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Suppression of chaos is a relevant phenomenon that can take place in nonlinear dynamical systems

when a parameter is varied. Here, we investigate the possibilities of effectively suppressing the

chaotic motion of a dynamical system by a specific time independent variation of a parameter of

our system. In realistic situations, we need to be very careful with the experimental conditions and

the accuracy of the parameter measurements. We define the suppressibility, a new measure taking

values in the parameter space, that allows us to detect which chaotic motions can be suppressed,

what possible new choices of the parameter guarantee their suppression, and how small the

parameter variations from the initial chaotic state to the final periodic one are. We apply this

measure to a Duffing oscillator and a system consisting on ten globally coupled H�enon maps.

We offer as our main result tool sets that can be used as guides to suppress chaotic dynamics.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803521]

Chaotic dynamical systems present sensitivity to initial

conditions, what makes their evolution to become unpre-

dictable for long enough times. Nonetheless, in many sit-

uations, we need to deal with systems displaying

predictable behavior. A possible way to suppress chaos is

by adding suitable small perturbations to a system, which

typically depend on one or more parameters. If we have a

thorough knowledge of the precision in the measurement

of these parameters and the response of the system to

their variations, we can use them to improve the predict-

ability. This task can be performed with the help of the

chaotic parameter set, which in parameter space informs

us about the periodicity of a certain dynamical system.

Our main goal is to quantify the possibilities that a sys-

tem offers to make transitions from a chaotic regime to a

regular one under some given conditions. For that pur-

pose, we introduce a new concept, defined by means of

the chaotic parameter set, that we call suppressibility. The

suppressibility tells us for which regions in the parameter

space the dynamics of a system can be more easily and in

more ways suppressed. We also present two different sets

that can be used as guides to suppress chaotic dynamics

by the variation of a parameter: the suppression parame-
ter set and the set of the total accessible transitions. The

suppressibility measure is numerically tested for both, a

flow and a discrete dynamical system, showing the gener-

ality of this technique.

I. INTRODUCTION

Sometimes chaotic dynamics represents an advantage

because it makes systems more adaptable. However, in other

situations, it is an undesirable effect. As a consequence, it

restricts the operating range of many electronic and

mechanic devices. This is a good enough reason to justify

the attention that chaos suppression has received in the study

of dynamical systems.1–4 In the case of nonlinear oscillators,

such a suppression can be accomplished by introducing a

time periodic perturbation depending on a set of predeter-

mined parameters, which can be chosen to cause an stabiliza-

tion of the chaotic system toward a periodic state. Contrary

to some feedback control methods, as for example, the cele-

brated OGY,5 in which state dependent parameter perturba-

tions are performed to stabilize an unstable periodic orbit,

the present case is of the essence of some nonfeedback con-

trol methods, as for example, the phase control.6 In the phase

control method, typically time independent variations of a

phase difference between the periodic perturbations acting

on a certain nonlinear oscillator is used to achieve chaos sup-

pression. Sometimes anharmonic periodic perturbations have

been used, as it is the case of Jacobi elliptic functions,3,7 for

which the elliptic parameter has been selected as the control

parameter. Whatever the perturbation is, it always depends

on one or more parameters, so studying the response of the

dynamical behavior for the perturbed system to their varia-

tions is required. This task can be managed analytically or

numerically. In the former case, one of the commonly used

methods is the Melnikov analysis,3 while in the last one

bifurcation diagrams or chaotic parameter sets are com-

puted.7,8 Just to recall a chaotic parameter set informs us if

the asymptotic dynamics of a system is chaotic or not when

varying two system parameters. The fact that it involves two

parameters makes this set specially useful, what explains its

frequent use in the study of chaos suppression.4,7–10 The use-

fulness of these theoretical results is that they might be later

used in experimental settings11 as guides to suppress chaotic

dynamics. Nevertheless, in experimental situations, parame-

ters are measured with a finite accuracy. This means that a

certain parameter variation, appearing in a bifurcation dia-

gram as adequate, could be uneffective in practice due to the

limited precision with which such a parameter is measured.

The main goal of this paper is to study when it is in practice

possible to turn the asymptotic dynamics of a system from

chaotic to periodic by variations of a parameter. Having set-

tled a domain for that parameter, we want to know if sup-

pression is in fact feasible for many different values spread
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over it, and if it is carried out with small variations of the pa-

rameter or not. For such purpose, we define the suppressibil-
ity, a measure that takes into account all these matters.

