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The control of chaotic dynamics in a nonlinear mass-spring model with nonsmooth stiffness
is analyzed here. This is carried out by applying the phase control technique, which uses a
periodic perturbation of a suitable phase φ. For this purpose, we take as prototype model a
system consisting of a double-well potential with an additional spring component, which acts
into the system only for large enough displacements. The crucial role of the phase is evidenced by
using numerical simulations and also by using analytical methods, such as the Melnikov analysis.
We expect that our results might be fruitful with implications in some mechanical problems such
as suspension of vehicles, among others, where similar models are extensively used.
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1. Introduction

There is a rich literature on chaotic systems either
modeled by a set of nonlinear ordinary differential
equations or with smooth functions of the displace-
ment or the velocity [Sprott, 2003]. Nonsmooth sys-
tems are very common in Engineering [Radons &
Neugebauer, 2004; Litak et al., 2007; Pavlovskaia &
Wiercigroch, 2007] in which they have relevant
implications. In the present paper we implement a
control scheme to control the dynamics of the two
stage mass-spring oscillator as shown in Fig. 1.

In this system the two considered springs are
connected in a parallel way. One of them has nonlin-
ear characteristics producing the double-well poten-
tial while the other acts according to Hooke’s law,
F = −kx, as shown in Fig. 1. Such connections
of springs are often considered in practical situa-
tions as in the suspension of vehicles [Verros et al.,
2000; Von Wagner, 2004], among others. The effect
of the linear spring on the two exterior nonlinear
springs has been thoroughly analyzed by Litak et al.
[2012]. In this paper, we focus our research on a
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Fig. 1. Schematic plot of the two stage spring-mass model.
The effective exterior springs in the figure are assumed to
have the nonlinear characteristics, while the interior which
introduces the nonsmoothness, has linear characteristics. h
denotes the tip position of the spring free length with respect
to the equilibrium point x = 0.

suitable control implementation technique in order
to obtain a desirable dynamical behavior.

Since the pioneering work on controlling chaos
due to Ott, Grebogi and Yorke, [Ott et al., 1990],
different control schemes have been proposed that
allow to obtain a desired response for a dynami-
cal system by applying some small but accurately
chosen perturbations. In this context, some tech-
niques that allow avoiding escapes in open dynam-
ical systems presenting transient chaos have been
proposed, with applications to many different sit-
uations in physics and engineering (see [Aguirre
et al., 2004] and references therein). However, most
of these methods are feedback methods, i.e. they
require the application of a fast and adequate state-
dependent perturbation to the system, so that in
some experimental situations they might become
unpractical.

In those situations, it has been shown that
sometimes applying a small and state-independent
harmonic perturbation can lead to analogous results
[Lima & Pettini, 1985; Meucci et al., 1994]. The
methods based on this idea are traditionally known
as nonfeedback methods [Qu et al., 1995]. Among
them the phase control scheme [Qu et al., 1995;
Zambrano et al., 2006; Litak et al., 2007] has been
found to be useful to control different behaviors
in periodically driven dynamical systems, includ-
ing not only control of a chaotic trajectory, but
also other paradigmatic dynamical behaviors such
as crisis-induced intermittency, control of escapes
in open dynamical systems [Seoane et al., 2008],
control of dynamics in excitable systems [Zambrano
et al., 2008], to cite just a few. This method focuses
on the role of the phase difference of a periodic per-
turbation with respect to the main forcing, which is

adequately “tuned” to search for a desired response
from the system. Another control method [Kapita-
niak & Brindley, 1998], though based on a feedback
procedure, was used to preserve transient chaos. In
this last paper, the authors have focused on the
transient chaos and its lifetime use of Lyapunov
exponents.

Our aim in this paper is to show that the phase
control method can be applied to nonsmooth sys-
tems, which are used to model many systems in
engineering.

This paper is organized as follows. Section 2
presents a description of our model and the phase
control scheme implementation. In Sec. 3 we solve
the corresponding differential equations and discuss
the results explaining the role of the phase in the
control of dynamics. On the other hand, the estima-
tion of the integral can be done numerically. This
concept, used in previous works [Litak et al., 2008],
is found in Sec. 4. After presenting the numerical
results, confirming the estimated critical parame-
ters, the paper ends with the conclusions and a
discussion presented in Sec. 5.

