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28933 Móstoles, Madrid, Spain
(Received 30 April 2013; published 23 September 2013)

The effect of a weak source of noise on the chaotic scattering is relevant to situations of physical interest.
We investigate how a weak source of additive uncorrelated Gaussian noise affects both the dynamics and the
topology of a paradigmatic chaotic scattering problem as the one taking place in the open nonhyperbolic regime
of the Hénon-Heiles Hamiltonian system. We have found long transients for the time escape distributions for
critical values of the noise intensity for which the particles escape slower as compared with the noiseless case.
An analysis of the survival probability of the scattering function versus the Gaussian noise intensity shows a
smooth curve with one local maximum and with one local minimum which are related to those long transients
and with the basin structure in phase space. On the other hand, the computation of the exit basins in phase space
shows a quadratic curve for which the basin boundaries lose their fractal-like structure as noise turned on.
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I. INTRODUCTION

Chaotic scattering in open Hamiltonian systems has been
an area of study in nonlinear dynamics, with applications
in numerous fields in physics (see Refs. [1,2]). The context
of this problem takes place in the motion of a particle in
a potential well (Refs. [3–6]). In general, there exists a
region where interactions between scattering particles and the
potential occur, whereas outside this region the potential is
negligible so that the particle motions are essentially free.
This region is typically called the scattering region. For many
potential functions of physical interest, evolution equations
are nonlinear resulting in chaotic dynamics in the scattering
region. Since the system is open, this region possesses exits
for which the particles may enter or escape. Due to the
chaotic dynamics in the scattering region, slightly close initial
conditions have trajectories which spend different times inside
the region and may escape taking different directions. Quite
often, particles starting in the scattering region bounce back
and forth for a finite time before escaping. In this sense chaotic
scattering could be presented as a physical manifestation of
transient chaos ([7,8]).

Most previous works have been devoted to purely con-
servative systems ([4–6]), and, more recently, the effects of
weak dissipation on chaotic scattering have been addressed
([9–11]). Despite a large body of existing literature on chaotic
scattering, there have been few works on the effect of noise on
certain characteristics of scattering dynamics ([12–14]). For
instance, in Ref. [12], the escapes from a driven potential well
system and the estimation of the average escape time in a noisy
environment were addressed. The latest works on the effects
of external noise in open Hamiltonian systems have shown
that, for a certain range of noise intensities (∼10−3), the decay
law of the scattered particles is exponential and the phase
space is completely blurred, exhibiting a ful destruction of the
boundary fractality and the KAM islands structure [14–16].
Finally, a detailed investigation [17] of the Hénon map shows
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that noise can also play a constructive role in chaotic scattering,
enhancing the trapping of trajectories.

Within the present work, we will study a dynamical system
model which describes the behavior of scattering particles in
a two-dimensional potential, the Hénon-Heiles system, under
the effect of an external source of weak additive uncorrelated
Gaussian noise. We will focus our numerical computations on
the regime of mechanical energies where the Hénon-Heiles
system exhibits an open nonhyperbolic dynamic. One of the
most accurate algorithms for stochastic processes resolution
is the second-order Heun algorithm [18] as was shown in
Ref. [14]. The fact that a certain source of weak noise is
unavoidable in any physical system has motivated us to inves-
tigate more thoroughly this constructive role in a quantitative
manner. This allows us to generalize the previous results from
maps [17] to flows, studying the effects of noise in phase space
and proposing a conjecture to explain the theoretical basis of
the aforesaid noise constructive effects. The main findings of
this work concern the effects of weak noise in both the decay
law of the particles in the scattering region and the exit basins
associated to phase space. The presence of weak noise [17]
implies the existence of long transients for the particles in
the scattering region. On the other hand, the analysis of the
characteristic time versus the noise intensity shows a curve
with one local maximum and one local minimum which are
related to the long transients in the scattering region and with
the persistence of KAM islands in noisy environments. In
addition, the computation of the exit basins shows a quadratic
curve between the noise intensity and the energy for which the
KAM islands are destroyed. These last behaviors are properly
explained by using some heuristic arguments.

This paper is organized as follows. In Sec. II we describe
our prototype model, the Hénon-Heiles system. The effects
of a weak source of additive uncorrelated Gaussian noise on
the decay law of the particles in the scattering region are
examined in Sec. III. In Sec. IV we study the influence of a
weak noise on the basin structure of the exit basins associated
with phase space. Heuristic arguments of the previous results
are shown in Sec. V. A discussion and the main conclusions
of this manuscript are presented in Sec. VI.
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FIG. 1. Isopotential curves for the Hénon-Heiles potential. They
are closed for energies below Ee = 1/6, but it shows three different
exits for energy values above Ee = 1/6.

