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Abstract. The pitchfork bifurcation and vibrational resonance are studied in a fractional-order
Duffing oscillator with delayed feedback and excited by two harmonic signals. Using an approxi-
mation method, the bifurcation behaviours and resonance patterns are predicted. Supercritical and
subcritical pitchfork bifurcations can be induced by the fractional-order damping, the exciting high-
frequency signal and the delayed time. The fractional-order damping mainly determines the pattern
of the vibrational resonance. There is a bifurcation point of the fractional order which, in the case of
double-well potential, transforms vibrational resonance pattern from a single resonance to a double
resonance, while in the case of single-well potential, transforms vibrational resonance from no res-
onance to a single resonance. The delayed time influences the location of the vibrational resonance
and the bifurcation point of the fractional order. Pitchfork bifurcation is the necessary condition
for the double resonance. The theoretical predictions are in good agreement with the numerical
simulations.

Keywords. Supercritical pitchfork bifurcation; subcritical pitchfork bifurcation; vibrational
resonance; time delay feedback.
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1. Introduction

Vibrational resonance (VR) is a phenomenon originally found by Landa and McClintock
[1]. For the VR phenomenon to appear, a nonlinear system needs to be excited by two har-
monic driving signals, a low- and a high-frequency signal. As a result, the response am-
plitude of the system to the low-frequency signal vs. the amplitude of the high-frequency
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signal presents a resonance-like behaviour. In other words, the weak low-frequency signal
can be amplified excellently by an appropriate high-frequency signal. Since biharmonical
signals are applied in a wide range of disciplines, VR has been investigated in differ-
ent kinds of systems by using theoretical, numerical and experimental methods [2–14].
Recently, the results of VR in fractional-order systems were reported by Yang and Zhu,
and they found that the fractional-order damping is a key point to induce different reso-
nance patterns [15,16]. Fractional-order systems have profound impact on many scientific
and engineering fields such as rheology, viscoelasticity, electrochemistry, bioengineer-
ing, mechanics, automatic control and signal processing [17–20]. Hence, it is important
to study the dynamics of different fractional-order systems. Here we consider the VR
phenomenon in the fractional-order Duffing oscillator with time delay feedback. The
equation of motion of the system we analyse here is given by

dαx(t)

dtα
+ ω2

0x(t) + βx3(t) + γ x(t − τ) = f cos(ωt) + F cos(�t), (1)

where α is the order of the fractional-order damping and this term is very important for the
VR pattern. There are several definitions commonly used for the fractional-order differ-
ential operator that appears in eq. (1), such as the Riemann–Liouville (RL) definition, the
Caputo definition and the Grünwald–Letnikov (GL) definition [21]. For the fractional-
order differential operator in eq. (1), these three definitions are equivalent. Here, we
use the GL definition due to its convenience in the discretization of the fractional-order
operator. The GL definition is given by

dαx(t)

dtα

∣
∣
∣
∣
t=kh

= lim
h→0

1

hα

k
∑

j=0

(−1) j

(

α

j

)

x(kh − jh), (2)

where the binominal coefficients are
(

α

0

)

= 1,

(

α

j

)

= α(α − 1) · · · (α − j + 1)

j ! , for j ≥ 1. (3)

The value of α usually lies in the range of 0–2. The strength of the linear time delay
feedback is γ and τ is the delayed time. In eq. (1), the parameters satisfy β > 0, f � 1
and ω � �. In the absence of the external biharmonic signals and the delayed time, the
potential of the system is V (x) = 1

2 (ω2
0 + γ )x2 + 1

4βx4, and it has a double-well form
when ω2

0 + γ < 0 while it has a single-well form when ω2
0 + γ ≥ 0. For the special case

α = 1, the system degenerates the general delayed system, and the VR phenomenon for
this case was studied thoroughly by Jeevarathinam et al [8].

The phenomenon of VR has been analysed in delayed and fractional-order systems
[8,15,16]. However, earlier works have been mostly focussed on the response amplitude
of the system. The specific roles of different parameters on the bifurcation behaviours
and the connection between the bifurcation and resonance patterns have not yet been thor-
oughly investigated. This is the main motivation of our paper. The paper is organized as
follows: In §2, the supercritical pitchfork bifurcation and the subcritical pitchfork bifur-
cation induced by different factors are studied. In §3, according to the theoretical predic-
tions, the conditions for different vibrational resonance patterns are derived. The roles of
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fractional-order damping and time delay feedback on VR will be investigated. In order
to check the validity of the analytical results, several examples are verified by numerical
simulations. Finally, in §4, some conclusions are offered.

