
http://rsta.royalsocietypublishing.org/

	Fractal structures in nonlinear plasma physics
	Introduction
	Model fields
	Plasma equilibrium field
	Ergodic limiter field

	Magnetic field line map
	Hamiltonian form
	Map equations
	Phase portraits

	Escape channels and connection lengths
	Invariant manifolds and chaotic saddle
	Wada basins and magnetic footprints
	Conclusions
	References