2. Model Description

The model we take as prototype, according to
Fig. 1, is given by the nondimensional equation of
motion [Litak et al., 2012]:

ẍ + αẋ − x + x3 + k(x − h)Θ(x − h)

= F sin(ωt), (1)

where α is the damping parameter and k is a con-
stant associated to the linear spring of a certain
length and a nonsymmetrical contact loss. Θ(x) is
the Heaviside step function, F is the amplitude of
a harmonic excitation with frequency ω and h is
the constant corresponding to the position of the
spring free length tip with respect to the equilib-
rium point x = 0 (see Fig. 1). We observe that if
k = 0 we have the well-known Duffing oscillator
[Duffing, 1918; Aguirre & Sanjuán, 2002; Baltanás
et al., 2001].

The restoring force F (x) is defined by the
potential V (x) (Fig. 2) as follows

F (x) = −∂V

∂x
= x − x3 − k(x − h)Θ(x − h), (2)

V (x) = −x2

2
+

x4

4
+

k(x − h)2Θ(x − h)
2

, (3)
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Fig. 2. The solid curve represents the double-well sym-

metric potential V1(x) = −x2

2 + x4

4 and the potential

obtained when the additional spring V (x) = −x2

2 + x4

4 +

k
(x−x0−h′)2Θ(x−x0−h′)

2 , for k = 1 is considered. The param-

eters x0 + h′ = h, x0 = 1 comprise the position of the right-
hand side of the stable equilibrium point, while h′ [(a) h′ = 0,
(b) −0.1 and (c) −0.3] denotes the tip position of the spring
free length.

where we have taken x0 + h′ = h with x0 = 1 and
h′ = −0.1.

In Fig. 2, we clearly observe the asymmetry
induced by the additional linear spring with clear-
ance (curves (b) and (c)) with respect to the smooth
restoring force case (curve (a)). Notice that the
solid red curve represents the symmetric double-
well potential.

In order to understand better the behavior of
our system, we show numerical plots of both, tra-
jectories in phase space and Poincaré sections. For
this purpose, we have taken the following values of
the parameters: α = 0.15, ω = 1 and F = 0.258.
Figures 3(a) and 3(a′) represent both the typical
chaotic trajectory and the typical Poincaré section
of the Duffing oscillator for the smooth case. Fur-
thermore, we can see in Fig. 4 the bifurcation dia-
gram of the x variable as a function of the forcing
amplitude F , and we can see that F = 0.258 is well
into the chaotic region.

(a)

Y

X

(a′)

Y

X

(b)

Y

X

(b′)

Y

X

Fig. 3. Numerical plots of both, (a) and (b) phase portraits (x, y = ẋ) and (a′) and (b′) corresponding Poincaré sections,
for the Duffing oscillator case and for the nonsmooth case with parameter values α = 0.15, F = 0.258, k = 0.2 and h = 0.3,
respectively [Litak et al., 2012]. We observe the effect of the nonsmooth term on the right-hand side of the pictures: in the
presence of nonsmoothness, both the trajectories and the attractor look similar to the unperturbed ones, but their right-hand
side is slightly compressed.
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Fig. 4. Numerical bifurcation diagram (y = ẋ versus F ) of
the Duffing oscillator in the absence of the linear spring with
clearance (α = 0.15, k = 0.2, h = 0.3). We observe periodic
regions and chaotic regions depending on the value of F . The
onset of chaos takes place at F � 0.257.

Figures 3(b) and 3(b′) show the same kind of
plots for the nonsmooth case for k = 0.2 and h =
0.3. We observe, on the right side (region in which
x > 0) of Figs. 3(a′) and 3(b′), the effect of the
nonsmooth term. Provided that the profile of the
right well of the Duffing oscillator becomes steeper
due to the nonsmooth term, we see how both the
right side of the trajectories and the attractor are
slightly compressed compared to the unperturbed
case (Fig. 2).

In order to control the dynamics of this sys-
tem we implement the phase control technique
by adding an external perturbation in the form
ε sin(rωt + φ), where ε � F is the amplitude of
the control, r a positive constant, and φ the phase
difference between the main driving and the control
term. From now on, we call it simply phase and it
will be the main parameter of our control method.
Once we introduce our control scheme, the equation
of motion of our system can be written as:

ẍ + αẋ − x + x3 + k(x − h)Θ(x − h)

+ ε sin(rωt + φ) = F sin(ωt). (4)

Since we are working in the context of a
mechanical device, the control term ε sin(rωt +
φ) is quite natural and very easy to implement
experimentally.