II. MODEL DESCRIPTION

In this section we study the dynamics of chaotic scattering
in a noisy environment. In order to show the dynamics of this
kind of systems we use the Hénon-Heiles Hamiltonian system,
which is described by

H = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) + x2y − 1
3y3. (1)

This conservative two-dimensional model was developed
by astronomers Michel Hénon and Carl Heiles in 1964 to
describe the dynamical behavior of axisymetrical galaxies [3].
The isopotential curves of the Hénon-Heiles system can be
seen in Fig. 1. There are two different sorts of motions in the
Hénon-Heiles system, which correspond to bounded (E0 ∈
[0,1/6]) and unbounded orbits (for E0 > 1/6). Therefore,
depending on the value of the energy, the orbit is trapped in
the scattering region or escapes from it up to infinity. In fact,
there are three different regimes of motion depending on the
initial value of the energy: E0 ∈ [0,1/6], E0 ∈ (1/6, � 0.22),
and E0 ∈ [�0.22,∞] [19]. Within the first energy range, the
regime of motion is closed and nonhyperbolic, so all the orbits
are trapped, and there is no exit by which any particle may
escape. There is a wide variety of possible motions in this
energy range, from periodic and quasiperiodic orbits to chaotic
trajectories. However, in the range of E0 ∈ (1/6, � 0.22) the
regime is open and nonhyperbolic, the energy is high enough to
allow escapes from the scattering region, and the existence of
KAM tori coexists with chaotic saddles, which typically results
in an algebraic decay in the survival probability of a particle in
the scattering region. We state that KAM islands have a certain
stickiness [20]. On the contrary, if E0 ∈ [0.22,∞], the regime
is open and hyperbolic, all the periodic orbits are unstable, and
therefore there is no KAM island in phase space.

Due to the triangular symmetry of the system, the exits
are separated by an angle of 2π/3 radians. For the sake of
clarity we call exit 1 the upper exit (y → +∞), exit 2 the
left one (y → −∞,x → −∞), and exit 3 the right exit (y →
−∞,x → +∞).

The aim of the present work is concentrated on the
dynamical behavior of the particles in the open nonhyperbolic
regime, E0 ∈ (1/6,0.22), under the effect of a weak source
of additive uncorrelated Gaussian noise. When we introduce
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FIG. 2. Comparison between different kind of orbits with additive
uncorrelated Gaussian noise of weak intensity ξ = 10−5, in black,
and noiseless, in gray. Orbits corresponding to particles shot from the
initial condition (x,y) = (0,0) with E0 = 0.19. The shooting angle
are (a) ϕ = 3π/10; (b) ϕ = π .

a Gaussian noise as previously defined in the Hénon-Heiles
system, the equations of motion are given by [14]

ẍ = −x − 2xy +
√

2ξ dWx,
(2)

ÿ = −y − x2 + y2 +
√

2ξ dWy,

where ξ is the intensity of the Gaussian noise and dWx,y

are the Wiener stochastic processes. The Wiener process Wt

has independent increments with Wt − Ws ∼ N (0,t − s) (for
0 � s < t), where N (μ,σ 2) denotes the normal distribution
with mean μ and variance σ 2. Equivalently, we may state that
Wt − Ws ∼ √

(t − s)N (0,1) with W0 = W (0) = 0. There-
fore, according to Eq. (2),

√
2ξ dW ∼ √

2ξ (t − s)N (0,1),
which denotes a normal distribution with mean μ = 0 and
variance σ 2 = √

2ξ (t − s).
In order to get a qualitative insight about the effect of a very

weak Gaussian noise as previously, for instance, ξ = 10−5,
we represent in Figs. 2(a)–(b) different particle orbits under
the effect of noise, in black, and their noiseless equivalent,
in gray. The effect of noise, even with a very low intensity
(ξ = 10−5), yields a significantly different result. Therefore,
the initial conditions chosen for both panels (a) and (b)
in the noiseless case result in trapped trajectories. However,
the same initial conditions under the effect of a very low
noise come from orbits that leave the scattering region after a
finite time. According to Fig. 2(a), the particle described by the
black trajectory leaves the scattering region through exit 2 a
few time steps since the beginning of the iterations. Likewise,
the particle in black also leaves the scattering region by exit 2,
but after a long transient time, as shown in Fig. 2(b).

