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ABSTRACT

We investigate the dynamics of phase locking in a minimal neuronal network, which is composed of
two Morris-Lecar neurons that are coupled by inhibitory and excitatory synapses as the synaptic
strength is varied. Studies show that the synaptic strength can induce various phase locking modes and
complex chaotic behaviors. In particular, two coupled neurons may display the complicated transitions
between various periodic phase locking modes and chaotic states. It is shown that those transitions are
accompanied by the tangent bifurcation, where the different phase locking modes can be related to the
appearance of periodic windows. Furthermore, we explore the dynamical mechanism of the phase
locking modes by means of the phase plane analysis. Interestingly, we have found two types of 2:1
phase locking modes, which are characterized by a thin tadpole tail and a fat tadpole tail, respectively.
And then, two types of 2:1 phase locking modes are analyzed in detail for understanding their
dynamical mechanism. The obtained results can be helpful to explore realistic neuronal activities.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Synchronous firing activity in the cortical network is thought
to be the basis of complex dynamical behaviors, which are related
to memory such as word recollection [1] and facial recognition [2].
It has also been suggested as particularly relevant for the efficient
processing and transmission of neuronal signals [3-6]. Neuronal
synchronization on complex networks has been explored in detail
[7-12,14,15], leading to several insights that have the potential of
applicability on realistic problems in neurosciences. In particular,
for fully connected networks of identical neurons of purely
excitatory interactions, synchronization properties are analyzed
by considering their dependence on the time course of the
synaptic interaction and on the response of the neurons to small
depolarization [13]. The influence of the coupling strength and
network topology on synchronization was studied for networks of
bursting Hindmarsh-Rose neurons coupled by chemical synapses
in Ref. [14]. Furthermore, Batista et al. [16,17] have studied the
onset of phase synchronization on scale-free bursting neurons
networks. Interestingly, it was reported that chemical and elec-
trical synapses perform complementary roles in the synchroniza-
tion of interneuronal networks [15]. In addition, based on the
theory of stochastic phase dynamics, Wang et al. investigated the
neural phase motion and neural coding of population and found

* Corresponding author. Tel./fax: +86 10 82332003.
E-mail address: nmqingyun@163.com (Q. Wang).

0925-2312/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2011.11.010

some new characteristics of neurodynamics [18-20]. The inter-
esting result shows that the variable coupling mechanism can
induce the transition of different cluster states and synchroniza-
tion of the neuronal oscillator population [21-23].

Recently, synchronization and its related transition process of
neuronal networks with time delay have received considerable
attention as some key parameters vary. For example, we have
found that the information transmission delay can induce syn-
chronization transitions in a scale-free neuronal network [24-26],
where both gap junction and chemical coupling are considered,
respectively. The synchronized behaviors of a noisy small-world
neuronal network with delay and diversity are numerically
studied, and it is shown that a delay can induce fruitful synchro-
nization transitions from phase locking to antiphase synchroniza-
tion, and a transition from antiphase synchronization to complete
synchronization [27]. Also, Liang et al. [28] has analyzed the
effects of distributed delays on phase synchronization of bursting
neurons, where it was found that a time delay can change the
state of the excitable system from a predominantly spiking
behavior to a largely bursting behavior. In sum, the delay can
generate complex dynamics and many interesting and even
unexpected phenomena [24-31].

In order to better understand the complex dynamics of large
scale neuronal networks, it would be important to investigate the
behavior of a minimal neuronal network, which is composed of
two neurons. When the coupling between oscillators is weak,
synchronization and its stability in a homogeneous two-cell
network can be analyzed using the well-developed geometric
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phase-reduction approach and the method of averaging [32-34].
The loss of synchrony caused by an increase in inhibitory coupling
in networks of type-I Morris-Lecar model oscillators has been
reported, in which a period-doubling cascade to mode-locked
states with alternation is found in the firing order of the two cells
[35,36]. Functional phase response curves are proposed to allow
the prediction of phase locking, even in cases of strong coupling
with a significant adaptation in a network consisting of two single
compartment WB model neurons [37].