Sometimes it occurs that chaotic parameter sets exhibit

highly fractal patterns. In those situations, we have no secu-

rity of reaching one asymptotic behavior or the opposite, due

to the limited precision with which we measure a parameter.

For this reason, we have to provide a way to not consider

them when defining and studying effective suppression. As

we will see, our numerical study can be carried out in the pa-

rameter space by means of the chaotic parameter set.

The paper is organized as follows. In Sec. II, a brief

description of the used model to illustrate our study is given.

In Sec. III, the chaotic parameter set is introduced. Later on,

in Sec. IV, we define the suppressibility, a measure that cal-

culates the possibilities of switching the dynamics from cha-

otic to periodic by a parameter variation. The measure is

applied right away to our model and two useful sets for

attaining suppression are computed. In Sec. V, a method to

eliminate high fractality from chaotic parameter sets is tested

in a system consisting of ten globally coupled H�enon maps,

for which it has been proved that very interspersed regions

of chaotic and periodic behavior exist.12 Finally, Sec. VI is

devoted to conclusions and discussion.

II. MODEL DESCRIPTION

Nonfeedback methods have been mainly used to sup-

press chaos in periodically driven dynamical systems.

Among them, a wide and important class is represented by

forced nonlinear oscillators, whose equation of motion may

be written as

€x þ l _x þ dV

dx
¼ F sin xt: (1)

It is then reasonable to use a system of this kind to de-

velop our new concepts. In particular, we shall utilize the

double-well Duffing oscillator, which is a paradigmatic

example. This oscillator corresponds to a unit mass particle

in a potential of the form VðxÞ ¼ �x2=2þ x4=4, with dissi-

pative coefficient l and an external harmonic periodic driv-

ing of amplitude F and frequency x. Here, we fix x ¼ 1 for

convenience. The equation of motion then reads

€x þ l _x � xþ x3 ¼ F sin t: (2)

Depending on the values F and l, this system can ex-

hibit three main kind of asymptotic bounded solutions: equi-

libria, periodic motion, and chaotic motion. This Duffing

oscillator possesses a chaotic attractor when F¼ 6.3 and

l ¼ 0:1, as shown in Fig. 1.

III. CHAOTIC PARAMETER SET

The asymptotic behavior of a dynamical system can be

studied by computing the largest Lyapunov exponent, when-

ever it exists.13 As is well known, Lyapunov exponents mea-

sure the exponential rates of contraction and expansion along

the orbits of dynamical systems. Given two available

parameters of a particular system, the chaotic parameter set
is defined as the set of the largest Lyapunov exponent com-

puted for every pair of parameter values in a planar grid.

This set is a basic and useful tool in the study of dynamical

systems14,15 since it easily allows to visualize the asymptotic

behavior of the system in a certain region of the parameter

space. We explicitly construct it for the Duffing oscillator to

see the procedure. We use the damping coefficient l and the

amplitude of the driving F as the two available parameters of

our system, so points in the parameter space are represented

by pairs ðF; lÞ. We take a grid of 720� 720 points in the rec-

tangle of parameter values 0:02 � l � 1 and 0 � F � 15.

For each pair of parameters ðF; lÞ in the parameter plane the

differential equation is solved by means of a fourth order

Runge-Kutta integrator, using ðx; _xÞ ¼ ð1; 0Þ as initial condi-

tion. The Lyapunov exponent of the corresponding orbit is

evaluated by standard methods and then a different color is

assigned depending on the sign and value of the Lyapunov

exponent. Those points in the ðF; lÞ plane with a negative

Lyapunov exponent are colored in gray scale, while those

with a positive Lyapunov exponent are represented in a non-

gray colored scale. The resulting plot displays information

about the parameter regions with periodic or nonperiodic

behavior.

From Fig. 2, it can be inferred that there is a gray scaled

“periodic sea” with colored “chaotic islands” in it, similar to

the ones described in Refs. 16 and 17. Most of the chaotic

islands show striations corresponding to windows of perio-

dicity inside them. Note that by fixing one of the two param-

eters and varying the other, i.e., by moving along a line

parallel to a particular axis in the parameter space, a sort of

bifurcation diagram is obtained. Other typical periodic struc-

tures that appear are “periodic lakes” connected by “periodic

channels.” “Periodic lakes” are described and analyzed in

the context of high-dimensional chaotic systems in Ref. 10.

In particular, “shrimps” are present. These “periodic lakes”

are formed by a central elongated body from which narrow

FIG. 1. Chaotic attractor for the Duffing oscillator €x þ 0:1 _x � xþ x3

¼ 6:3 sin t, with initial conditions ðx; _xÞ ¼ ð1; 0Þ.
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“periodic channels” come out, resembling shrimp pleopods.