Since the noise intensity introduced in Eq. (2) via the
Wiener process is very low ξ ∈ [10−10,10−5], it might be
possible that the numerical noise blurs the real effect of this
physical noise on the particle dynamics. Actually the aforesaid
numerical noise is inherent to the computation of any trajectory
since it arises at each iterative calculation. It is worth noting
that we have studied both the convergence and the stability
of the numerical scheme arranged by a second-order Heun
algorithm [18] for the resolution of the stochastic processes
shown in Eq. (2) as was previously used in Ref. [14]. We have
undertaken a sensitivity analysis in order to choose the most
suitable temporal discretization scheme h for each considered
noise intensity, such that h ensures the convergence and the
stability of the solution with a reasonable computational cost.
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FIG. 3. Escape time of a single particle under the effect of a
Gaussian noise. The initial conditions are (x,y) = (0,0) and ϕ = 0.0
with E0 = 0.19. The noise intensities are (a) 0.0 < ξ � 5 × 10−3 and
(b) 0.0 < ξ � 2 × 10−5.

Moreover, the dynamics of the noisy Hénon-Heiles system
is compared by using two different stochastic integratros: the
second-order Heun algorithm and the Greenside and Helfand
method (see Ref. [21]), which is more robust. According
to the numerical computations, we can state that the results
obtained by both algorithms are consistent and equivalent for
the purposes of this paper.

III. EFFECTS OF A WEAK GAUSSIAN
NOISE ON THE DECAY LAW

There are two important questions that need to be addressed
regarding the effects of noise on the decay law: the average
escape time of a set of initial conditions and the corresponding
time delay statistics P (t).

The escape time of an incident particle is defined as
the time spent in the scattering region before escaping to
infinity. For times above te, the particle travels to infinity
after having crossed one of the three exit boundaries, which
are extremely unstable orbits called Lyapunov orbits (see
Ref. [22]). Lyapunov orbits exist for energies higher than 1/6.
It is quite obvious that the higher the energy, the shorter escape
times, but in a nonhyerbolic regime there are always certain
orbits that remain forever in the scattering region. The escape
time of a single particle with an initial shooting angle ϕ = 0.0
under the effect of a Gaussian noise is shown in Fig. 3(a). We
zoom in this last figure for very small values of the noise
intensity in Fig. 3(b). We can observe that for high noise
intensities (∼10−3), the escape time approaches zero, which
means that all the particles escape. However, for low values
of the noise intensity (∼10−5) the escape times are larger,
meaning that the particles get trapped in the scattering region.

We have numerically studied the influence of the variation
of the intensity of a weak Gaussian noise on the average escape
time of a set of initial conditions. Looking for that purpose,
we shoot 10 000 particles from the point D of the phase space,
D = (x0,y0,ẋ0,ẏ0) = (0,0,v cos(ϕ),v sin(ϕ)), with an energy
E0 = 0.19, initial angle ϕ ∈ [0,2π ] and initial velocity

v =
√

2E0 − x2
0 − y2

0 − 2x2
0y0 + 2

3
y2

0 .

We have simulated the effects of different noise intensities
(200 variations from ξ = 0.0 to ξ = 5.0 × 10−5, with an
incremental step of �ξ = 2.5 × 10−7).

Contrary to what might be initially thought, when the noise
intensity is very weak, up to ∼10−5, the averaged te grows as
long as the noise increases, as can be observed in Fig. 4. This

FIG. 4. (Color online) Average escape time of 10 000 particles
with initial conditions (x0,y0,ẋ0,ẏ0) = (0,0,v cos(ϕ),v sin(ϕ)), with
an energy, E0 = 0.19, and shooting angle, ϕ ∈ [0,2π ]. There are 200
variations of the noise intensity, from ξ = 0.0 to ξ = 5.0 × 10−5,
with an incremental step of �ξ = 2.5 × 10−7. The blue (black) line
is used to help the eye to get a better insight of the trend of the points.

trend is kept until the noise intensity overtakes a threshold
value, 1.5 × 10−5. For intensity values above 1.5 × 10−5, the
external perturbation is large enough to destabilize the system,
destroying the KAM islands very fast and prompting that the
decay law of the particles becomes exponential. Therefore it
is seen that te decreases so quickly, as is well explained in
Ref. [14].