However, in spite of the many works on neuronal synchroni-
zation done in past several decades, we are still far away from a
real understanding of neuronal information processing and com-
plex dynamic behaviors of brain networks. Here, we aim to
extend previous studies on this topic by considering a minimal
neuronal network, which is composed of two Morris-Lecar
neurons coupled by an inhibitory and an excitatory synaptic
interaction. We mainly focus on dynamic transitions of the
neuronal network as the synaptic parameter varies. Results show
that various phase locking modes and complex chaotic states can
appear in this minimal neuronal network. A phase locking mode
can be identified by the routes from chaos to the periodic window
when the synaptic strength is varied. More interestingly, we find
two types of 2:1 phase locking modes with a thin tadpole tail and
a fat tadpole tail. Furthermore, the phase locking modes are
analyzed in detail from the phase plane dynamics.

The remainder of this paper is organized as follows. In the next
section we introduce the mathematical model of the neuronal
network. The main results are presented in Section 3, whereas the
last section summarizes the new findings.

2. Mathematical model and setup

As a minimal neuronal network, we investigate the dynamics
of two coupled Morris-Lecar (ML) neurons [38] with excitatory
and inhibitory synapses. The coupled configuration is shown in
Fig. 1. The resulting dynamical equations are described as follows:

dv
Cgp = ~lea=Ik =I5 —lapp M
dop _ (0s—0y)
EREN(AN @
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where V; (i stands for I or E) is the neuron membrane potential in
mV, I, is the depolarizing calcium current, and I; is the passive
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Fig. 1. Schematic presentation of the connectivity between two neurons, where
two neurons interact through excitatory and inhibitory synapses, respectively. EI
(IE) denotes the effect of excitatory (inhibitory) neuron on the inhibitory
(excitatory) neuron through chemical synapses.

leak current, respectively. Moreover, @ is the activation of the
repolarizing potassium current Iy, t is the time in ms, and
Iopp = —14 pA/cm? is the applied current. The remaining para-
meters are fixed as V=120mV, Vg=-84mV, V;=-60mV,
gca=4 mS/cm?, gg=8 mS/cm?, and g, =2 mS/cm?.

The steady state activation of the calcium current is

My (V) = % {1 +tanh <V—1’_812>} (8)

The potassium current activation amplitude and activation
rate are given as follows, respectively,

1 V+8
we(V)= 5 {1 +tanh (T)} 9
1 2 V+12
m:§cosh< 18 ) (10)

The two neurons are coupled through the synaptic current
given by

19, = gl s(O(Vi—Vinnexe) (11)

where g, is the strength of synaptic conductance, and
Vish =—80mV and Ve =20mV are the reversal potential for
inhibitory and excitatory synapses, respectively. The dynamics of
the synaptic gating variable s(t) depends on the presynaptic
neuron potential, V;

ds; Sj 1-s
@t = gy WVt = oWVi- Vi) (12)

7

where V; =-3 mV is the synaptic threshold, ¢ is a sigmoid
function, and o(x) = (1+tanh (4x))/2. 75, =1.0 and 7, =0.2 ms
are the synaptic decay and rising time constants, respectively.
Note that for this choice of model parameters, each of the two
uncoupled ML neurons exhibits periodic spiking.