3. Melnikov Analysis

Here we provide, by using Melnikov analysis, the-
oretical arguments in order to show the different

parameter regions in which the system is in a
chaotic regime or in a periodic regime and how the
control scheme acts on the dynamics of the system.
The regions of transient and permanent chaos can
be predicted by using the perturbative Melnikov
analysis [Moon & Li, 1985; Baltanás et al., 2002;
Almendral et al., 2004].

According to the Melnikov analysis we assume
that the force and the damping parameter can be
treated as perturbations, so that we can rewrite:

F sin(ωt) + δF sin(rωt + φ) → εF̃ (sin(ωt)

− δ sin(rωt + φ)), α → εα̃. (5)

Consequently, the equations of the system can be
written as:

ẋ = v, (6)

v̇ = x − x3 − k(x − h)Θ(x − h)

= ε(−α̃ẋ + F̃ (sin(ωt) − δ sin(rωt + φ))). (7)

Thus, the unperturbed Hamiltonian, i.e. in the
absence of both forcing and damping, reads:

H0 =
v2

2
− x2

2
+

x4

4
+ k

(x − h)2Θ(x − h)
2

. (8)

The homoclinic orbits needed for the Melnikov
method are obtained by integrating out the follow-
ing expression:

dt

dx
=

1
v

=
1√

2V (x)
. (9)

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

v

x

0

0.5

1

1.5

2

Fig. 5. Homoclinic orbits of the corresponding unperturbed
Hamiltonian in the phase plane (x, v = ẋ).
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x=0

d

w

wu

s

Fig. 6. A schematic picture of unperturbed (plotted with a
dotted line) and perturbed homoclinic orbits (stable Ws and
unstable Wu manifolds plotted with full lines). The distance
between Ws and Wu is d. And x = 0 indicates the location
of the saddle point.

Thus, we obtain:

t − t0 =
1√

x2 − x4

2
− k(x − h)2Θ(x − h)

. (10)

In the case of the typical double-well potential
and for the right-hand side half-plane x < 0, we can
easily integrate the above expression to the analytic
formula:

x∗(t) = ±
√

2
cosh(t − t0)

,

v∗(t) = ±
√

2 tanh(t − t0)
cosh(t − t0)

.

(11)

The unperturbed Hamiltonian and the homo-
clinic orbits are presented in Fig. 6.

After adding perturbations, the homoclinic
orbits split to the stable and unstable manifolds,
denoted by Ws and Wu, respectively. The existence
of cross-sections between Ws and Wu manifolds sig-
nals the Smale horseshoe scenario of transition to
chaos (see Fig. 3). Consequently, the distance d
between the invariant manifolds can be estimated
in terms of the Melnikov function since d ∼ M(t0):

M(t0) =
∫ ∞

−∞
h0(x∗, v∗) ∧ h1(x∗, v∗)dt, (12)

where ∧ defines the wedge product (dx ∧ dv =
−dx∧ dv, dx∧ dx = dv ∧ dv = 0). The correspond-
ing differential forms h0 means the gradient of the
unperturbed Hamiltonian

h0 = (−x∗ + (x∗)3 + (x − h)Θ(x∗ − h))dx

+ v∗dv, (13)

while h1 is a perturbed Hamiltonian

h1 = (F̃ (sin(ωt) − δ sin(rωt + φ)) − α̃v∗)dx.

(14)

It is important that all differential forms in the
above expressions are defined on the homoclinic
orbits (x, v) = (x∗, v∗). Thus, the Melnikov func-
tion M(t0) reads:

M(t0) =
∫ ∞

−∞
v∗(F̃ (sin(ωt)−δ sin(rωt + φ))α̃v∗)dt.

(15)

A condition for a global homoclinic transition,
corresponding to a horseshoe type, can be written
as: ∨

t0

M(t0) = 0 and
∂M(t0)

∂t0
�= 0. (16)

The above condition is valid [Guckenheimer &
Holmes, 1983] for smooth potentials belonging to
the C2 class (V ∈ C2).