Another fundamental aspect of chaotic scattering is the
time delay statistics P (t). We pick many b values at random
in some interval of the domain. We then examine the resulting
orbit for each value and determine the time t that its orbit
spends in the scattering region. The fraction of orbits with time
delay between t and t + dt is P (t) dt . For open nonhyperbolic
dynamics in the absence of noise with bounding KAM surfaces
in the scattering region, one finds that for large t the time delay
statistics, P (t), decays algebraically as

P (t) ∼ t−α. (3)

Likewise, the particle decay law for noiseless open hyper-
bolic dynamics is

P (t) ∼ e−t/τ , (4)

where τ is a characteristic time for the scatterer.
The works undertaken by Seoane et al. [14,15] demon-

strated that an external source of Gaussian noise relatively
weak, ξ ≈ 1 × 10−3, fully destroys the KAM island, driving
the system to a hyperbolic regime and prompting that the
decay law is exponential. Our current research has shown
that the Hénon-Heiles systems does not have this behavior
if the noise intensity is low enough. For noise intensities
lower than ξ = 1.5 × 10−5, the decay law of the time delay
statistics is algebraic according to Eq. (3) as shown in Fig. 5(a).
Nonetheless, for noises larger than the aforesaid threshold
value, the algebraic decay is not valid anymore, and we have
to resort to exponential decay as exhibits in Fig. 5(b).

It is worth noting that, in the most general sense, we define
scattering as the problem of obtaining the relationship between
an “input” variable taken from outside the scattering region
and an “output” variable, which characterizes the final state
of the system after interacting with the scattering region (see
Ref. [2]). However, the fact of starting the numerical experi-
ments inside the scattering region is a convention frequently
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FIG. 5. (Color online) For energy E0 = 0.19. (a) Weak noise
intensity ξ = 1 × 10−5; the resulting graphic is log10[P (t)] vs log10(t)
since the decay law results algebraic according to Eq. (3). (b) For
higher intensities than ξ = 1 × 10−5, in this particular case a weak
noise of intensity 5 × 10−5, the algebraic decay is not valid anymore,
and we have to resort to an exponential decay, ln[P (t)] ∼ t , as
explained in Ref. [15].

used in the scientific literature (see, for example, Refs. [14–16]
and [19]). The reason behind this is to take advantage of the
well-known topological structure of the escape basins resulting
from the Poincaré surface of section (ẏ,y) for x(0) = 0. There-
fore it is implicitly assumed that the initial conditions chosen
for the computations may correspond to trajectories that come
from outside the scattering region, and, after bouncing back
and forth for a certain time in the scattering region, they pass
through x = 0 with a certain velocity (ẋ,ẏ). This is the precise
instant when the simulations start, and the initial conditions
are set as (x = 0,y,ẋ,ẏ). This aspect is quite relevant since the
scaling exponent of the time delay functions change by one
depending on whether the initial conditions are taken inside
rather than outside the scattering region (see Ref. [23]).

Focusing our attention within the algebraic range, we can
study another interesting feature from the behavior of the
decay law while the noise intensity increases: the evolution
of the parameter α from Eq. (3). Parameter α is directly
proportional to the average speed by which the particles leave
the scattering region because α is the exponent of t in Eq. (3).
The higher the α, the faster decays P (t), and, therefore, the
quicker the particles exit from the scattering region. From
ξ = 0 to a certain value of the noise intensity, ∼10−7, α

increases while the noise intensity also grows, as can be seen in
Fig. 6. However, from values above ∼10−7 to a threshold value,
∼1 × 10−5, the parameter α abruptly decreases, meaning that
the particles escape from the scatterer much slower than before.
Once the noise exceeds this limit, α starts to increase rapidly
according to an exponential decay law, as has been clearly
explained in Refs. [15] and [16]. It is really worth noting
that 1.5 × 10−5 is the same threshold value where the curve
te = te(ξ ) exhibits a global maximum (Fig. 4). In the same
way, it is the one where the curve α = α(ξ ) shows a global
minimum (Fig. 6), and the same value where the algebraic
decay law of P (t) is not valid anymore. A further explanation
of the evolution of α with the noise intensity is described in
Sec. IV and Fig. 9. It is worth noting that the relation between
the scaling factor α and the noise intensity is dependent on the
range of noise intensities. The parameter α follows a linear
trend with respect to the noise intensity for higher noises than
the ones considered in the present work, from ξ ∼ 1 × 10−4

on, as was shown in Ref. [14].

FIG. 6. (Color online) The value of the parameter α versus a
set of noise intensities, ξ = {0,1 × 10−10,5 × 10−10,1 × 10−9,5 ×
10−9, . . . ,1 × 10−5,5 × 10−5} for energy E0 = 0.19 is shown. There
is a local minimum around ∼1 × 10−5 which fits to the local
maximum as we saw in Fig. 4. Therefore, there is a point, ∼1 × 10−5,
where the noise intensity is just the one that maximizes te. The reason
behind the maximum about ∼1 × 10−7 is explained at Sec. IV. The
blue (black) line is used to help the eye to get a better insight of
the trend of the points. The relation between the scaling factor α

and the noise intensity is dependent on the range of noise intensities.
Actually α follows a linear evolution with respect to the noise intensity
for higher noises than the ones considered in the present work, from
ξ ∼ 1 × 10−4 on, as was demonstrated in Ref. [14].