3. Results
3.1. Transition of phase locking modes

For this minimal neuronal network, we firstly investigate in
detail the dynamical behavior of the two identical ML model
neurons, which are coupled by inhibitory and excitatory synapses
as described by above Egs. (1)-(12). Fig. 2 shows bifurcation
diagrams of inter-spike intervals (ISIs) of the inhibitory (I) neuron,
excitatory (E) neuron and coupled neuronal network, respectively
as the synaptic strength g, increases. Here, as noted in Ref. [35],
ISIs of the coupled network are recorded as the asymptotic
intervals between two consecutive spikes of the neuronal net-
work, which may or may not be the spikes of the same neuron.
And then, they are normalized to the period of the uncoupled
neuron, and are denoted as ISI,om. It is clear in Fig. 2 that as the
synaptic strength g, is relatively small, two neurons exhibit
nearly periodic synchronization behavior with a small deviation
of their phases. As g, is increased, two neurons begin to slide
into non-periodic motion, and the behavior of the neuronal
network becomes chaotic. For further increasing synaptic
strength, the periodic window can intermittently appear via the
tangent bifurcation as shown in Figs. 2 and 3. For more detailed
investigations, the chaotic behavior and periodic motions can
intermittently transit as the synaptic strength increases. Hence,
we can observe complex transition modes in two coupled ML
neurons with inhibitory and excitatory synapses as the synaptic
strength gy, varies. In particular, as shown in Fig. 2, we have
labeled some typical positions A, B, C, and D, where different
periodic windows can be exhibited. In fact, the periodic windows
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Fig. 2. From the bottom to top, the bifurcation diagrams of inter-spike intervals (ISIs) of I neuron, E neuron and the coupled neuronal network are shown as the synaptic
strength gy, is increased. Note that ISIs of the coupled network are recorded as the asymptotic intervals between two consecutive network spikes, which may or may not
be the spikes of the same neuron. And then they are normalized to the period of the uncoupled neuron, and are denoted as ISl orm.
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Fig. 3. An enlargement of Fig. 2, which clearly shows the occurrence of a 3:2 phase locking mode, where an [ neuron can spike three times and an E neuron fires twice.

correspond to different phase locking modes. As an example, a
local enlargement part of Fig. 2 is shown in Fig. 3, where it can
clearly be observed that a 3:2 phase locking mode can be clearly
exhibited. Hence, it is inferred that different phase locking
transitions can be identified via the bifurcation diagram of ISIs
as the synaptic strength increases.

In order to supplement the visual assessment of bifurcation
diagrams presented in Fig. 2, we will examine the time series of
membrane potentials of the coupled neurons, which can intui-
tively guide us to determine how two neurons lock between their
phases, for some typical values of synaptic strength g, In
particular, Fig. 4(a) shows a 4:3 phase locking mode between
two neurons as the synaptic strength g, = 0.062. If the synaptic
strength is increased to g, =0.09, a 3:2 phase locking mode can
appear as shown in Fig. 4(b). Further increasing synaptic strength
can lead to a 2:1 phase locking mode (see Fig. 4(c)). However,
chaotic patterns can occur when one type of the phase lockings
transits to another type of them. For example, as the synaptic
strength is increased to g, =0.25, the coupled network can

exhibit chaotic behavior and two neurons look like non-periodic
(see Fig. 4(d)). Hence, it can be concluded that for the coupled two
ML neurons with inhibitory and excitatory synapses, the various
phase locking modes and complex chaotic states can be inter-
mittently exhibited as the synaptic strength gy, varies.

3.2. Dynamic analysis of phase locking modes

In what follows, it remains interesting to provide a simple
geometric explanation and quantitative analysis for different
phase locking modes. To do this, it is crucial to understand the
difference for the effects of excitatory and inhibitory stimuli on
the phase plane dynamics of a single ML neuron. Based on the
phase plane analysis, Fig. 5 illustrates schematically the effect of
the presynaptic neuron on the dynamics of the post-synaptic one.
This idea is proposed by Oh et al. [35], and it can well capture the
frog-leap solutions and alternative firing order of two ML neurons
coupled by the inhibitory synapses. In particular, it is shown in
Fig. 5(a) that there is no qualitative change in the geometry for a
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wide range of excitatory effects, where the V-nullcline and the
w-nullcline intersect at the middle branch with only one point.
However, as illustrated in Fig. 5(b), an obvious qualitative change
can occur when the inhibitory synapse becomes sufficiently
strong, which can suppress the neuron below its excitation
through the saddle-node on the invariant cycle bifurcation [34].
As a result, there are three points, where the V-nullcline and the
w-nullcline can intersect. Clearly, as shown in Fig. 5(b), the red
point below the excitation is very important for our understand-
ing of the phase locking modes. On one hand, the suitable
inhibitory coupling results in a transient subthreshold trapping
of one neuron during each cycle of the oscillation, and the neuron
is delayed for spiking. Consequently, the neuron can bypass its
partner neuron along the limit cycle by transiently keeping the
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Fig. 4. Phase locking state of the two coupled neurons at different values of
synaptic strength gi,,. The membrane potentials of the two neurons are shown as
black solid line (I neuron) and red dash line (E neuron), respectively. (a) 4:3 phase-
locked firing (gs,»=0.062). (b) 3:2 phase-locked firing (gs,=0.09). (c) 2:1 phase-
locked firing (g,n,=0.15). (d) Chaotic state, irregular inter-spike intervals
(gsyn=0.25). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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other inhibited neuron in the subthreshold tadpole tail branch of
the trajectory, as depicted in Fig. 5(b). On the other hand, the
excitatory effects can lead to more frequent spiking during the
given time interval. Hence, various phase locking modes can
appear as long as the interactions of inhibitory and excitatory
neurons are exactly chosen.

