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The influence of linear time-delayed feedback on vibrational resonance is investigated in underdamped and
overdamped Duffing oscillators with double-well and single-well potentials driven by both low frequency and high
frequency periodic forces. This task is performed through both theoretical approach and numerical simulation.
Theoretically determined values of the amplitude of the high frequency force and the delay time at which
resonance occurs are in very good agreement with the numerical simulation. A major consequence of time-delayed
feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect
to the time-delayed parameter. An appropriate time delay is shown to induce a resonance in an overdamped
single-well system which is otherwise not possible. For a range of values of the time-delayed parameters, the
response amplitude is found to be larger than in delay-time feedback-free systems.
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I. INTRODUCTION

The response of a nonlinear system to a weak periodic
signal can be enhanced by means of an appropriate noise [1],
a high frequency periodic force [2], or a chaotic signal [3].
The enhancements of the response of a system due to the
applied weak noise, a high frequency force, or a chaotic signal
are termed as stochastic resonance, vibrational resonance, and
chaotic resonance, respectively. Among them, much attention
has been given to stochastic resonance and a lot of progress
has been made. However, the analysis of vibrational resonance
(VR) has also received considerable interest in recent years
due to its importance in a wide variety of contexts in physics,
engineering, and biology.

In a typical VR, when the amplitude g or the frequency �

of a high frequency periodic force is varied, the amplitude of
the response at the low frequency of the input signal reaches
a maximum value at one or more critical values of g or � and
then decays. Its occurrence has been analyzed by theoretical,
numerical, and experimental procedures in certain nonlinear
dynamical systems. For example, VR was studied both
theoretically and numerically in multiwell systems [2,4–8] and
in a single-well system [9]. An experimental demonstration of
it in a bistable vertical-cavity surface-emitting laser [10–12],
analog simulation of the overdamped Duffing oscillator [13],
and the effect of an additive Gaussian white noise [13,14]
were also reported. VR has also been found in excitable
systems [15–17] and in small-world networks [18].

Numerical evidence for multiple VR induced by time-
delayed feedback in overdamped uncoupled and coupled
bistable systems [19,20] has been reported very recently.
When the state of a system at time t depends on its state
at a shifted earlier time, say t − α, then a time-delayed
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feedback term is introduced in the equation of motion of
the system. The feedback term can be linear or nonlinear.
Time-delayed phenomena are ubiquitous in many nonlinear
systems due to a finite switching speed of amplifiers, finite
signal propagation time in biological networks, finite reaction
times, memory effects, etc. [21–23]. In a variety of physical,
engineering, biological, and chemical systems the presence of
time-delayed feedback or time-delayed couplings is inevitable.
Examples include propagation delays in networks [24], laser
arrays [25–27], electronic circuits [28], and neural systems
[29–31]. Time-delayed nonlinear systems are found to show
interesting dynamical phenomena such as novel bifurcations
[32,33], amplitude death [34], strange nonchaotic attractors
[35], hyperchaos [36], stochastic dynamics [37–39], excitation
regeneration [40], reentrance phenomena [41,42], and patterns
[43]. However, the effect of time delay on VR has not been
studied systematically. Thus, it is important to develop a
theoretical approach to investigate and explore the role of time-
delayed parameters on the mechanism of VR in time-delayed
systems and also obtain an analytical expression for the values
of the control parameters at which VR occurs.

Motivated by the above ideas, we present here a theoretical
approach to investigate VR in underdamped and overdamped
nonlinear systems with a delay feedback and driven by a bi-
harmonic force. We apply it to the time-delayed underdamped
Duffing oscillator

ẍ + dẋ + ω2
0x + βx3 + γ x(t − α)

= f cos ωt + g cos �t (1)

and time-delayed overdamped Duffing oscillator

ẋ + ω2
0x + βx3 + γ x(t − α) = f cos ωt + g cos �t, (2)

where � � ω and α > 0 is the time-delayed parameter. In
the absence of a damping term, external periodic forces, and
feedback term, the potential of the Duffing oscillator is V (x) =
1
2ω2

0x
2 + 1

4βx4. V (x) becomes a double well for ω2
0 < 0,
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FIG. 1. Single-well (represented by a continuous line, ω2
0 = 0.5,

β = 0.1), double-well (represented by a dashed line, ω2
0 = −1, β =

0.1), and single-well with double-hump (represented by solid circles,
ω2

0 = 1, β = −0.1) forms of the potential V (x) = 1
2 ω2

0x
2 + 1

4 βx4.

β > 0, and a single well for ω2
0, β > 0, respectively. Moreover,

for ω2
0 > 0, β < 0 the potential has a single well with double-

hump form. These three forms of the potential are depicted in
Fig. 1. For ω2

0, β < 0 the potential has an inverted single-well
form. We consider both single-well and double-well cases
of the underdamped and overdamped systems (1) and (2).
Our main concern is to explore the interplay between the
time delay and the high frequency force. For � � ω and for
f � 1, due to the different time scales of the forces f cos ωt

and g cos �t , it is reasonable to assume that the solutions of
systems (1) and (2) essentially consist of a slow motion X(t)
and a fast motion ψ(t,�t). Through a theoretical approach,
we obtain an analytical expression for the variables X and ψ

for both systems (1) and (2). The amplitude of the fast motion
is periodic in α with period 2π/�, while that of the slow
motion has terms which are periodic in α with periods 2π/ω

and 2π/�. The ratio of the amplitude AL of slow motion and
f is termed as the response amplitude Q. From the theoretical
expression of Q, we are able to determine the values of g and α

denoted as gVR and αVR , respectively, at which VR occurs, i.e.,
Q becomes a maximum. Theoretical predictions of Q, gVR , and
αVR are in very good agreement with numerical simulations.