Their structure and fractal distribution in parameter space

are thoroughly inspected in Ref. 18. Unless a dynamical sys-

tem exhibits robust chaos,19 what means that a chaotic re-

gime is preserved by small variations of the parameters and

the initial conditions, chaotic regions will generally present

fractally distributed “periodic lakes” inside them.14,15

Similarly, in bifurcation diagrams of non robust systems,

such us the logistic map, periodic windows densely fill cha-

otic regions, lending such diagrams their fractal nature.

IV. EFFECTIVE SUPPRESSIBILITY OF CHAOS

The main purpose of this paper is to define a measure

that allows us to quantify the possibilities of effectively sup-

pressing the chaotic dynamics of a system. To this end, we

make use of the chaotic parameter set. Nevertheless, this set

is a delicate tool for several reasons. The most remarkable

one is that chaotic parameter sets usually display fractal

structure, so that chaotic regions hide “periodic lakes” inside

them at any scale. Moreover, in some sort of systems, even

periodic regions reveal chaotic states at any scale as one

zooms in. Attending more general considerations, the func-

tion we are about to define is resolution dependent. High res-

olutions are required to make this new tool useful. We

always use for convenience a resolution R�R in the calcula-

tions of all our chaotic parameter sets of 720� 720.

Concerning initial conditions, we suppose they are somehow

accessible to suppress chaos. In the worst case, it would be

desirable that the chaotic attractor passed close to the point

in the phase space corresponding to such initial conditions.

These are major restrictions but will always be present when-

ever we make use of bifurcation diagrams and chaotic pa-

rameter sets as guides to suppress chaos.

The basic idea of suppression is to vary a free parameter,

the suppressing parameter, from a particular value for which

chaos rules, to another value for which periodic regime

exists. Since we are only interested in the sign of the largest

Lyapunov exponent, we represent chaotic parameter sets as

binary sets, assigning black color to chaos and white to peri-

odic dynamics. In this manner, we have an R�R matrix of

grid points, and black or white squares centered in them. For

convenience, we identify the square and its centre and sim-

ply refer to it as a pixel. Each of these pixels (i, j) is related

to a point in the parameter space ðFi; ljÞ, with i, j¼ 1,…, R.

Chaos suppression in the chaotic parameter set simply corre-

sponds to a transition from a black pixel to a white one, both

contained in a line parallel to the axis associated to the sup-

pressing parameter. We call each of these lines in a chaotic

parameter set a suppressing line (see Fig. 3). Returning to

our model, we take F as the suppressing parameter and fix

the value of l. If there is a particular point in the parameter

space ðFi; ljÞ for which chaotic dynamics occurs, we can

switch it to periodic by varying the suppressing parameter,

i.e., by making a transition to a different point in the same

suppressing line ðFk; ljÞ. Therefore, pixels in a suppressing

line provide a natural way to measure how much a particular

chaotic attractor can be suppressed. Simply count all the

transitions from that black pixel to all the white ones con-

tained in such line.

At this point, an important objection arises. It could hap-

pen that many (possibly infinite) periodic lakes were hidden

in that black pixel, allowing transitions to a regular regime

by smaller variations of the parameter. This is certainly true,

but, in such a case, a smaller region of the chaotic parameter

set should be computed. Then the same objection would

arise again and again due to the fractal character of the cha-

otic parameter set. However, even if this was the case, exper-

imentally there is a limitation on the measurement of the

suppressing parameter F, imposed by the experimental

uncertainty DF. This implies a restriction in the range of

FIG. 2. Chaotic parameter set for the Duffing oscillator €x þ l _x � xþ x3

¼ Fsin t in the ðF; lÞ parameter space. The color bar shows the value of the

largest Lyapunov exponent, computed for a grid of 720� 720 points, and

using as initial condition ðx; _xÞ ¼ ð1; 0Þ. Both periodic (gray colored) and

chaotic (non-gray colored) motions are displayed.

FIG. 3. (a) A suppressing line of eight pixels with an uncertainty DF in the

measurement of the suppressing parameter F of seven pixels. Two unsafe

transitions are shown among all the possible. In this case, no matter which

black pixel we are in, no transition to any white pixel guarantees suppres-

sion, since the distance to the closest black pixel is always smaller than the

uncertainty. (b) Same suppressing line with an uncertainty of one pixel.