IV. EFFECTS OF A WEAK GAUSSIAN NOISE
ON THE BASIN TOPOLOGY

One topic of interest with regard to the effect of noise on
open Hamiltonian systems which has been broadly studied
[24,25] is the evolution of the exit basins topology of the
Hénon-Heiles system while the noise is increased within a
range of relatively weak intensities, ξ ∼ 1 × 10−3. However,
we have especially focused our attention on a range of weaker
noises, where the system exhibits an algebraic decay law, as
seen in Sec. III. The analyzed range covers from the noiseless
case to the value where the KAM islands are fully destroyed
and the fractal boundaries are significantly faded. We have
then cross-checked that this value is the same as the one found
in Sec. III.

We carry out different simulations in order to represent
the Poincaré surface of section (ẏ,y) for t = 0 and x(0) = 0,
for each noise intensity considered. We have run different
simulations to plot the exit basins of the Hénon-Heiles system
for a wide range of noises, as shown in Fig. 7.

According to Fig. 7(a)–(c), for noise intensities lower
than ξ = 1.5 × 10−5, the boundaries of each basin conserve
the fractal-like structure. Nonetheless we can see how the
KAM islands start to disappear for ξ = 1 × 10−7. The gradual
destruction of the KAM islands is the responsible for the
maximum shown in Fig. 6. As was pointed out in Refs. [26]
and [27], the topological structures are conserved for weak
perturbations. For noise intensity values above ξ = 1.5 ×
10−5, the once rich fractal structure completely disappears
and becomes shaded off, as shown in Fig. 7(d). When basin
boundaries are fully blurred, we cannot distinguish at all which
initial condition will escape by a certain exit, because they are
mixed up in the phase space. Therefore, we can state that the
noise intensity significantly increases the uncertainty of the
system in these conditions.
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FIG. 7. (Color online) Set of figures where the exit basins of the
Hénon-Heiles system for different noise intensities and E0 = 0.19
are plotted. The sets of brown (gray), blue (dark gray), and yellow
(light gray) dots denote initial conditions resulting in trajectories that
escape through exits 1, 2, and 3 (see Fig. 1), respectively, and the
black regions denote the KAM islands. (a) Weak noise, ξ = 1 ×
10−10; (b) ξ = 1 × 10−7; (c) ξ = 1.5 × 10−5 is the threshold value
according to Figs. 4 and 6 for which the fractal-like structure is hardly
conserved; (d) ξ = 4 × 10−5. For (a–b), each basin boundary is fractal
and not blurred. Indeed, they conserve their rich structure (although
we can see as the KAM islands start to disappear for ξ = 1 × 10−7).
The gradual destruction of the KAM islands is responsible for the
maximum shown in Fig. 6. As was pointed out in Refs. [26] and
[27], the topological structures are conserved for weak perturbations.
Nonetheless, for noise intensities higher than ξ = 1.5 × 10−5, the
once rich fractal structure completely disappears and becomes shaded
off, as shown in (d).

Figure 8 represents the noise intensity where the exit
basin boundaries are just blurred versus the energy of the
Hénon-Heiles system. If we proceed with a nonlinear fitting
of the curve, we can see that it matches with a second-order
polynomial equation, such that: ξ ∗ = a0 + a1E0 + a2E

2
0 (R =

0.999405), with a0 = 6.67853 × 10−4, a1 = −8.13772 ×
10−3, and a2 = 2.47492 × 10−2. The reason for this is due
to the fact that the threshold value of the noise intensity is
correlated to the typical scale lc of the fine structure of the
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FIG. 8. This figure represents the noise intensity where the exit
basin boundaries are just blurred vs the initial energy of the Hénon-
Heiles system. The resulting curve matches with a second-order
polynomial equation: ξ ∗ = a0 + a1E0 + a2E

2
0 (R = 0.999405), with

a0 = 6.67853 × 10−4, a1 = −8.13772 × 10−3, and a2 = 2.47492 ×
10−2.

FIG. 9. (Color online) The group of panels (a–c) represents the
evolution of the KAM islands in the phase space (ẏ,y) as the
noise increases for E0 = 0.19. Gray regions denote initial conditions
resulting in trajectories that escape through any of the three exits.
Black dots are the particles remaining in the scattering region after
times higher than tmax, as are the KAM islands. The aforesaid panels
are related to their correspondent noise intensities by Fig. 6 in order to
link them with the scaling factor α. (a) Weak noise, ξ = 1.0 × 10−10,
KAM tori still keep their topological structures. (b) ξ = 8.0 × 10−8,
the KAM islands start to be blurred. While the noise increase up
to the local maximum of Fig. 6, the number of trapped particles
decays abruptly. From this maximum on, the number of remaining
particles, black dots, starts to raise again, spreading throughout the
whole phase space. (c) ξ = 1.5 × 10−5 is the threshold value where
there is a maximum number of trapped particles, uniformly spread
along the whole phase space. For noises higher than ξ = 1.5 × 10−5,
the number of trapped particles decays.