As a typical case, we investigate the 2:1 phase locking mode
from the phase plane dynamics of the coupled system. Firstly, the
time series of membrane potentials of two coupled neurons are
illustrated in Fig. 6 as the synaptic strength gy, =0.15 and
8syn = 0.2, respectively. It is obvious that both Fig. 6(a) and (b)
shows the 2:1 phase locking of the coupled ML neurons. However,
we can find that the two types of phase locking are a bit different.
Comparing Fig. 6(a) with (b), it is clear that for g, =0.2, the
excitatory neuron has longer silent state than the case of synaptic
strength g, = 0.15. In fact, this results from the larger and more
suitable synaptic strength, which delays the next spike of excita-
tory neuron by the inhibitory neuron. From the above analysis, as
shown in Fig. 5, more detailed differences can be explained when
one considers the phase plane dynamics of the coupled neuronal
systems. Here, we denote the inhibitory neuron and excitatory
one as the filled black and open red circles. For the synaptic
strength g, =0.15, it is shown in Fig. 6(a) that the black neuron
initially spikes, and the red neuron stays in a silent state and is
slowly heading for spiking. When the red neuron spikes, which
pushes the black neuron into the subthreshold branch of the
trajectory. When the red neuron jumps down and stays below the
excitation threshold and off the limit cycle trajectory, which
forms a tadpole tail as shown in Fig. 6, the black neuron begins
to leave the subthreshold branch of the trajectory. As the time
evolves, the black neuron spikes and the red neuron is still
trapped into the tadpole tail. Next, the black neuron jumps into
another region of the subthreshold region (see Fig. 7(e)). Finally,
the black neuron bypasses the red neuron along the unperturbed
limit cycle trajectory and spikes again. At the same time, the red
neuron also escapes the tadpole tail and is heading for the next
spiking due to the inhibitory effects of the black neuron, which
drops its V nullcline. Hence, the sequence of six panels describes
the dynamical mechanism of the 2:1 phase locking mode.

Interestingly, we will explore another 2:1 phase locking mode
as shown in Fig. 6(b). Similarly, we capture some typical positions

b
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Fig. 5. Effect of the coupling on the phase-plane trajectory of the postsynaptic neuron. Double arrows indicate the movement of the V-nullcline during each cycle of the
neuron. (a) In the case of excitatory effect, an increase in synaptic coupling causes no qualitative change in the phase-plane dynamics. (b) For sufficiently strong inhibitory
effect, the V-nullcline of the postsynaptic neuron intersects the w-nullcline with each presynaptic input, pushing the neuron below the excitation threshold and off the
limit cycle trajectory, which forms a tadpole tail. Here, red dot denotes the neuron trapped in the tadpole tail. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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of two neurons in the phase plane. As shown in Fig. 7, the
sequence of six panels describes the leap-frog spike sequence of
the two coupled neurons as shown in Fig. 6(b). Initially, the black
neuron spikes and the red one stays in a silent state (see Fig. 7(a)).
Thus, it can be found in Fig. 7(b) that when the black neuron
jumps down into one subthreshold region, the red neuron still
stays in a silent state, and then, the red neuron spikes. When the
red neuron is jumping down, the black neuron spikes again,
pushing the red neuron into the subthreshold branch of the
trajectory. As a result, the red neuron jumps into the tadpole tail
and the black neuron bypasses the red neuron along the

100 150 200 250 300 350

300

100 150 250 350 400

Fig. 6. Transition of the 2:1 phase-locked firing. (a) gs,=0.15. (b) gs,,=0.2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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unperturbed limit cycle trajectory with outer circle. After some
time, the black neuron spikes again, and the process then repeats
itself.