Now only transitions to white pixels one pixel away from any black one are

unsafe. (c) The suppressing line with an uncertainty of a little less than half

a pixel, for which all transitions are safe.
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values of the suppressing parameter used to compute the cha-

otic parameter set. The reason is that if a white pixel is at a

distance from a black one smaller than the uncertainty, sup-

pression cannot be guaranteed by a transition to that pixel.

We define transitions that do not assure suppression as

unsafe transitions. On the contrary, those that guarantee sup-

pression are named safe transitions. Pixels involved in safe

(unsafe) transitions are referred as safe (unsafe) too. We also

define the length of a suppressing line L as the distance used

to compute the chaotic parameter set in the suppressing

direction. In the example shown in Fig. 2 this length corre-

sponds to the width of the chaotic parameter set

L ¼ jFmax � Fminj ¼ 15. This width must be chosen accord-

ing to the uncertainty in the measurement of the suppressing

parameter. In particular, it must never be smaller than the

uncertainty, because in that case we would not be able to

guarantee suppression by any specific transition. In other

words, all transitions would be unsafe, as is shown in Fig.

3(a). Even more, it is convenient that the uncertainty of the

suppressing parameter be much smaller than the length of

the suppressing lines. For instance, an adequate length could

be such that we assign an uncertainty DF of one pixel. This

means DF ¼ L=R. If this is the case, only transitions to white

pixels one pixel away from black ones would be unsafe, as

we show in Fig. 3(b). Concerning uncertainty, all the transi-

tions can be considered as safe for DF < L=2R, as Fig. 3(c)

shows.

Once the chaotic parameter set has been computed tak-

ing into account the preceding considerations, black pixels

will be taken as chaotic no matter if periodic lakes are hidden

inside them. This is a reasonable assumption, since not only

periodic regions are hidden by a black pixel but also chaotic

ones must be hidden as well. If chaos did not occur experi-

mentally by setting the parameter values to the ones corre-

sponding to that black pixel, an arbitrary small deviation

from that value would yield a chaotic motion. Even more,

recall that the uncertainty generally comes from two differ-

ent sources, namely, measuring tools and noise. If fluctua-

tions due to the later are significant compared to the former,

chaotic motion will be followed in the black pixel. The rea-

son is that, even if a periodic window is found for some time

in that black pixel, for fast enough fluctuations, the system

can be expected not to spend long times inside this window,

and rather chaotic motion appears. As an example, consider

a chaotic attractor associated to a black pixel centered in

ðF; lÞ ¼ ð6:8; 0:34Þ. In Fig. 4, we show that if we suppose a

value of the uncertainty DF ¼ 0:04 (two pixels, approxi-

mately), a similar attractor is obtained. The later is a bit

thicker, but the structure is preserved.

On the other hand, we wonder if white pixels can con-

ceal chaotic regions. In such a case, transitions to them

would not be safe at all, making suppression uneffective. At

first glance, if one has in mind a periodic window in an ar-

chetypal bifurcation diagram, as for example, the one corre-

sponding to the logistic map, by zooming in a periodic

window, no chaotic regions are found. However, some situa-

tions in which this might occur can be pointed out. The most

simple case is a pixel, whose center lands on a periodic win-

dow, but the rest of it is occupied by chaotic regions, like the

one shown in Fig. 5(a). Also in the boundary between white

and black regions this might happen, as is the case of the

pixel labeled (b) in the same figure. Next paragraph clears

out that these circumstances can be avoided by taking a pa-

rameter uncertainty of at least one or two pixels. Other less

trivial situation is the coexistence of attractors. If one of

those attractors happened to be chaotic, the boundary

between them would be fractal, so a very small uncertainty

in the measurement of the parameter could lead to the cha-

otic attractor. When computing bifurcation diagrams one

tries to avoid this by following attractors. This means that

the last point of the trajectory of the system computed for a

particular value of the parameter is used as initial condition

to compute the trajectory for the next value of the parameter.

FIG. 5. (a) A white pixel has its center in a periodic window. (b) A white

pixel whose center lands in the beginning of a period doubling cascade lead-

ing to a chaotic attractor. (c) A zoom in a white pixel containing plenty of

black pixels.

FIG. 4. (a) Chaotic attractor for the

Duffing oscillator €x þ 0:34 _x � xþ x3

¼ 6:8 sin t. (b) Same chaotic attractor,

though letting the driving amplitude

fluctuate randomly in the interval [6.76,

6.84], what corresponds to an uncer-

tainty DF ¼ 0:04. This attractor looks a

bit thicker, but preserves the shape.
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With chaotic parameter sets we do not do so. The most dra-

matic situation happens when there are regions with very

interspersed white and black pixels, meaning by very inter-

spersed that white pixels hide black ones at any scale (see

Fig. 5(c)). In Sec. V, we provide a method to eliminate these

spurious white pixels.