KAM tori [15] in a quadratic manner and, as we see in Sec. V,
lc is directly related to the value of te.

An external weak noise can modify the stability of the KAM
islands such that it breaks their topological structures. We have
studied how an external source of weak noise can modify the
stability of the KAM islands and its relation to the threshold
value obtained in the previous sections (ξ = 1.5 × 10−5).

We can see the evolution of the KAM island topology with
the noise increasing in the set of figures shown in Fig. 9.
When the noise is really weak, ξ ∈ [1 × 10−10,8 × 10−8], the
morphology of the KAM sets is similar to the noiseless case.
However, once the noise intensity exceeds the upper limit of
the aforementioned range, ∼8 × 10−8, the KAM islands start
to be blurred, and the number of particles which remains in the
scattering region after tmax decreases abruptly. Nonetheless, if
the noise intensity keeps growing, when it reaches a certain
value close to ξ ∼ 5 × 10−7, the number of trapped particles
starts to rise and to be spread along the whole phase space. This
behavior is conserved until ξ ∼ 1.5 × 10−5, where the number
of trapped particles is maximum and they are fully spread
throughout the phase space. Taking into consideration that at
ξ ∼ 5 × 10−7 the curve α = α(ξ ) shows a global maximum
and, for noise intensity values above that limit, α = α(ξ )
decays, we can state that the stickiness formerly given by the
KAM sets now loses intensity but gains extension. Therefore,
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the more particles remain in the scattering region, the higher
is te because it is likely that these bounded particles drive the
average te up to higher values. This trend is kept until α = α(ξ )
reaches a global minimum at ξ ∼ 1.5 × 10−5.

V. QUALITATIVE ANALYSIS OF THE EXTERNAL
GAUSSIAN NOISE EFFECTS

We have developed a qualitative analysis to explain the
reason behind the increase of the average escape time te when
the noise also increases for a certain range of intensities until
the threshold value (see Fig. 4).

We conjecture that every single point of any trajectory of a
noisy Hénon-Heiles system can be matched with a single point
of one of the different noiseless orbits of the Hénon-Heiles
system by a one-to-one function. Because of the existence of
noise, the mechanical energy is not conserved and the points
of a noisy trajectory belong to different noiseless orbits with
different energy values. Therefore, we can consider that any
solution of a noisy system travels throughout various noiseless
trajectories of the Hénon-Heiles system.

For the sake of clarity, we call hereinafter KAM or trapped
trajectories such invariant sets of a noiseless system that,
starting from a point of a KAM island, are trapped in the
scattering region forever. In the same way, we call a KAM
region of a noiseless system any subdomain of the phase space
that contains trapped orbits in a certain time t .

Following our conjecture we can explain the fact that
regardless the intensity of the external perturbation, there
are no bounded trajectories for t → ∞ if ξ > 0 [29]. The
trajectory of any initial condition that in the noiseless case
belongs to a KAM island in the absence of noise would jump
randomly for a certain period of time among trapped noiseless
trajectories. However, the noisy trajectory cannot jump among
the KAM orbits for t → ∞ because there is always a nonzero
probability of jumping from the noiseless KAM region to
outside, diverging to infinity.

Now we focus our attention in the range of noise intensities
where the average escape time te increases insofar the external
weak noise also increases until getting the maximum shows in
Fig. 4. According to the aforesaid conjecture, there are initial
conditions that in the noiseless case are outside a KAM island,
but, due to the effect of noise, they can jump into a region
where there are noiseless trapped trajectories, and then they
can randomly walk through them during a certain period of
time. In that case, it is likely that the particle has a higher
escape time te than its noiseless equivalent because its jumps
in that region normally represent a delay. Since there are many
more particles outside the KAM islands than inside them, this
effect exceeds the hypothetical reduction of te due to the effect
of jumps from inside to outside. Likewise, as the noise intensity
slightly increases, there are more particles outside the KAM
islands that are allowed to jump into them. That is why the
average escape time te grows when the external weak noise
increases.