There are certain common and distinct influences of the
time-delayed feedback parameters α and γ in the four systems
under analysis. These four systems are (1) underdamped
double-well Duffing oscillator, (2) underdamped single-well
Duffing oscillator, (3) overdamped double-well Duffing oscil-
lator, and (4) overdamped single-well Duffing oscillator. When
the amplitude g of the high frequency periodic force is treated
as a control parameter, we find the following key results. In
the underdamped double-well system two resonances occur
for |γ | < ω2/(1 − cos ωα), otherwise only a single resonance
occurs. Double resonance is not possible in the underdamped
single-well system, however, a single resonance occurs for
ω2 − γ cos ωα > ω2

0. In the overdamped double-well system
with and without time-delayed feedback one resonance always
occurs at the critical value of g, gc at which the effective
potential of the slow variable undergoes a transition from a
bistable (double-well) to a monostable (single-well) potential.
In the absence of time-delayed feedback, a resonance is
not at all possible in the overdamped single-well system.
Interestingly, the inclusion of an appropriate time-delayed

feedback induces a resonance. In all four systems Q(γ,gVR ) >

Q(γ = 0,gVR ) for a wide range of values of γ and α. When α is
varied, in all four systems, the response amplitude Q is periodic
(with period 2π/ω) or quasiperiodic on α depending upon
whether the ratio �/ω is rational or irrational. The response
amplitude profile is modulated by the high frequency force,
however, the modulation period is not strictly 2π/�. For a
range of values of γ and g we notice Q(γ,αVR ) > Q(γ = 0).

The organization of the paper is as follows. In Sec. II
we consider the underdamped double-well and single-well
systems. First, we obtain an approximate analytical expression
for the response amplitude Q at the low frequency ω. For the
double-well case we get the theoretical expressions for the
amplitude g at which resonance occurs. Since it is difficult
to find the analytical expression for αVR , we calculate the
numerical values of αVR for a range of fixed values of γ

and g from the theoretical expression of Q. Next we verify
the theoretical predictions with the numerical simulation. We
point out the mechanism of the resonance and compare the
change in the slow motion X(t) and the actual motion x(t)
when the control parameters g and α are varied. Then, we
study the VR in the single-well system. Section III is devoted
to the overdamped systems. For the double-well case, we show
that a resonance always occurs at g = gc when g is varied.
We determine αVR for a range of fixed values of g and give
examples for periodic and quasiperiodic patterns of VR. Then,
we present the results for the single-well system. In Sec. IV we
briefly discuss the limits of the applicability of the theoretical
approach. Finally, in Sec. V, we summarize our findings.

II. UNDERDAMPED DUFFING OSCILLATOR

In this section we obtain a theoretical expression for
the response amplitude Q in the presence of time-delayed
feedback in the underdamped Duffing oscillator. Using this
expression, we analyze the occurrence of VR in both double-
well and single-well cases.

A. Theoretical expression for the response amplitude Q

We assume the solution of the system (1) for � � ω as
x = X + ψ , where X(t) and ψ(τ = �t) are a slow motion
with period 2π/ω in the time t and a fast motion with
period 2π in the fast time τ , respectively. Further, we assume
that the average value of ψ over the period 2π is ψav =
(1/2π )

∫ 2π

0 ψ dτ = 0. The equations of motion of X and ψ

are

Ẍ + dẊ + (
ω2

0 + 3βψ2
av

)
X + β

(
X3 + ψ3

av

) + γX(t − α)

+ 3βX2ψav = f cos ωt, (3)

ψ̈ + dψ̇ + ω2
0ψ + 3βX2(ψ − ψav) + 3βX

(
ψ2 − ψ2

av

)
+β

(
ψ3 − ψ3

av

) + γψ(τ − �α) = g cos �t, (4)

where ψn
av = (1/2π )

∫ 2π

0 ψn dτ . Neglecting the nonlinear
terms in Eq. (4), the solution of the linear version in the limit
t → ∞ is given by

ψ = g

μ
cos(τ + φ), (5a)
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where
μ2 = (

ω2
0 − �2 + γ cos �α

)2 + (−d� + γ sin �α)2

(5b)
and

φ = tan−1

( −d� + γ sin �α

ω2
0 − �2 + γ cos �α

)
. (5c)

For sufficiently large values of � we can further approx-
imate the solution (5) by dropping the terms ω2

0 and −d�.
However, in our treatment we keep these terms in the solution.
For a fixed value of γ the quantity μ varies periodically with α

with period 2π/�. In the absence of time delay, μ ≈ �2.
Solution (5) gives ψav = 0, ψ2

av = g2/(2μ2), and ψ3
av = 0.

Now Eq. (3) becomes

Ẍ + dẊ + C1X + βX3 + γX(t − α) = f cos ωt, (6a)
where

C1 = ω2
0 + 3βg2

2μ2
. (6b)

When f = 0, the equilibrium points of Eq. (6) are

X∗
0 = 0, X∗

± = ±
√

−C1 + γ

β
. (7)

Slow oscillations occur around these equilibrium points.
We treat g and α as control parameters. By varying these
parameters, the number of equilibrium points and their stability
can be changed for fixed values of other parameters.

Next, we consider the deviation Y of X from X∗ and obtain

Ÿ + dẎ + ω2
r Y + 3βY 2X∗ + βY 3 + γ Y (t − α)

= f cos ωt, (8a)
where

ω2
r = C1 + 3βX∗2. (8b)

For a weak input signal, i.e., f � 1, |Y | � 1 and hence we
neglect the nonlinear terms in Eq. (8a). Then its solution in the
limit t → ∞ is AL cos(ωt + �), where AL = f/

√
S ,

S = [
ω2

r − (ω2 − γ cos ωα)
]2 + [−dω + γ sin ωα]2 (9)

and

� = tan−1

[ −dω + γ sin ωα

ω2
r − (ω2 − γ cos ωα)

]
. (10)

The response amplitude Q is AL/f , i.e., Q = 1/
√

S, and ωr is
the resonant frequency of oscillation of the slow variable X(t).
An important observation from the theoretical expression of
Q is that it has periodic dependence on α with two periods
2π/ω and 2π/�. In the expression for Q the quantity ω2

r has
a periodic dependence on α with period 2π/�. In Q, there
are two other terms containing α and are oscillating around γ

with period 2π/ω. There is no periodic term in Q for γ = 0.
In the following, we analyze the occurrence of VR separately
for the double-well and the single-well cases.