Suppose now we compute a chaotic parameter set with

an uncertainty of just one pixel, and we are in a black (cha-

otic) pixel located at position (i, j). If the first coordinate i
corresponds to the suppressing direction and a neighboring

pixel ði61; jÞ is white, we should not make a transition to it,

because it is unsafe. Even worse, we cannot even assure that

the first was certainly chaotic. Therefore boundaries in the

direction of the suppressing parameter must be redefined by

marking as unaccessible all the pixels that are at a distance

equivalent to the parameter uncertainty from the boundary.

This is explained in Fig. 6 and explicitly done in Fig. 10(a).

The remaining pixels in that suppressing line are safe, and so

are all the transitions from one of those black pixels to the

white ones in the same line. We define all the transitions

from a safe black pixel (i, j) to all the safe white ones in a

specific suppressing line j as the set of accessible transitions
Aij corresponding to that initial chaotic attractor. These tran-

sitions are called safe or effective in the sense that for the ini-

tial pixel chaos occurs and the final white pixel guarantees

suppression.

The distance between two elements involving a transi-

tion, or in a similar fashion, how much the parameter must be

varied to achieve a certain transition, is also a very important

fact when measuring how much can be suppressed the dynam-

ics of a particular black pixel. If we have two possible or ac-

cessible transitions, one of them implying a variation of the

parameter of two pixels, while another meaning a variation of

eight pixels, it seems reasonable to prefer the first one. Hence,

the next step is to find a way of considering preferably transi-

tions involving shorter variations of the parameter. The prob-

lem is to establish a mechanism to tell how much preferable

are short transitions to large ones. Certainly here one has to

deal with some arbitrariness, which is going to depend on the

conditions we settle to achieve suppression. For instance, we

might want to weight very high short transitions and then very

low long ones. Or maybe we prefer to weight the same

transitions up to a certain distance and then let their weight

decrease slowly, etc. Therefore, given two pixels in a sup-

pressing line, (i, j) and (k, j), we define the order of the transi-

tion ði; jÞ ! ðk; jÞ as the distance between them ji� kj,
considered as matrix elements in a suppressing line j. Then

we assign a weight wik to every transition, through a monot-

onically decreasing function w : N! R depending on the

order of the transition wik ¼ wðji� kjÞ (see Fig. 8(a)). For

example, if we take w(n)¼ 1/n, a black pixel (i, j) and a white

pixel (k, j), the transition between them has a weight

wik ¼ 1=ji� kj. In this case first order transitions have weight

1, second order transitions have weight 1/2, and, in general,

the nth order transition has weight 1/n. We also require that

w(1)¼ 1, what simply gives unit value to the highest possible

weight. Finally, we define the suppressibility vij on a black

pixel (i, j) as the sum of all the weights over the set of accessi-

ble transitions Aij, i.e., the weights related to all the safe tran-

sitions to white pixels in the same suppressing line

vij ¼
X
k2Aij

wik: (3)

Now, given two chaotic situations and some particular

suppressing conditions coded in w, we can quantitatively

compare them to know which one offers more and better

possibilities of being suppressed in a certain region of the

parameter space. As an example, we consider the two chaotic

attractors for parameter choices ðF387; l132Þ ¼ ð8:0625;
0:1797Þ and ðF555; l298Þ ¼ ð11:5625; 0:4057Þ in Fig. 2. We

recall that ðF387; l132Þ corresponds to the values of the forc-

ing amplitude and damping associated to the grid point given

by the coordinates (387, 132) in the computed chaotic

parameter set, whose resolution is 720� 720. Keep F as the

suppressing parameter and suppose it is experimentally

measured with a precision DF ¼ 0:021, what corresponds to

one pixel in the mentioned figure. What is the suppressibility

for each of those two attractors if we want to use no more

than thirty pixels (variations of the suppressing parameter

less or equal than 0.6241) to suppress chaos and consider all

transitions equally weighted? These conditions impose an

assignment of weights according to a Heavyside function of

the form

wik ¼
1 ji� kj � 30

0 ji� kj > 30
:

�
(4)

Computation of the suppressibility yields vð387;132Þ ¼ 8

and vð555;298Þ ¼ 7. This means that under the experimental

conditions stated in the previous paragraph, the first attractor

offers more possibilities of being suppressed. Now that this

is well understood, we define the suppression parameter set
as the value of the suppressibility computed for every safe

black pixel in the chaotic parameter set. This set shows

where chaos can be more easily and in more ways sup-

pressed, as shown in Fig. 7. Note that many chaotic attractors

have disappeared, since they cannot be suppressed under the

specified experimental restrictions imposed by w and DF.