On the other hand, for the nonsmooth case,
for k �= 0 (Figs. 2 and 5), the analytic treatment
is difficult, but the corresponding Melnikov crite-
rion [Eqs. (11)–(15)] could be found numerically
[Litak et al., 2012]. Note that in this situation the
potential is not smooth enough as it belongs to the
C1 class functions. Thus, according to Kunze and
Küpper [2001] there would be corrections related
to the singular points associated to the nonsmooth-
ness x = h. However, the above corrections are more
important for a precise estimation of the homoclinic
bifurcation. In our case, we solve the integral numer-
ically, and our approximation will include Kunze
and Küpper corrections [2001] within the integra-
tion error. It should be noted that we provide cor-
rections, in some sense, by averaging the integral
kernel for different limits x → h.

Finally, from Eqs. (14) and (15), the critical
region of the ratio η = F̃ /α̃ = F/α as a function of
ω can be estimated as

η(ω) = min
∣∣∣∣ I1

I2(ω)

∣∣∣∣, (17)

where the integrals I1 and I2 have the following
forms

I1 =
∫ ∞

−∞
(v∗(t))2dt and

I2 =
∫ ∞

−∞
v∗(t)(sin(ω(t + t0))

− δ sin(rω(t + t0) + φ))dt.

(18)

The condition for the second potential well on the
left-hand side in Fig. 2 with a smooth heteroclinic
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Fig. 7. The numerically estimated critical surfaces η = F/α versus ω that separate the regular (below the curves) and chaotic
(above the curves) parameter regions for k = 1 and h = 1.0. The control phase φ was chosen as φ = 1/4, 1/3, 1/2, 1, 2, 3 for
(a), (b), . . . , and (f), respectively.
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orbit (Fig. 5) can be expressed analytically as for
the case k = 0. Introducing v∗(t) into Eq. (17)
[Holmes, 1979; Guckenheimer & Holmes, 1983] we
integrate:

I1 =
4
3
,

I2 =
√

2πω

cosh
(πω

2

) sin(ωt0)

− δ

√
2πrω

cosh
(πrω

2

) sin(rωt0 + φ).

(19)

For r = 1 the above formula can be easily simpli-
fied by choosing the free integration parameter t0
in such a way that max|sin(ωt0 + α)| = 1 (where
sin α = −δ sin φ/

√
1 + δ2 − 2δ cos φ).

Thus I2 can be written as

(I2)max =
√

2πω

cosh
(πω

2

)√
1 + δ2 − 2δ cos φ. (20)

Finally, for the condition for the left side poten-
tial well (Fig. 2), η(ω) [Eq. (16)] could be expressed
analytically as

η(ω) =
2
√

2

3πω
√

1 + δ2 − 2δ cos φ
cosh

(πω

2

)
. (21)

The condition for the right-hand side potential
well (nonsmooth case) in Fig. 2 (for k = 0.450,
h = 1) has been computed numerically. By chang-
ing the h we could see the effect of an additional
spring on the dynamics (Fig. 1). The results of the
Melnikov analysis are presented in Fig. 7.

4. Numerical Simulations

We have carried out some numerical simulations
showing a very good agreement with the analytical
results shown previously. We have simulated the
mathematical model by using a fourth order Runge–
Kutta integration scheme [Burden & Faires, 1997].
Trajectories in phase space in both cases without
control and with control are presented in Fig. 8.
Figures 8(a) and 8(a′) show a chaotic trajectory for
h = 1 and k = 0.2. If we increase the value of k, say
k = 0.7, the influence of the linear spring becomes
relevant since the chaotic motion disappears and it
becomes periodic falling into an attractor, as shown

in Fig. 8(b′). It seems then that there is a critical
value of k for which a periodic attractor close to the
right well of the system appears, making the orbits
become periodic.