B. Resonance analysis in the double-well system

For ω2
0 < 0, β > 0, and γ = 0 the potential of the unforced

and undamped system (1) is of a double-well form (Fig. 1). For
simplicity we always choose the same sign for γ and ω2

0. In
the presence of damping, feedback, and biharmonic force the

equilibrium points around which slow oscillations take place
are given by Eq. (7). There are three equilibrium points for
g < gc, where

gc =
[

2μ2

3β

(∣∣ω2
0

∣∣ + |γ |)]1/2

, (11)

while for g > gc, X∗
0 is the only real equilibrium point. That

is, the effective potential of the slow variable X undergoes a
transition from the double well to a single well at gc.

The condition for the response amplitude Q to be maximum
at a value of g is dS/dg = 0, where S is given by Eq. (9). We
denote gVR as the value of g at which the response amplitude Q

becomes a maximum. An analytical expression for gVR can be
obtained from dS/dg = 0. The following results are obtained:

Case 1. |γ | < |γc| = ω2/(1 − cos ωα).

g(1)
VR

=
[

μ2

3β

(
2
∣∣ω2

0

∣∣ + 3|γ | − ω2 − |γ | cos ωα
)]1/2

< gc,

(12a)

g(2)
VR

=
[

2μ2

3β

(∣∣ω2
0

∣∣ + ω2 + |γ | cos ωα
)]1/2

> gc.

(12b)

Case 2. |γ | > |γc| = ω2/(1 − cos ωα).

g(1)
VR

= gc. (13)

In case 1 a resonance occurs at two values of g, one at a value
of g < gc, and another at a value of g > gc. The response
amplitude is the same at these two values of g. In case 2
only one resonance is possible and it occurs at the bifurcation
point gc.

To verify our theoretical results, we compute the sine
and cosine components Qs and Qc, respectively, at the low
frequency ω of the numerical solution x(t) of system (1). In
the calculation of Qs and Qc the solution x(t) corresponding
to 200 drive cycles of the input signal after leaving a sufficient
transient is used. Then, Q = √

Q2
s + Q2

c/f . Throughout our
study we fix the values of the parameters as d = 0.5, f = 0.1,
ω = 1, and � = 10. For the double-well case we choose
ω2

0 = −1 and β = 0.1. Equation (1) is integrated numerically
using the Euler method with time step 0.01. The time-delayed
parameter α always takes multiple values of 0.01.

In the absence of time-delayed feedback (γ = 0), the
double-well system (1) exhibits two resonances for 2|ω2

0| > ω2

and one for 2|ω2
0| < ω2. For γ 	= 0 the resonance condition

is independent of ω2
0 and depends on the parameters ω, γ ,

and α. Even for 2|ω2
0| < ω2 for a range of values γ and

α the system can be induced to show a double resonance.
Figure 2(a) presents both theoretical and numerical gVR as
a function of γ for α = 1 and 3. Very good agreement is
found between the theory and the numerical simulation. For
α = 1 and 3, the values of γc are −2.175 34 and −0.502 51,
respectively. There are two resonances for |γ | < |γc| and only
one for |γ | > |γc|. For |γ | < |γc|, as g increases from 0, two
stable slow oscillations take place around X∗

+ and X∗
−. ω2

r

decreases from 2|ω2
0| + 3|γ | and reaches the minimum value

|γ | at g = gc. For g > gc there is only one stable slow motion
and is around X∗

0 = 0. As g increases from gc the value of ω2
r
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FIG. 2. (a) Theoretical and numerical gVR versus the parameter
γ for two fixed values of the time-delayed parameter γ for the
underdamped system (1) with the double-well potential case. The
solid circles are the numerically computed gVR and the lines are
theoretical gVR . The values of the parameters are d = 0.5, ω2

0 = −1,
β = 0.1, f = 0.1, ω = 1, and � = 10. (b) The variation of theoretical
ω2

r with parameter g. From bottom to top, the curves show the values
of γ are 0, −0.3, and −2.3, respectively. The horizontal dashed
line represents the value of (ω2 − γ cos ωα). The vertical dashed
lines mark the values of gVR . (c) Plot of the response amplitude
Q as a function of g for γ = 0, −0.3, and −2.3 with α = 1.
The continuous lines are theoretical Q, while the dashed lines are
numerically calculated Q.

increases continuously from the value |γ |. This is shown in
Fig. 2(b) for γ = 0, −0.3, and −2.3. For γ = 0 and −0.3 at
two values of g, namely, at g(1)

VR
and g(2)

VR
, ω2

r = ω2 − γ cos ωα

[indicated by the horizontal dashed line in Fig. 2(b)], and hence
Q becomes maximum with Qmax = 1/| − dω + γ sin ωα|. In
Fig. 2(c) we notice the appearance of two resonances. In the
absence of time-delayed feedback Q becomes maximum when
ωr = ω and the maximum value of Q is 1/(dω). For γ = −0.3
the theoretical values of g(1)

VR
and g(2)

VR
are 242.75 and 382.95,

while the numerically computed values are 240.34 and 377.43,
respectively.

For |γ | > |γc| the value of ω2
r is always > (ω2 − γ cos ωα).

However, it has a local minimum at g = gc, and thus there
occurs a resonance. These are shown in Figs. 2(b) and 2(c) for

Q(gVR)5

3

1

α
6420

γ

0
-0.1

-0.2
-0.3

Q

3
2
1

g

500

300

100

γ

0

-0.5

-1

(a)

(b) α=3.5

FIG. 3. (a) Variation of the maximum value of Q, Q(g = gVR ),
as a function of γ and α for the double-well underdamped system.
(b) Three-dimensional plot of Q versus the parameters γ and g for
α = 3.5.

γ = −2.3. The noteworthy observation is that for |γ | < |γc|
the double resonance is due to matching of ω2

r with ω2 −
γ cos ωα, while the single resonance for |γ | > |γc| is due to
the local minimization of ω2

r . The single resonance always
occurs at g = gc at which the effective potential of the slow
variable undergoes a transition from the double well to a single
well. Note that Q is minimum at g = gc for |γ | < |γc|.