Some more information can be extracted from the cha-

otic parameter set if our function is recasted by considering

FIG. 6. A suppressing line with unaccessible regions due to precision limita-

tions in the measurement of a parameter denoted by question marks. Pixels

at a distance to the boundary smaller than the uncertainty in the measure-

ment of the suppressing parameter DF are marked in orange. Transitions

involving these pixels are unaccessible.
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the accessible transitions from every safe black pixel in a

suppressing line. For this reason, we define the set of the
total accessible transitions Aj in a suppressing line j as

Aj ¼ [
R

i¼1
Aij: (5)

Note that if the pixel (i, j) is white, Aij ¼1, for the

only reason that there is no chaos to suppress. This leads to

the definition of the total suppressibility vj for every sup-

pressing line j as the sum of the suppressibility over all the

chaotic attractors. This allows us to compare the possibilities

of suppressing dynamics via variations of F for different val-

ues of the remaining parameter l appearing in the chaotic

parameter set. The new function reads

vj ¼
X

i;k2Aj

wik: (6)

The problem that arises by doing this is that we get a

symmetry. For instance, in a suppressing line formed by three

pixels, the total suppressibility of two transitions starting from

a black pixel to two white consecutive pixels weight the same

than two transitions from two black consecutive pixels to a

third periodic one (see Fig. 8(b)). To avoid this ambiguity, we

define the chaoticity jj of a suppressing line j as the fraction

of chaotic events in it. Our pursued final goal is to compute

simultaneously the total suppressibility and the chaoticity for

every suppressing line. In other words, we want to know the

total suppressibility and the chaoticity as a function of the

remaining parameter l. Results are shown in Fig. 9, where the

total suppressibility appears in black for all the values of the

damping, and the chaoticity is represented in red. Every value

of the total suppressibility has been divided by the maximum

value it takes over the chaotic parameter set, which occurs

approximately for l ¼ 0:155.

Note that, on average, the total suppressibility resembles

chaoticity in this example. The reason is quite obvious, since

starting from a low number of black pixels, the more chaotic

events, the more can be suppressed. However, there is a tacit

compromise between the number of chaotic and periodic

events. If there are too many black pixels along a suppress-

ing line, then there are few white ones to achieve suppres-

sion, just the same way that if there are few chaotic events,

little chaos can be suppressed.

A distribution with half of the pixels being black and the

other half being white (chaoticity j ¼ 0:5) would be the op-

timum situation. On the other hand, for a fixed number of

black pixels, the more spread chaotic islands are over the

FIG. 8. (a) First, second, and third order transitions in a suppressing line.

Since longer transitions contribute less or equal than shorter ones, we have

w12 � w13 � w14. This explains the monotonic decreasing character of w.

(b) Two suppressing lines having the same total suppressibility but different

number of black pixels or chaoticity. Note that w12 ¼ w23 ¼ 1.

FIG. 9. A plot of the total suppressibility v (black line) together with chaot-

icity j (red line). The former reaches its maximum for l ¼ 0:155, where

chaos is better spread. The more alternation of chaotic and periodic events

there is, the higher the total suppressibility. This implies that the closer the

chaoticity is to 0.5, the higher the total suppressibility. In this case, chaotic-

ity reaches a maximum close to 0.4, near the value of the damping for which

the maximum total suppressibility is obtained. For very high values of the

damping, mainly periodic events appear, so there is little chaos to be sup-

pressed and either v or j take low values.

FIG. 7. Suppression parameter set for €x þ l _x � xþ x3 ¼ F sin t in the ðF; lÞ
parameter space, with suppressing parameter F, uncertainty DF ¼ 0:021 and

wik ¼ 1�Hðji� kj � 30Þ, where HðxÞ is the Heavyside function. This set

shows all the safe chaotic events for which chaos can be suppressed, and

which ones offer better possibilities of being suppressed, according to the

conditions imposed by w. It is obtained by computing the suppressibility vij

for every safe black pixels (i, j) and assigning each chaotic event a color

depending on its value. The color bar goes from cold colors to hot ones, cor-

responding, respectively, to the lower (1) and higher (56) values of the sup-

pressibility measure.
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periodic sea (along a suppressing line), the closer they are

from it, so the lower chaos suppressing transitions tend to be.