2. Bifurcation analysis

Since the frequencies of the external perturbations have the property that ω � �, the
method of separation of slow and fast motions can be used to compute the response ampli-
tude of the system [22]. Let x = X + �, where X and � are the corresponding slow and
fast variables with periods 2π/ω and 2π/� respectively. Then the motion of the system
of eq. (1) becomes

dα X

dtα
+ dα�

dtα
+ ω2

0 X + ω2
0� + β X3 + β�3 + 3β X2� + 3β X�2

+ γ Xτ + γ�τ = f cos(ωt) + F cos(�t), (4)

with Xτ = X (t − τ) and �τ = �(t − τ). The approximated solution of �(t) is given in
the equation

dα�

dtα
+ ω2

0� + γ�τ = F cos(�t). (5)

Let

� = F

μ
cos(�t + θ). (6)

Substituting eq. (6) into eq. (5), one gets

μ2 =
[

γ cos(τ�)+�α cos
(απ

2

)

+ω2
0

]2+
[

γ sin(τ�)−�α sin
(απ

2

)]2

(7)

and

θ = tan−1 γ sin(τ�) − �α sin(απ/2)

�α cos(απ/2) + ω2
0 + γ cos(τ�)

. (8)

Then, substituting the solution of �(t) in eq. (4) and averaging the equation over the
range [0, 2π/�], the equation for the slow motion is obtained as

dα X

dtα
+ C1 X + β X3 + γ Xτ = f cos(ωt), (9)

where

C1 = ω2
0 + 3βF2

2μ2
.
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When f = 0 and τ = 0, the effective potential function

Veff = C1 + γ

2
x2 + β

4
x4.

For this case, the equilibrium points for eq. (9) are given by

X∗
0 = 0, X∗

± = ±
√

−C1 + γ

β
. (10)

When

F < Fc =
[

−2μ2(ω2
0 + γ )

3β

]1/2

, (11)

then [(C1 + γ )/β] < 0 so that there are two stable equilibrium states X∗± and one unstable
equilibrium state X∗

0 . However, when

F ≥ Fc =
[

−2μ2(ω2
0 + γ )

3β

]1/2

, (12)

then [(C1 + γ )/β] ≥ 0 so that there is only one stable state X∗
0 . Fc is the bifurcation point

which influences the stable states of the system in eq. (9).
If eq. (1) is a monostable oscillator, there is only one equilibrium point X∗ = 0, and

there is no bifurcation for this case. However, if eq. (1) is bistable, the stable states in eq.
(10) depend on some other parameters. The pitchfork bifurcation occurs with the change
of these parameters. When the stable equilibrium point turns from trivial to non-trivial, the
supercritical pitchfork bifurcation occurs. On the contrary, when the stable equilibrium
point turns from non-trivial to trivial, the subcritical pitchfork bifurcation occurs. When F
is the control parameter, Fc is a critical point for the pitchfork bifurcation. The analytical
result of Fc is given in eqs (11) and (12). However, when �, α or τ is treated as a
control parameter, the analytical expression of the pitchfork bifurcation point �c, αc or
τc which changes the stable equilibrium points of eq. (9) is difficult to obtain. For the
double-well case, the bistable and monostable domains of eq. (9) are given on the F–α

plane in figure 1a. From the boundary of the domains, we can see that the bifurcation
point αc increases with the increase of the parameter F . In figures 1b–1d, the subcritical
pitchfork bifurcation induced by the parameter F is clearly shown for different values of
the fractional order α. In figures 1e and 1f, the supercritical pitchfork bifurcation induced
by the fractional order α is revealed for different values of F .