In Fig. 2(c), for α = 1 the maximum value of the response
amplitude is always lower than the case γ = 0. Qmax(γ,g) =
Q(γ,gVR ) > Q(γ = 0,gVR ) can be realized for a range of
values of α and γ , particularly for |γ | < |γc| and α ∈ [(2n −
1)π/ω,2nπ/ω], n = 1,2, . . . . Figure 3(a) shows the variation
of Q(gVR ) in (γ,α) parameter space for α ∈ [0,2π ] with
ω = 1. We can clearly see that Q(γ,gVR ) > Q(γ = 0,gVR ) for
α ∈ [π,2π ]. Figure 3(b) is the three-dimensional plot of Q as
a function of γ and g for α = 3.5. For α = 3.5 the value of
γc is 0.516 41. In Fig. 3(b), for |γ | < 0.516 41 we notice two
resonances and further Q(γ,gVR ) > Q(γ = 0,gVR ). Only one
resonance occurs for |γ | > 0.516 41.

We compare the change in the slow motion X(t) and the
actual motion x(t) when the parameter g is varied. For γ =
−0.3 and α = 1, when g is increased resonance occurs at two
values of g. The numerically calculated values of gVR are 240.5
and 376.85. In Fig. 4 the phase portrait of the slow motion X(t)
is plotted for several values of g. For g < gc (= 296.95) two
slow motions occur: one around X∗

+ and another around X∗
−.

As g increases from a small value the equilibrium points about
which X(t) and x(t) occur move toward the origin. This is
shown in Fig. 4 for four values of g < gc. For clarity, the
orbits coexisting for X < 0 are not shown. For g > gc there
is only one equilibrium point X∗

0 and it does not move with
an increase in g. Consequently, the slow orbit X(t) and the
actual orbit x(t) occur around the origin. This is illustrated
in Fig. 4 for three values of g > gc. We point out that at the
resonance value g = 240.50 there is no cross-well motion of
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FIG. 4. Phase portraits of the slow motion of the underdamped
double-well system for several values of g. The values of g for the
numbers 1–7 are 100 (1), 240.5 (2), 275 (3), 295 (4), 300 (5), 376.85
(6), and 600 (7). The values of other parameters are d = 0.5, ω2

0 =
−1, β = 0.1, γ = −0.3, α = 1, f = 0.1, ω = 1, and � = 10. The
solid circles mark the equilibrium points X∗

0 and X∗
+.

X(t) or x(t); that is, cross-well motion and bistability are not
necessary ingredients for VR. As a matter of fact, it can occur
in monostable systems [9].

The condition for a resonance to occur when the time-
delayed parameter α is varied is given by (from dS/dα = 0)(

ω2
r − ω2)ω2

rα + (
ω2

rα − dω2)γ cos ωα

−γω
(
ω2

r − ω2
)

sin ωα = 0, (14)

where ω2
rα = dω2

r /dα. Analytical expressions for the roots of
the above equation are difficult to obtain. However, the roots
denoted as αVR can be determined numerically from Eq. (14).
We computed theoretical αVR [from Eq. (14)] and numerical
αVR [by numerically solving Eq. (1)] for a range of values of g

with γ = −0.3. In Fig. 5(a) αVR < 3 × 2π/ω are alone plotted
(αVR are periodic with period 2π/ω). In our study � � ω. For
ω = 1 and � = 10, the ratio �/ω = 10 is a rational number.
The response amplitude Q is thus periodic in α with period
2π/ω. This is because the solution of system (1) is periodic
with respect to α with period 2π/ω. Suppose there are m

values of αVR in the interval [0,2π/ω]. Then the other values
of αVR > 2π/ω are given by

α(i+jm)
VR

= α(i)
VR

+ j
2π

ω
, i = 1,2, . . . ,m, j = 1,2, . . . .

(15)

Figure 5(b) presents numerical Q as a function of α and g.
We can clearly see the periodicity of Q with respect to the
time-delayed parameter α. We note that when g is varied,
since in the expression for AL or S only ω2

r depends on g,
the variation of S is due to the variation of ω2

r , and as pointed
out earlier, the resonance is due to either the matching of ω2

r
with ω2 − γ cos ωα or local minimization of ω2

r . In contrast
to this, then the delay parameter α is varied, not only ω2

r varies,
but two other terms in S also vary with α. Consequently, the
resonance is due to the local minimization of the quantity S.

Figure 6 shows the effect of α on the slow motion X(t) for
g = 250 and 350. For fixed values of the parameters when α

is varied the equilibrium point around which slow orbit occurs
depends on the value of g. If g < gc, then the slow orbits about
X∗

± are stable. When α is varied the shift in the locations of X∗
±

is very small. However, the amplitude of the slow orbits vary

Q
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3002001000
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(b)

FIG. 5. (a) αVR versus the amplitude g of the high frequency force
for γ = −0.3. The system is the underdamped double-well system.
Continuous lines and solid circles represent theoretically and numer-
ically computed values of αVR , respectively. (b) Periodic variation
of the response amplitude Q with the time-delayed parameter α for
various values of g in the interval [100,300] for γ = −0.3.

and resonance occurs at α = αVR . When g is fixed at a value
>gc and α is varied, the slow orbit occurs about X∗

0 = 0. These
are shown in Fig. 6 for g = 250 < gc and g = 350 > gc. For
g = 250(<gc) the slow motion occurs at about X∗

+ and X∗
−.

This is shown in Figs. 6(a) and 6(b) for a few values of α. In
these figures the resonant orbits are marked by the label “2.”
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g= 250 (b)

X

Ẋ

2.521.5

0.6

0

-0.6

32 1

g= 350 (c)

X

Ẋ

0.50-0.5

0.6

0

-0.6

32 1

g= 350 (d)

X

Ẋ

0.50-0.5

0.6

0

-0.6

FIG. 6. Phase portraits of the slow orbit as a function of the time-
delayed parameter α(�14) for two fixed values of g. (a) g = 250,
α = 4 (1), 4.57 (2), and 8 (3). (b) g = 250, α = 10.5 (1), 10.97 (2),
and 14 (3). (c) g = 350, α = 3.5 (1), 4.41 (2), and 7 (3). (d) g =
350, α = 10 (1), 10.69 (2), and 13 (3). In the numerical simulation
resonance is observed at α = 4.57 and 10.97 for g = 250 and at
α = 4.41 and 10.69 for g = 350.
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JEEVARATHINAM, RAJASEKAR, AND SANJUÁN PHYSICAL REVIEW E 83, 066205 (2011)

The orbits marked by “1” and “3” correspond to the values
of α on either side of α = αVR . In Figs. 6(c) and 6(d), for
g = 350 > gc, slow motion occurs at about X∗

0 = 0. Tuning
time delay is an advantage when it is desired to observe the
response of a system and VR with the center of the orbit (slow
as well as the actual orbit) almost remaining the same.