Therefore, two things contribute to an increase of the total

suppressibility: an alternance of black and white regions and

the equality of chaotic and periodic events. Both together

mean that chaos is better spread, so can be more easily sup-

pressed. Also note that the total suppressibility experiences

more fluctuations than the chaoticity. In general terms, the

suppressibility depends not only on the number of black pix-

els but also on the suppression conditions coded in w. If large

transitions are heavily weighted by this function, then a

slight difference of chaotic events can seriously affect the

value of the function.

In Fig. 10(a), we show the chaotic parameter set with

unsafe chaotic and periodic events colored in orange. The thin

straight line represents the value of the damping for which the

maximum total suppressibility is obtained. Beside it, in Fig.

10(b), the set of the total accessible transitions for that maxi-

mum is shown. The horizontal axis represents the value of the

suppressing parameter F for the initial states in that suppress-

ing line. The vertical axis shows all the possible final values.

Those transitions Fi ! Fk starting from a chaotic state and

leading to periodic motion are marked in black. The reason

why these transitions are contained in a vertical strip around

the diagonal is that the chosen w only allows counting up to

thirty pixels far form the initial region. Note that the closer we

are to the diagonal the shorter the transition is.

V. ELIMINATING SPURIOUS PIXELS

White pixels containing chaotic regions are spurious in

the sense that they might not assure suppression of chaos.

Therefore, to make suppression effective, they must be elimi-

nated from chaotic parameter sets when studying suppressibil-

ity. This phenomenon, the existence of white pixels hiding

chaotic motion, might happen for several reasons, and among

all its possible manifestations, most distressing examples occur

when a white pixel hides chaotic ones at any scale. This strong

fractality is far from being a mere curiosity but suggested to

be a robust phenomenon for globally coupled systems.12

A possible way of measuring the fractality of a set is the

uncertainty exponent a.20,21 On the chaotic parameter set, this

uncertainty exponent is related to the probability that two pa-

rameters, arbitrarily close, yield different asymptotic behavior.

The relation is the typical power law, Pð�Þ / �a, where � is

the distance between the two parameters. Therefore, the

FIG. 10. (a) Chaotic parameter set for €x þ l _x � xþ x3 ¼ Fsin t in the ðF;lÞ parameter space with suppressing parameter F, uncertainty DF ¼ 0:021 and

wik ¼ 1�Hðji� kj � 30Þ. Unsafe regions due to uncertainty are colored orange. The thin horizontal line represents the value of the damping l144 ¼ 0:155 for

which a maximum total suppressibility is obtained. (b) The set of the total accessible transitions A114 for that maximum. The plot displays transitions involving

different values of the suppressing parameter F. In the x axis, the values of the forcing for the initial state indicated with the superscript c, while in the y axis

the values of the forcing for the final state in the transition, denoted by p. If the starting pixel corresponds to chaotic (c) motion and the transition leads to peri-

odic (p) regime, the point is colored black. Otherwise the transitions are left uncolored. Note the great alternation of white and black.

FIG. 11. (a) Chaotic parameter set in

ða; dÞ space for ten globally coupled

H�enon maps. Note the dusty regions,

where chaotic (black) and periodic

(white) asymptotic motion are very

interspersed. (b) Same chaotic parameter

set after the application of the algorithm.

Spurious white pixels are marked in red.
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uncertainty exponent measures the relation between the accu-

racy in the calculation of a parameter and the ability to predict

the asymptotic dynamics correctly. If the exponent is too close

to zero, it does not matter how much we improve the preci-

sion, since we are not capable of predicting the final state. A

simple algorithm based on the uncertainty exponent can be

developed: for each white pixel calculate the uncertainty

exponent and, if its value is smaller than a certain established

parameter value, then eliminate it. However, this would be

unnecessarily high time consuming. To optimize computa-

tional resources, an even simpler algorithm can be performed:

for every white pixel in the chaotic parameter set, calculate a

high enough number of randomly chosen points of the param-

eter space. Whenever a positive largest Lyapunov exponent

shows up, we mark that pixel as unaccessible.