By comparing Figs. 7 and 8, very interesting results in the
network we are considering can be found, in particular we can
find that the formation of the phase locking mode is different
between them. Thus, it is obvious that for the red neuron
inhibited by the black neuron, the formed tadpole tails between
them are a bit different. We call formally them as thin tadpole tail
(see Fig. 7) and fat tadpole tail (see Fig. 8), respectively. Enlarge-
ments of the corresponding figures are in Fig. 9(a) and (b),
respectively, which can clearly guide our visions to identify
different tadpole tails. In fact, it is understandable that for a
stronger inhibition, the frog-leap can occur more slowly. And
then, there appears a fat tadpole tail in Fig. 8. In addition, from
Fig. 9(a) and (b), it is more intuitive to understand the generation
mechanism of two types of 2:1 phase locking modes in the
analyzed network. In particular, for the thin tadpole tail mode,
there exists a big gap between two subthreshold regions of the
black neuron, and there is a very narrow gap between the outer
circle of the black neuron and the region below the excitation of
the red neuron. Thus, for the fat tadpole tail mode, the opposite
is true.

4. Summary and discussion

In summary, we have analyzed the phase locking modes and
complex chaotic states in a minimal neuronal network, which is
composed of two ML neurons that are coupled with inhibitory
and excitatory synapses. It is shown that as the synaptic strength
varies, various periodic phase locking can be exhibited in the
neuronal network under this investigation. In addition, we can
find that transitions among different phase locking modes are
accompanied by chaotic states. Furthermore, based on a phase
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Fig. 7. Phase-plane dynamics of the coupled Morris-Lecar neurons during the 2:1 phase-locked firing. The sequence of six panels describes the leap-frog spike sequence as
shown in Fig. 5(a) with filled black and open red circles representing the two neurons; (a) black neuron spikes; (b) red neuron spikes, pushing the black neuron into the
subthreshold branch of the trajectory; (c) red neuron jumps into thin tadpole tail and black neuron bypasses the red neuron along the unperturbed limit cycle trajectory;
(d) black neuron spikes again and red neuron always stay in tadpole tail; (e) black neuron jumps into another region of subthreshold, and leave it for the next spiking;
(f) black neuron spikes again, and the process then repeats itself, with the red neuron emitting the next spike. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 8. Phase-plane dynamics of the coupled Morris-Lecar model neurons during the 2:1 phase-locked firing. The sequence of six panels describes the leap-frog spike
sequence as shown in Fig. 5(b), with filled black and open red circles representing the two neurons: (a) black neuron spikes; (b) black neuron jumps into subthreshold
region, and red neuron still stays in a silent state; (c) red neuron spikes (d) black neuron spikes again, pushing the red neuron into the subthreshold branch of the
trajectory; (e) red neuron jumps into tadpole tail and black neuron bypasses the red neuron along the unperturbed limit cycle trajectory; (f) black neuron spikes again, and
the process then repeats itself, with the red neuron emitting the next spike. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 9. The enlargement of Figs. 7 and 8, which shows the subthreshold motion of two neurons. For g, = 0.15, the tadpole of the red neuron is thin and black neuron has
two subthreshold regions, which is distant enough. For g, = 0.15, the tadpole of the red neuron is fat and black neuron has two subthreshold regions, which is very close.
These regions can guide us to understand two types of a 2:1 phase locking modes. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

plane dynamical analysis, the dynamical mechanism of phase
locking modes is investigated in detail. Interestingly, we have
found two types of 2:1 phase locking modes, which are termed as
the thin tadpole tail and fat tadpole tail, respectively. Further-
more, the dynamics of two types of 2:1 phase locking modes are
explored. It is shown that inhibitory and excitatory GABA con-
nections can coexist in the cerebellar interneuron network.
Studies have suggested also that the coexistence of excitatory
and inhibitory GABA synapses could either buffer the mean firing
rate of the interneuron network or introduce different types of
correlation between neighboring interneurons, or both [39].

Hence, we hope that our study might be useful for understanding
real neuronal activity, especially for investigating collective beha-
viors of large scale neuronal networks.
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