When the noise is higher than a threshold value (see Fig. 4),
the jump intensity is very high and most particles cannot reach
a KAM region because the distance traveled due to the noise
is very long. For the same reason, the initial conditions of the
noiseless trapped orbits jump outside faster than before. The

optimum noise intensity should be the one that maximizes
the escape time te. That is, high enough to promote that the
maximum number of particles coming from outside can reach
KAM trajectories, but at the same time, low enough to avoid
quick and generalized jumps outside the KAM island. The
threshold value of the noise intensity is directly related to the
typical scale lc of the structure of the KAM tori [15].

According to Fig. 6, any noise increase from (ξ = 0) to
(ξ ∼ 5 × 10−7) involves a faster escape of the particles from
the scattering region. We consider that the jumps of the noisy
orbits throughout the KAM region are very short and cannot
compensate for the effect in the average escape time te of
the particles that leave the KAM region at the first iterations
due to the noise. The jumps are very short because trapped
trajectories diverge faster in each iteration than the distance
covered by the jump between these orbits.

After this qualitative conjecture, we now propose a theo-
retical framework to explain the reason why the increase of
the noise intensity up to a certain threshold value yields higher
average escape times.

We consider that the external Gaussian noise affects only
the kinetic energy of the particles, but it does not influence at
all the potential energy of the Hénon-Heiles system because
its intensity is very weak.

Therefore, the equations of motion of the Hénon-Heiles
system can be written as

ẍ = ∂V

∂x
+ ξx(t), ÿ = ∂V

∂y
+ ξy(t). (5)

Getting the total derivate of the mechanical energy, E =
T + V , taking into consideration that V = V (x,y), T =
T (ẋ,ẏ) and using Eq. (5),

∂V

∂x
= ẍ − ξx(t) and

∂V

∂y
= ÿ −

ξy(t), then we obtain

dE

dt
= ẋ[2ẍ − ξx(t)] + ẏ[2ÿ − ξy(t)]

= 2
dT

dt
− [ẋξx(t) + ẏξy(t)],

dV

dt
= dT

dt
− [ẋξx(t) + ẏξy(t)]. (6)

Integrating between the initial time t = 0 and the escape
time t = te:

Ve − V0 = Te − T0 −
∫ te

0
[ẋξx(t) + ẏξy(t)] dt. (7)

We initially shot the particle from (x,y) = (0,0), then V0 =
0 and T0 = E0. Moreover, because of we stated that external
Gaussian noise does not affect the potential energy of the
Hénon-Heiles system and that outside the scattering region
the potential is negligible (see Sec. I), Ve = 0. Otherwise,
the initial energy E0 would not be conserved from t = 0 to
the escape time t = te in the noiseless Hénon-Heiles after
substituting ξx(t) and ξy(t) by zero in Eq. (7).

Therefore,

Te − T0 =
∫ te

0
[ẋξx(t) + ẏξy(t)] dt. (8)

The above integral has dimensions of energy, so we can
say that this is a random energetic contribution of the external
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FIG. 10. This set of figures shows the difference between the
kinetic energy of a particle when its trajectory leaves forever the
scattering region and its initial kinetic energy Te − T0. All the particles
are launched with an initial energy of E0 = 0.19, for three noise
intensities: (a) ξ = 1 × 10−10; (b) ξ = 1.5 × 10−5; (c) ξ = 5 × 10−4.
The data dispersion increases as the noise intensity grows. When
the noise intensity increases, the variance σ 2 of Te − T0 increases
accordingly.

noise to the total mechanical energy. Furthermore, if there is no
external noise, then Te = T0. The reason why Te differs from T0

is the velocity fluctuation due to the existence of noise, ξx(t)
and ξy(t). Therefore, we can state that Te − T0 ∼ N (0,σ 2),
where σ 2 is the variance of the normal distribution Te − T0

due to the effect of noise. The higher the noise intensity, the
more dispersed are the data of the distribution Te − T0 (see
Fig. 10). Insofar the noise intensity increases, the variance σ 2

of Te − T0 increases accordingly.
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FIG. 11. This set of figures represents the x component of the
velocity versus time t of a particle shot from (x,y) with initial
energy E0 = 0.19 and initial angle ϕ = π/5. (a) ξ = 1 × 10−10;
(b) ξ = 1.5 × 10−5; (c) ξ = 5 × 10−4. For low noise intensities
(cases a–b), the particle velocity is not very influenced by the external
noise. When noise is higher than the threshold value ξ = 1.5 × 10−5

(case c), the velocity of the particle is really affected by the external
Gaussian noise.

Thus according to Eq. (8), the particle escapes from the
scattering region when the value of the integral

∫ te
0 ẋξx(t) +

ẏξy(t) dt gets the particular value yielded by the normal distri-
bution Te − T0 at the time escape te. When the noise intensity
is very weak (for E0 = 0.19, below 1.5 × 10−5), the influence
of the noise over the variation of the velocity is lower than the
noise intensity itself [Fig. 11 (a)–(b)]. Therefore the value of
the integral

∫ te
0 ẋξx(t) dt merely depends on the noise ξx(t).