We shall utilize a similar parameter space than the one

presented in Ref. 12, corresponding to ten globally coupled

H�enon maps. This sort of systems appears in broad branches

of science, since they are approximations of spatiotemporal

dynamical systems governed by nonlinear partial differential

equations. For a more detailed study of the system we refer

to the cited paper. The set of equations governing its dynam-

ics reads

xi
nþ1 ¼ a�

�
ð1� dÞxi

n þ d=9
X
j6¼i

xj
n

�2

þ byi
n

yi
nþ1 ¼ xi

n; (7)

where i¼ 1,…, 10.

The parameters a and b correspond to the H�enon map

and d is the coupling strength. We use 1:0 � a � 1:4 and

0:0 � d � 0:4 to compute the chaotic parameter set, taking a
as the suppressing parameter. The remaining parameter is

fixed b¼ 0.3. The chaotic parameter set in ða; dÞ is shown in

Fig. 11(a), computed for the initial conditions ðx1
0; y

1
0Þ

¼ ð1; 0Þ and ðxi
0; y

i
0Þ ¼ ð0; 0Þ for i 6¼ 1. Dusty regions where

chaotic and periodic motions are very interspersed occur. In

such regions, if one makes a zoom in a white pixel, always

black pixels show up, no matter how small the scale is.

The algorithm is operated using twenty random values of

a for each white pixel to eliminate spurious cases. Whenever

a positive Lyapunov exponent shows up in a white pixel, it is

marked in red, as in Fig. 11(b). Afterwards, we eliminate

unsafe regions due to precision limitations, supposing an ex-

perimental uncertainty of Da ¼ 0:00056, and painting them in

orange. Having cleaned up our chaotic parameter set, the total

suppressibility is computed. Weights are assigned according

to the function wðnÞ ¼ eð1�nÞ=10, what means that the prefer-

ence in transitions decays exponentially as the distance grows,

with decay constant 10. Results can be observed in Fig. 12.

From a coupling strength, d ¼ 0 in Eq. (7), the total sup-

pressibility starts decreasing rapidly because the white central

region becomes dusty. Then it begins to increase, again as a

consequence of the white lakes appearing for a � 1:1.

Suddenly, these regions turn unaccessible and are rapidly

recovered. This explains the two first spikes represented in

Fig. 12(b). Once this region disappears, the total suppressibil-

ity falls to its minimum, for d � 0:1. A black ascending stripe

born on the left white region follows allowing new transitions,

what explains the positive slope of the curve. Chaoticity does

not increase in this step because black pixels are disappearing

on the right side of the stripe and also some become unacces-

sible due to uncertainty (orange) around spurious (red) pixels.

When the white curved region resembling a boomerang is

born for a � 1:26, the total suppressibility suddenly jumps to

its third highest value. This does not last long, because this

region is widely surrounded by unaccessible ones, being the

accessible regions very far away, so weighted very little by w,

that decay exponentially. This, together with the narrowing of

the boomerang, drops the total suppressibility again to low

values. Then, it begins to climb towards its maximum as a

consequence of the rectangular white region with which the

boomerang merges, for high values of d. Now, the total sup-

pressibility does not resemble the chaoticity. For instance, up

to d ¼ 0:3, the later tends to decrease, while the total suppres-

sibility experiences great oscillations.

VI. CONCLUSIONS AND DISCUSSION

In summary, our investigation provides a precise quanti-

tative method to determine the possibilities of suppressing

the chaotic motion of a system by a time independent varia-

tion of a parameter. The method is based on the definition of

a new measure, the suppressibility, defined in the parameter

space. Since it has mainly practical purposes, it depends on

FIG. 12. (a) Cleaned chaotic parameter

set in the ða; dÞ space for ten globally

coupled H�enon maps. Unaccessible

regions due to spurious pixels are marked

in red, while those due to a lack of preci-

sion in the measurement of a parameter

are marked in orange. (b) Total suppressi-

bility v in black together with chaoticity

j in red.
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experimental precisions and suppressing conditions.

Suppressibility has allowed us to compute the suppression

parameter set, which shows a region in parameter space with

all the chaotic attractors that can be effectively suppressed,

and what possibilities offer to achieve such a suppression.

Afterwards, the total suppressibility has been introduced

allowing us to compare the possibilities of suppressing chaos

throughout different values of another parameter. In this

manner, when desiring to suppress chaotic dynamics of a

system by varying a certain parameter with less difficulties,

we can figure out in what regions of another available param-

eter is worth working. Having fixed such parameter at an

appropriate value, the set of the total accessible transitions

has been computed. This set allows to see at a glance the

transitions that yield predictable behavior. Finally, since all

this work is accomplished in the chaotic parameter set, we

have proposed a mechanism to clean it from spurious events,

making our technique more effective.
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