C. Resonance analysis in the single-well system

For ω2
0, β > 0 the potential V (x) has a single-well shape

with a local minimum at x = 0. Unlike the double-well system,
the effective potential of the slow variable X remains as a
single well when the parameter g is varied. The equilibrium
point around which slow oscillation occurs remains as X∗

0 = 0.
The resonance value of g, gVR , is given by

gVR =
[

2μ2

3β

(
ω2 − γ cos ωα − ω2

0

)]1/2

(16a)

provided
ω2 − γ cos ωα > ω2

0. (16b)

In the double-well system a resonance is possible for all sets
of values of γ and α when g is varied. In contrast to this, in the
single-well case a resonance is possible only for a set of values
of γ and α for which the condition (16b) is satisfied. Further,
in the double-well system two resonances are possible, while
in the single-well system, at most one resonance is possible.
The theoretical approach considered in the present work helps
us to choose appropriate values of the parameters to realize
VR.

Figure 7(a) shows the variation of theoretical gVR with γ

and α ∈ [0,2π/ω] for ω2
0 = 0.5 and β = 0.1. For a fixed value

of γ , as α increases from zero the value of gVR increases and
becomes maximum at α = π/ω and then decreases. This is
clear from Eq. (16a). gVR is periodic in α with period 2π/ω

and Qmax = 1/| − dω + γ sin ωα|.

g
VR

225

175

125

α

6
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γ
0.3

0.2
0.1

0

Q
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3

1

g300
200

100γ

0.3
0.2

0.1
0

α = 2

(a)

(b)

FIG. 7. (a) Theoretical gVR versus the time-delayed feedback
parameters γ and α for the underdamped single-well system with
ω2

0 = 0.5 and β = 0.1. (b) Q versus the parameters γ and g for
α = 2.
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γ = 0
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Q

(α
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R
)

250200150100500

5

4

3

2

1

Q

3

2

1

α
181260

g 300
200

100
0

(a)
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(c)

FIG. 8. (a) αVR versus g for γ = 0.15. The system is the
underdamped single-well system. Continuous lines and solid circles
represent theoretically predicted and numerically calculated values
of αVR , respectively. Here d = 0.5, ω2

0 = 0.5, β = 0.1, γ = 0.15,
f = 0.1, ω = 1, and � = 10. (b) Variation of Q(αVR ) with g for
γ = 0.15 and 0.3. Q versus g for γ = 0 is also shown. The continuous
lines and symbols represent theoretically and numerically predicted
values of Q. (c) Periodic variation of Q with the time-delayed
parameter α for various values of g for γ = 0.15.

In Fig. 7(b) the maximum value of Q at g = gVR for
α = 2 increases when γ increases. In the single-well system
a resonance also occurs when ω2

r = ω2 − γ cos ωα. For a
certain range of values of α, gVR decreases when γ increases,
and moreover, the value of Q at resonance increases. For
example, when α = 1 the value of gVR decreases when the
value of γ increases. For α = 2 and 3, gVR increases when γ

increases.
Figure 8(a) shows both theoretical and numerical αVR versus

g for γ = 0.15. αVR is periodic with period 2π/ω. For α ∈
[0,2π/ω], resonance occurs at only one value of α for fixed
values of g. In Fig. 5(a), corresponding to the double-well
system, a double resonance is found for a certain range of fixed
values of g. The presence of only one resonance in Fig. 8(a)
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α
VR

γ= 0.075
γ= 0.15
γ= 0.225
γ= 0.3

α

Q

6420

3

2

1

FIG. 9. Response amplitude Q versus the time-delayed parameter
α for a few fixed values of γ and g = 100 for the underdamped single-
well system. The continuous and dashed lines represent theoretically
and numerically predicted values of Q, respectively. The vertical
dashed line marks the value of αVR given by Eq. (17).

for α ∈ [0,2π/ω] implies that the variation of μ2 due to the
terms γ sin �α and γ cos �α [see Eq. (5b)] is negligible and
μ2 can be approximated as μ2 ≈ (ω2

0 − �2)2 + d2�2. Then
from Eq. (9) the expression for αVR is obtained as

αVR = 1

ω
tan−1

(
dω

ω2 − ω2
r

)
, ω2

r = C1 (17)

and is independent of γ . This is confirmed by numerical
simulation. In Fig. 9, Q versus α is plotted for g = 100 and
for a few fixed values of γ . Q is maximum at the same value
of α, however, its maximum value at resonance varies with γ .
Figure 8(b) shows the dependence of maximum value of Q at
α = αVR with the parameters g and γ . For each fixed value of
γ the value of Q(αVR ) increases with g, becomes a maximum
at a higher value of g, and then decreases. In Fig. 8(b) the
maximum value of Q for γ 	= 0 is always greater than the
value of Q for γ = 0. Figure 8(c) demonstrates the periodic
variation of Q with the delay parameter α.

III. OVERDAMPED DUFFING OSCILLATOR

In this section we analyze the occurrence of VR in the
overdamped system (2) with time-delayed feedback.

A. Theoretical approach

For system (2) the equation of motion for the slow variable
X is

Ẋ + C1X + βX3 + γX(t − α) = f cos ωt, (18a)
where

C1 = ω2
0 + 3βg2

2μ2
, (18b)

μ2 = (
ω2

0 + γ cos �α
)2 + (−� + γ sin �α)2. (18c)

The fast variable ψ(τ ) is approximated as

ψ = g

μ
cos(τ + φ),

(19)

φ = tan−1

[−� + γ sin �α

ω2
0 + γ cos �α

]
.