If we shoot multiple particles with the same initial conditions
but different noise intensities, the variance of the different
values of the integrals

∫ te
0 ẋξx(t) dt and the noise intensity shall

increase proportionally [Fig. 12 (a)–(b)]. The higher the noise
intensity, the more probable is to get a higher value of |Te − T0|
and, therefore, the higher the integration time, te, shall be
needed by the integral to get the specific value of Te − T0. For
that reason, the average escape time of a set of particles in
the scattering region, te, increases insofar the external weak
noise also increases until getting the maximum value shown in
Fig. 4. However, when noise is higher than the threshold value
ξ = 1.5 × 10−5, the velocity of the particle is really affected
by the external Gaussian noise [Fig. 11(c)] and the value of
the integral

∫ te
0 ẋξx(t) dt depends on two factors: the variance

of ẋ and the variance of ξx(t). Then, if we shoot multiple
particles with the same initial conditions but different noise
intensities, the variance of the different values of the integrals∫ te

0 ẋξx(t) dt shall increase much higher than the variance of
the noise intensity [Fig. 12(c)]. Therefore the higher the noise
intensity ξ (t), the lower the integration time, te is requested by
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FIG. 12. This set of figures represents the function φx(t) = ẋξx(t)
vs time t of a particle shot from (x,y) with initial energy E0 = 0.19
and initial angle ϕ = π/5. (a) ξ = 1 × 10−10; (b) ξ = 1.5 × 10−5;
(c) ξ = 5 × 10−4. For low noise intensities, (cases a–b), the particle
velocity is not very influenced by the external noise and then the value
of the integral φx(t) merely depends on the noise ξx(t). Therefore,
if we shoot multiple particles with the same initial conditions but
different noise intensities, the variance of the values of the integrals∫ te

0 ẋξx(t) dt and the noise intensity shall increase proportionally.
However, when noise is higher than the threshold value ξ = 1.5 ×
10−5 (case c), the velocity of the particle is really affected by the
external Gaussian noise and the value of the integral

∫ te

0 ẋξx(t) dt

depends on two factors, the variance of ẋ and the variance of ξx(t).
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the integral to get the specific value of Te − T0. For that reason,
the average escape time of a set of particles in the scattering
region, te, quickly decreases insofar the external weak noise
also increases after reaching the maximum shown in Fig. 4.

VI. CONCLUSIONS AND DISCUSSION

There have been relevant steps to understand the effects of
an external source of weak Gaussian noise on the behavior
of the Hénon-Heiles system in the last few years. Indeed,
the presence of noise is characteristic in several physical
situations such as in the transport and trapping of chemically or
biologically active particles in large-scale flows (see Ref. [28]).
The main goal of the present work has been to demonstrate
that a source of additive uncorrelated Gaussian noise with
an even lower intensity than the former framework studied
up to now [14–16] may provide a constructive effect on the
system.

We have concluded that when the noise intensity is very
weak, from ξ = 0 to ξ = 1.5 × 10−5, the average escape time
te increases as the noise increases. Within this noise range, each
basin boundary is fractal and not blurred as shown in Fig. 7.
For noise intensity values above ξ = 1.5 × 10−5, the fractal
structure completely disappears and becomes shaded off.
However, when the noise intensity increases from 1 × 10−10

to 1 × 10−7 the morphology of the KAM sets is destroyed and
the number of particles which remains in the scattering region

after tmax decreases. Somewhere between ξ ∼ 1 × 10−7 and
1 × 10−6, the number of trapped particles starts to rise and to
be spread along the whole phase space. Then, during a certain
range of noises, the stickiness formerly given by the KAM
sets now loses intensity but gains extension. It has been also
corroborated in Figs. 6 and 9. We have also found that the decay
law for the Hénon-Heiles system is algebraic when the noise
intensity is lower than the threshold value ξ = 1.5 × 10−5.
Once the noise intensity exceeds this limit, we have to resort
to an exponential decay.

Last, we conjecture that any solution of the noisy Hénon-
Heiles system jumps throughout different trajectories from the
noiseless system such that all its points correspond to points
from noiseless systems in a one-to-one correspondence. From
this framework, we can qualitatively explain a very rich variety
of phenomena that takes place in the Hénon-Heiles systems
in the presence of weak noise. Moreover, considering that
the external Gaussian noise affects only the kinetic energy,
we suggest a theoretical reasoning to explain why a very low
noise intensity stabilizes the system, which seems to be a new
constructive effect of noise.
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