Figures 9(a) and 9(b) provide a deeper insight
on this phenomenon. In Fig. 9(a), a bifurcation
diagram of the system of x versus F with nons-
moothness parameters k = 0.45 and h = 1, we
can see that for small forcing the system displays
periodic behavior, since the linear spring induces
a regular behavior into the system. But as F is
increased, chaos arises in what seems to be an
inverse saddle-node bifurcation. Saddle-node bifur-
cations are widespread in dynamical systems, for
example it is the bifurcation that gives rise to the
period-three window in the logistic map [Robinson,
2004]. In Fig. 9(b), we show the bifurcation diagram
of the variable x versus k for h = 1 and F = 0.258.
We see that the system is chaotic until the value
of k is too large and a periodic attractor arises in
the right well, so the pre-existing chaotic attrac-
tor disappears through a saddle-node bifurcation.
An energetic interpretation can be provided for this
phenomenon: when adding the nonsmooth stiffness,
the system does not change drastically its behavior
until k is sufficiently large, when an attractor arises
that stabilizes the orbit. After this, the system can
be driven again to the chaotic state by increasing
the forcing amplitude F .

The bifurcation diagrams of x versus φ are
shown in Figs. 9(c) and 9(d) for k = 0.45 , k =
1, h = 1, respectively, for the uncontrolled case
[Fig. 9(c)] and for the control case with ε = 0.2 and
r = 1. We clearly observe the strong influence of the
phase in the taming of the dynamical behavior of
our system. Values of phase φ induce both chaotic
behavior with possible coexistence of several attrac-
tors and regular motions according to Fig. 4(d).

In order to have a better understanding of these
results we have plotted the basins of attraction for
different situations.

Figures 10(a) and 10(b) represent, for α = 0.15,
ω = 1, h = 0.1 and k = 0.45, the typical basin
of attraction of the Duffing system [Aguirre &
Sanjuán, 2002; Aguirre et al., 2009] in the presence
of the linear spring without control for F = 0.26
and F = 0.3, respectively. We observe the effect of
the forcing in the sense that we can observe a tran-
sition from a chaotic regime [Fig. 10(a)] to a non-
chaotic regime [Fig. 10(b)] insofar as we increase
the value of the forcing amplitude. The chaotic
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Y

X

Y

X

(a) (b)

Fig. 8. Numerical plot trajectories in the phase plane (x, y = ẋ) of the system: (a) without control and (b) with control.
Parameter values are: k = 0.45, h = 1, F = 0.258 and the control parameters are ε = 0.1 and φ = π. We observe the clear
influence of the phase to control the dynamics of our system.

(a) (b)

(c) (d)

Fig. 9. Numerical bifurcation diagrams of the variable x versus F [(a) and (b)] for k = 0.45 and h = 1 (a) without control
and (b) with control parameters: ε = 0.2, φ = π. Numerical bifurcation diagrams of the variable x versus φ/2π [(c) and (d)].
(c) F = 0.3 without control and (d) F = 0.3 with control parameters ε = 0.2 and φ = π.
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(a) (b)

(c) (d)

Fig. 10. Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for (a) F = 0.3, k = 0.45 and h = 0.1
without control in which chaotic motions take place, (b) F = 0.26, k = 0.45 and h = 0.1 in which the regular motions take
place, (c) and (d) with control (ε = 0.2): (c) φ = π and (d) φ = 0. Finally, we observe the important influence of the phase
since the basin structure is altered by the phase effects.

attractor (denoted in green color) is destroyed and
the motions become regular as clearly shown in the
bifurcation diagram in Fig. 4(b).

We have also analyzed numerically the effects of
control on the dynamics of the system for different
values of the frequency.

Figures 10(c) and 10(d) show, in the presence
of control ε = 0.2 and F = 0.26, the effect of the
phase φ in the case of resonant frequencies, r = 1,
between the main driving and the control term.
We easily observe the importance of the phase in
both the dynamics and the topology of the system.
The chaotic attractor is smeared as we can see in
Fig. 10(c) when φ = π. On the other hand, the exis-
tence of multiple attractors takes place for the value
φ = 0 as depicted in Fig. 10(d). In this last case,
the topology of phase space is quite complicated

and the basins possess the Wada property [Aguirre
et al., 2009] and the system becomes unpredictable.

In order to provide more evidence of the phase
control scheme, in both the dynamics and the topol-
ogy of the system, we have also considered its effects
for the cases of nonresonant frequencies, r �= 1.