The equilibrium points around which slow motion occurs are
again given by Eq. (7). The long time solution of the deviation
Y (t) of X(t) from X∗ is obtained as

Y (t) = AL cos(ωt + �), (20a)
where

AL = f√
S

, � = tan−1

[−ω + γ sin ωα

ω2
r + γ cos ωα

]
, (20b)

S = (
ω2

r + γ cos ωα
)2 + (−ω + γ sin ωα)2, (20c)

ω2
r = C1 + 3βX∗2. (20d)

The response amplitude Q is 1/
√

S . The expression for the
function S given by Eq. (20c) for the overdamped system can
be compared with that of the underdamped system given by
Eq. (9).

B. Double-well case

For ω2
0 < 0, γ < 0, β > 0 the critical value of g, gc, below

which three equilibrium points X∗
0 , X∗

± exist and above which
only one equilibrium point X∗

0 exists is again given by Eq. (11)
with μ2 given by Eq. (18c).

Suppose we vary g from zero. From the theoretical
expression of Q (or S) the condition for Q to be maximum
is ω2

r − |γ | cos ωα = 0. In the absence of time delay (γ = 0)
resonance occurs when ω2

r = 0. For γ 	= 0 and g < gc the slow
motion is about X∗

± and

ω2
r = 2

∣∣ω2
0

∣∣ + 3|γ | − 3βg2

μ2

= |γ | + 3β

μ2

(
g2

c − g2
)
, g < gc, (21)

while for g > gc it is about X∗
0 = 0 and

ω2
r = −∣∣ω2

0

∣∣ + 3βg2

2μ2

= |γ | + 3β

2μ2

(
g2 − g2

c

)
, g > gc. (22)

As g increases from zero, the value of ω2
r decreases from

2|ω2
0| + 3|γ |, becomes |γ | at g = gc, and increases from

|γ | with a further increase in g. ω2
r is always � |γ |. That

is, ω2
r − |γ | cos ωα never becomes zero except when α =

2nπ/ω, n = 0,1,2, . . . and g = gc. For all other values of α,
even though ω2

r − |γ | cos ωα does not vanish, this quantity
becomes a minimum at g = gc, and hence a resonance at
gVR = gc. We recall that in the underdamped delay-feedback
system gVR = gc only if |γ | > |γc| = ω2/(1 − cos ωα).

Figure 10(a) shows the variation of theoretical gVR with
the delay parameters γ and α for ω2

0 = −1 and β = 1. gVR

oscillates with α for each fixed value of γ . On the other
hand, for a fixed value of α the value of gVR increases with
an increase in |γ |. For the values of γ and α in Fig. 10(b) we
notice Q(γ,α,gVR ) > Q(γ = 0,gVR ). For α = 6 and γ = 0,
−1, and −2 the theoretical values of gVR are 8.2, 11.2, and
13.34 respectively. Numerically calculated values of gVR are
8.24, 10.98, and 13.34 respectively. The theoretical gVR values
are in close agreement with numerical gVR . The variation of
the response amplitude Q with g and γ is shown in Fig. 10(c),
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FIG. 10. Theoretically predicted (a) gVR as a function of γ and
α for the overdamped double-well system with ω2

0 = −1, β = 1,
f = 0.1, ω = 1, and � = 10, (b) Q(gVR ) versus the parameters γ

and α, and (c) variation of the response amplitude Q with γ and g

for α = 6.

where α = 6. The maximum value of Q increases with an
increase in |γ |. The response of the system is greatly enhanced
by the delay feedback.

Next, we consider the effect of α with ω = 1 and � = 10.
Figure 11 shows αVR versus g for γ = −1. In this figure αVR

in the interval [0,2π/ω] alone are plotted. If resonance occurs
at a value of αVR < 2π/ω, then it occurs at αVR + 2nπ/ω,
n = 1,2, . . . also. We consider the interval α ∈ [0,2π/ω].
For small values of g there is only one value of αVR . An
example is given in Fig. 12(a) for g = 1. We note that
Q(αVR ) ≈ Q(γ = 0), i.e., Q is not improved considerably.
The number of values of αVR increases with an increase in
g. In Fig. 12(b), corresponding to g = 8, we can clearly see
multiple resonance. Resonance occurs at ten values of αVR

(in the interval [0,2π/ω]). [However, Q(αVR ) > Q(γ = 0) is
found only at a few values of αVR ]. The response amplitude
profile repeats in every 2π/ω intervals of α.

For g = 12 [Fig. 12(c)] the number of resonances is
doubled. At certain values of αVR the value of Q is considerably
larger than Q(γ = 0). The enhancement of Q is reduced
for higher values of g as shown in Fig. 12(d) for g = 20.
Above certain fixed values of g the resonance curve is
modulated by the high frequency signal. The modulation
period is not strictly 2π/�. For g = 1, 2, 5, 12, and 15 the

g

α
V

R

151050

6

4

2

0

FIG. 11. αVR versus g for the overdamped double-well system
with γ = −1. Continuous lines and solid circles represent theoretical
and numerical values of αVR , respectively.

number of resonances are 1, 2, 10, 20, and 10, respectively.
The complicated dependence of the number of resonances
and the spacing between the consecutive αVR ’s is due to the
complicated dependence of S with the delay parameters γ and
α. The maximum value of Q increases when g increases, and
for higher values of g it decreases.

For irrational values of the ratio �/ω the response ampli-
tude exhibits a quasiperiodic pattern. An example is presented

g = 1(a)

α

Q

129630

0.25

0.2

0.15

g = 8(b)

α

Q

129630

0.6

0.4

0.2

g = 12(c)

α

Q

129630

2

1

0

g = 20(d)

α

Q

129630

0.4

0.3

0.2

0.1

FIG. 12. Theoretical (represented by continuous lines) and nu-
merical (represented by dashed lines) Q as a function of the delay
parameter α for four fixed values of the parameter g. The system
is the double-well overdamped system with γ = −1. The horizontal
dashed line denotes the value of Q in the absence of time-delayed
feedback.
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Q

150100500

1
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0
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α

Q

12840

1

0.5

0

FIG. 13. (a) Quasiperiodic variation of Q with the delay parame-
ter α for ω = √

2, � = 10, and g = 10. The system is the overdamped
double-well system. (b) Enlargement of part (a). Continuous and
dashed lines represent the theoretically and numerically calculated
values of Q, respectively.

in Fig. 13 for ω = √
2 , � = 10, and g = 10. The maximum

values of Q in every 2π/ω interval of α are not the same.
Further, αVR 	= α′

VR
+ 2nπ/ω, n = 1,2, . . . where α′

VR
is a value

of αVR in the interval [0,2π/ω].

C. Single-well system

Finally, we consider the overdamped single-well system.
Since X∗

0 = 0 is the only equilibrium point around which
slow motion occurs, we have ω2

r = C1, and it increases
monotonically from ω2

0 when g increases.
gVR is given by

gVR =
[

2μ2

3β

( − ω2
0 + γ | cos ωα|)]1/2

, (23a)

where

α ∈
[(

2n + 1

2

)
π

ω
,
(
2n + 3

2

)π

ω

]
, n = 0,1, . . . (23b)

and

γ > γc = ω2
0

| cos ωα| . (23c)

In the double-well system there is no restriction on the values
of ω2

0, ω, α, and γ for resonance when g is varied. In the
single-well system a resonance at a value of g given by
Eq. (23a) occurs only for the parametric restrictions given
by Eqs. (23b) and (23c). An important observation from Eq.
(23a) is that in the absence of time delay the single-well system
cannot exhibit a resonance when g (or �) is varied, and Q

decreases continuously with an increase in g. But resonance
can be induced by an appropriate time-delayed feedback.

Variation of theoretical gVR with the delay parameters γ

and α is depicted in Fig. 14(a) for ω2
0 = 0.8 and β = 1. The

effect of α and γ on gVR can be clearly seen. In Fig. 14(b)
a comparison of theoretical gVR with numerical gVR is made
for a range of values of γ for three fixed values of α.
Similar to the other systems for the single-well overdamped
system it is also difficult to obtain an analytical expression
for αVR . Figure 15 presents both theoretically predicted and
numerically computed values of αVR ∈ [0, 2π/ω] for a range
of values of g with γ = 1. The theoretical prediction is in close

g
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α= 3.15
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g V
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FIG. 14. (a) Theoretically predicted gVR versus the delay param-
eters γ and α for the single-well overdamped system. The values of
other parameters are ω2

0 = 0.8, β = 1, f = 0.1, ω = 1, and � = 10.
(b) gVR versus γ for three fixed values of α. Continuous lines are
theoretical gVR , while the symbols represent numerically computed
values of gVR .

agreement with the numerical simulation. In Fig. 16, Q versus
α is shown. In this system also, Q(α) is periodic in α with
period 2π/ω for rational values of �/ω and quasiperiodic for
irrational values of �/ω. In the interval α ∈ [0, 2π/ω] single
resonance occurs for small values of g (as shown in Fig. 16 for
g = 3). Multiple resonance occurs for higher values of g. This
is shown in Fig. 16 for g = 5 and 8. Q(α = αVR ) decreases with
an increase in g. For g = 3, 5, and 8 the number of resonances
in the interval 0 < α < 2π/ω are 1, 4, and 10, respectively.

IV. VALIDITY OF THEORETICAL APPROACH

It is important to analyze the validity of the theoretical
approach used in the present work on VR. This is because
the systems considered here are capable of exhibiting various

g
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151050
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0

FIG. 15. Plot of theoretical αVR (represented by continuous lines)
and numerical αVR (solid circles) versus g for γ = 1. The system is
the single-well overdamped system.
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g = 8
g = 5
g = 3

α

Q

129630

3
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1

0

FIG. 16. Response amplitude Q as a function of the delay
parameter α for three fixed values of g for the overdamped single-well
system. Theoretical and numerical values of Q are represented by
continuous and dashed lines, respectively. The dashed lines are not
visible for g = 5 and 8 because of the very closeness of theoretical
Q with the numerical Q.

bifurcation phenomena and chaotic motion. In this connection
we note that as pointed out by Blekhman and Landa [5] and
Chizhevsky [6] the dynamics of the slow variable X is highly
sensitive to external perturbations for parametric values near
the transition from one type of stability to another type, for
example, bistability to monostability. In system (1) with the
double-well case, as the control parameter g is varied, the
effective potential Veff changes from double well to a single
well at g = gc, given by Eq. (11). For values of g near gc

considerable deviation of theoretical Q from numerical Q is
found. We numerically study the effect of the parameters ω,
γ , α, and d for a range of values of g on theoretical Q in both
double-well and single-well systems.

For d = 0.5, ω2
0 = −1, β = 0.1, γ = −0.3, α = 1, and

� = 10 the value of gc is 296.94. Figure 17(a) shows ω versus
Q for three values of g near gc. For g = 250 and 350, far before
and far after the bifurcation point gc, respectively, theoretical Q
is in good agreement with numerical Q even for small values of
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FIG. 17. (a) ω versus theoretical Q (marked by continuous lines)
and numerical Q (marked by dashed lines) for three values of g

for system (1) with double-well potential. Here d = 0.5, ω2
0 = −1,

β = 0.1, γ = −0.3, α = 1, � = 10, and f = 0.1. (b) g versus Q for
three values of γ with ω = 0.1. [(c),(d)] α versus Q. (c) ω = 0.1,
γ = −0.3, and d = 0.5. (d) ω = 0.1, γ = −0.3, and g = 300.
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FIG. 18. (a) ω versus theoretical Q (marked by continuous lines)
and numerical Q (marked by dashed lines) for three values of g for
the system (1) with a single-well potential. Here d = 0.5, ω2

0 = 0.5,
β = 0.1, γ = 0.3, α = 1, � = 10, and f = 0.1. (b) ω versus Q for
three values of d with g = 50. (c) α versus Q for two values of ω

with g = 50 and d = 0.5. (d) g versus Q for three values of γ with
α = 1, ω = 1, and d = 0.5.