Figures 11(a)–11(d) show the basins of attrac-
tion for the case r = 1/2 and ε = 0.2. The other
parameters are fixed as follows: k = 0.45, µ = 0.15,
ω = 1 and h = 0.1. Figures 11(a) and 11(b) repre-
sent the case of φ = 0 and E = 0.26 and E = 0.3,
respectively. Figure 11(a) shows the existence of
regular and periodic motions in which the system is
completely predictable and the boundaries between
the basins are smooth. In contrast, in Fig. 11(b)
the topology is completely different. The bound-
aries between the basins are fractal and the system
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(a) (b)

(c) (d)

Fig. 11. Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for r = 1/2, ε = 0.2, (a) φ = 0,
F = 0.26, k = 0.45 and h = 0.1 in which regular motions take place, (b) φ = 0, F = 0.30, k = 0.45 and h = 0.1 in which the
topology is rather complicated since the boundaries of the basins are fractal, (c) and (d) with φ = π. Finally, we observe the
effects of the phase since the boundaries can be fractal or a complete predictable scenario can appear.

becomes unpredictable in several regions of phase
space. On the other hand, Figs. 11(c) and 11(d)
represent the case of φ = π, E = 0.26 and E = 0.3,
respectively. The role of the phase φ is quite rele-
vant since the structure of phase space is completely
different as in the case in which φ = 0. Figure 11(c)
represents the erosion of one of the basins in which
we can observe small regions in phase space in which
the dynamics of the system is unpredictable. Insofar
we increase the value of the energy, say E = 0.3 [see
Fig. 11(d)], the phase space has one single attrac-
tor and all orbits are regular and periodic. These
numerical results are in complete agreement with
the Melnikov analysis shown in Fig. 7(b).

In the last part of this section, we analyze the
influence of a nonresonant situation, that is, r = 2.
Figures 12(a)–12(d) show the basins of attraction

for the case r = 2 and ε = 0.2. The other parameters
are fixed as follows: k = 0.45, µ = 0.15, ω = 1 and
h = 0.1.

The existence of a chaotic attractor in
Fig. 12(a) is clearly modified for the value φ = 0 [see
Fig. 12(b)] when we change the forcing amplitude
from F = 0.26 to F = 0.3, where all orbits are peri-
odic or regular according to Fig. 12(c). On the other
hand, regular motions take place for the value φ = π
and F = 0.26, the system becoming completely pre-
dictable according to its smooth boundaries. How-
ever, for F = 0.3, the phase space topology is rather
complicated possessing fractal structures and mul-
tiple attractors for which the prediction is quite dif-
ficult, as shown in Fig. 12(d).

It should be also noted that the Melnikov
criterion indicates rather the appearance of both
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(a) (b)

(c) (d)

Fig. 12. Plots of the basins of attraction of our system (in the phase plane (x, y = ẋ)) for r = 2, ε = 0.2, (a) φ = 0, F = 0.26,
k = 0.45 and h = 0.1 in which chaotic motions take place and where we can observe the chaotic attractor denoted in green
color, (b) φ = 0, F = 0.30, k = 0.45 and h = 0.1 in which the topology is very simple since all motions are regular or periodic,
(c) and (d) with φ = π. Finally, we clearly see the relevant effects of the phase since the boundaries can be smooth with a
complete predictable scenario from a dynamical point of view or phase space can have fractal structure, respectively.

the basin boundary destruction and also chaotic
motion. This effect can be visible in Fig. 10, where
the basins of attraction for three values in the vicin-
ity of critical conditions that corroborate the results
presented in Fig. 7 are shown. The different surfaces
represent the existence of chaotic or regular motions
for different values of the phase φ which are also in
complete agreement with the numerical results pre-
sented in this section.

5. Conclusions and Discussion

Our results show that the nonsmooth systems can
be controlled by using the phase control technique.
For that purpose, we propose to rely on the
numerical integration of the Melnikov integral in

which we present results on the effects of the
phase difference between the main driving and the
control.

The numerical bifurcation diagrams elucidate
clearly the role of F , k and ω for which the onset
of chaotic motions takes place and their control
through the phase difference between both signals.
Besides, by analyzing the different numerical bifur-
cation diagrams we conjecture both, the appear-
ance and destruction of different attractors. This
last result is corroborated by analyzing the evolu-
tion of the basin of attraction for different values of
η. The basins of attraction show the creation and
destruction of the different attractors for values of
η close to the critical points where the dynamics
change from periodic to chaotic or vice versa.
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Finally, we think that these results obtained
in nonsmooth systems including the clearance and
dry friction phenomena have important and rele-
vant implications in problems of control in Engi-
neering [Radons & Neugebauer, 2004].
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