ω. For g = 300, a value close to gc, the deviation of theoretical
Q from numerical Q is large for small values of ω. In Fig. 17(b)
we plotted g versus Q at ω = 0.1 for three values of γ . For
γ = −0.3, −1, and −2 the values of gc are 296.94, 366.10,
and 444.53, respectively. We can clearly notice a discrepancy
between the theoretical and numerical values of g near gc. The
values of two Q’s are close to each other for the values of g

far away from gc. The effect of α is shown in Fig. 17(c). The
deviation between theoretical Q and numerical Q is large for
a range of values of α when g = 300. For two other values
of g, namely, g = 200 and 330, the theoretical result is close
to the numerical result. The deviation between theory and
numerical simulation can be reduced by increasing the value
of the damping coefficient d. This is shown in Fig. 17(d).
An important observation from Figs. 17(a)–17(d) is that the
deviation of theoretical Q from numerical Q is considerably
large near the bifurcation point gc, and the deviation can be
reduced by increasing the damping parameter d.

What do we observe in the single-well case of system
(1) where Veff remains monostable when the parameter g is
varied? Figure 18 summarizes the effect of various parameters
on Q. A common feature we notice in Figs. 17 and 18 is
that when both theoretical Q and numerical Q values are
roughly <3 we observe close agreement between theory and
numerical simulation. Therefore, we point out that in practical
applications of the theoretical treatment of VR it is appropriate
to avoid the parameters values for which Qmax � 1.

V. CONCLUSIONS

The effects of the amplitude g of the high frequency
periodic force and the delay-time feedback parameters γ

and α on vibrational resonance are explained through a
theoretical approach. The theoretical treatment allows us to
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predict the values of the control parameters at which resonance
occurs, the number of resonances, the parametric choices
for which resonance cannot occur, the maximum value of
the response amplitude Q, and explains the mechanism of
resonance. The theoretical predictions of Q, gVR , and αVR

are in very good agreement with the computer simulations.
The presence of time-delayed feedback in systems (1) and
(2) is found to enrich the vibrational resonance phenomenon.
Particularly, the time-delayed parameter α gives rise to a
periodic or quasiperiodic pattern of vibrational resonance
profile. This feature of vibrational resonance allows us to
select different values (small or large) for the delay-time
α to enhance the quality of the weak signal and it can
be highly useful in optimizing the operation of multistable
systems for the detection and regeneration of signals in a
variety of experimental systems. The theory accounts for the
periodic and quasiperiodic variation of the response ampli-
tude Q. In the overdamped single-well system, resonances
cannot occur when g is varied. However, the inclusion of
an appropriate time-delayed feedback is found to induce a
resonance.

We found the following common results in the four systems
that we have analyzed when the time-delayed parameter α

is varied: (a)There is no parametric restriction for resonance
to occur; (b)The resonance profile is periodic (quasiperiodic)
for a rational (irrational) ratio of �/ω; (c)The number of
resonances in the interval 0 < α < 2π/ω is a complicated
function of the parameters of the systems; (d)Resonance is due
to the local minimization of the quantity S; and (e)Obtaining
analytical expressions for αVR and Qmax(αVR ) are very
difficult.

When the control parameter g is varied, the key results are
the following:

(a) Underdamped double-well system (1) (ω2
0 < 0, β > 0).

(1) At least one resonance and at most two resonances are
possible. The number of resonances is independent of the
parameters ω2

0 and β.
(2) For |γ | < |γc| = ω2/(1 − cos ωα) two resonances oc-

cur at the values of g given by Eqs. (12) due to the matching of
ω2

r with ω2 − γ cos ωα. Qmax = 1/| − dω + γ sin ωα| and
is independent of the parameters ω2

0 and β.
(3) For |γ | > |γc| only one resonance is possible and it

always occurs at g = gc given by Eq. (11) due to the local
minimization of ω2

r and Qmax = 1/
√

S, where S is given by
Eq. (9).

(b) Underdamped single-well system (1) (ω2
0 > 0, β > 0).

Only one resonance is possible and it occurs at the value
of g given by Eq. (16a) provided ω2 − γ cos ωα > ω2

0. The
resonance is due to the matching of ω2

r with ω2 − γ cos ωα

and Qmax = 1/| − dω + γ sin ωα|.

(c) Overdamped double-well system (2) (ω2
0 < 0, β > 0).

One resonance is always possible and it occurs at g = gc [given
by Eq. (11)], where the effective potential of the slow variable
X changes from the double-well to the single-well form. There
is no restriction on the parameters ω2

0 and β. For α = 2nπ/ω,
n = 0,1, . . . , the resonance is due to the matching of ω2

r with
|γ | cos ωα and Qmax = 1/ω. For α 	= 2nπ/ω, n = 0,1, . . . ,

the resonance is due to the local minimization of ω2
r and

Qmax = 1√
2γ 2(1 − cos ωα) + ω2 − 2ωγ sin ωα

. (24)

(d) Overdamped single-well system (2) (ω2
0 > 0, β > 0).

Only one resonance is possible with gVR given by Eq. (23a) for
the parametric restrictions given by Eqs. (23b) and (23c). The
resonance is due to the matching of ω2

r with −γ cos ωα and
Qmax = 1/| − ω + γ sin ωα|.

We have investigated here the effect of time delay on VR
in systems (1) and (2) with the double-well and single-well
cases of the potential of the systems. For ω2

0 > 0 and β < 0
the potential of the Duffing oscillator becomes the single well
with double hump shown in Fig. 1. We have also studied VR
with this potential. Unlike the other two potential types, both
systems (1) and (2) with double-hump potential will exhibit
bounded motion for g < gc =√

2μ2ω2
0/(3|β|) . For g > gc the ef-

fective potential of the slow variable X becomes of an inverted
single-well form. In the underdamped double-hump system
gVR is given by Eq. (23a) provided 0 < ω2 − γ cos ωα < ω2

0
[compare this condition with Eq. (16b) corresponding to the
single-well case]. For the overdamped double-hump system
gVR is given by Eq. (23a) provided α lies in the interval given
by Eq. (23b) and further, γ < γc = ω2

0/| cos ωα| [compare
this condition with Eq. (23c) to be satisfied for the single-well
system].

We believe that the above theoretical and numerical
observations will stimulate the experimental study of VR in
nonlinear oscillators and electronic circuits with time-delayed
feedback. The theoretical approach employed in the present
work can also be used to analyze the phenomenon of VR
in systems with time-delayed coupling where the interaction
between the systems is time delayed.
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