In figure 2a, the bistable domain and monostbale domain of eq. (9) are shown in the
�–α plane. It is different from the information in figure 1a. Specifically, the value of the
bifurcation point αc decreases with the increase of the high-frequency �. In figures 2b–2d,
for different values of the fractional order, the supercritical pitchfork bifurcation induced
by the high-frequency � is shown. When the delayed time τ is a control parameter, the
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Figure 1. (a) Bistable and monostable regions in the F–α plane. (b)–(d) The sub-
critical pitchfork bifurcation induced by the parameter F . (e)–(f) The supercritical
pitchfork bifurcation induced by the parameter α. The thick lines are stable states
while the thin lines are unstable states. Other parameters are � = 6, ω2

0 = −1, β =
1, γ = 0.1 and τ = 0.5.

pitchfork bifurcation induced by the parameter τ is given in figure 3. With the increase
of τ , the supercritical and subcritical pitchfork bifurcations occur periodically. This can
also be obtained from eq. (10) because the parameter C1 included in eq. (10) contains the
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Figure 2. (a) Bistable and monostable regions in the �–α plane. (b)–(d) The super-
critical pitchfork bifurcation induced by the parameter �. The thick lines are stable
states while the thin lines are unstable states. Other parameters are F = 8, ω2

0 =
−1, β = 1, γ = 0.1 and τ = 0.5.
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Figure 3. The supercritical and subcritical pitchfork bifurcations induced by the
delayed time τ . The thick lines are stable states while the thin lines are unstable
states. Other parameters are F = 10, � = 6, ω2

0 = −1, β = 1, γ = 0.1 and α = 1.4.

delayed time τ . Hence, the equilibrium point changes periodically with the delayed time
τ with period 2π/�.

3. Resonance analysis

We consider the deviation Y from the stable equilibrium states X∗. Substituting Y =
X − X∗ in eq. (9), we get the equation for Y :

dαY

dtα
+ ω2

r Y + 3β X∗Y 2 + βY 3 + γ Yτ = f cos(ωt), (13)

where ω2
r = C1+3β X∗2. Since f � 1, we ignore the nonlinear terms to seek the solution

of Y in the equation

dαY

dtα
+ ω2

r Y + γ Yτ = f cos(ωt). (14)

Letting Y = AL cos(ωt + φ), and then substituting it in eq. (14), we obtain

AL = f√
S
,

S =
[

ω2
r +γ cos(ωτ)+ωα cos

(απ

2

)]2+
[

γ sin(ωτ)−ωα sin
(απ

2

)]2
,

(15)

and finally

φ = tan−1 γ sin(ωτ) − ωα sin(απ/2)

ω2
r + γ cos(ωτ) + ωα cos(απ/2)

. (16)

The response amplitude of the output is defined as
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Q = AL

f
= 1√

S
.

When S arrives at the local minimal, then VR occurs.

3.1 The double-well potential case

If we choose the parameter F as a control parameter, then VR occurs at the location F =
FVR where FVR is a root of the equation (dS/dF) = 0. When the equation (dS/dF) = 0
has no real root, then VR occurs at the location F = Fc. According to this viewpoint, for
the double-well case (ω2

0 + γ < 0), we get the following conclusions:

(a) If

ωα cos
(απ

2

)

≤ 2ω2
0 + 3γ − γ cos(ωτ), (17)

then, there is only one FVR, i.e.,

F (2)
VR =

{

−2μ2

3β

[

ω2
0 + ωα cos

(απ

2

)

+ γ cos(ωτ)
]}1/2

> Fc. (18)

The peak value of Q is

Qmax = 1

|γ sin(ωτ) − ωα sin(απ/2)| . (19)

(b) If

2ω2
0 + 3γ − γ cos(ωτ) < ωα cos

(απ

2

)

< γ − γ cos(ωτ), (20)

then there are two different FVR, i.e., F (2)
VR in eq. (18) and

F (1)
VR =

{
μ2

3β

[

−2ω2
0 − 3γ + ωα cos

(απ

2

)

+ γ cos(ωτ)
]}1/2

< Fc. (21)

At the points F (1)
VR and F (2)

VR, the response amplitude has two identical local maxima
that are expressed in eq. (19).

(c) If

ωα cos
(απ

2

)

≥ γ − γ cos(ωτ), (22)

one gets FVR = Fc. The maximum of the response amplitude Q is
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Figure 4. The regions correspond to different resonance patterns in the α–τ plane
for the double-well case. R1: the single resonance occurs at F (2)

VR; R2: the double

resonance occurs at F (1)
VR and F (2)

VR; R3: the single resonance occurs at Fc. Other
parameters are ω = 0.5 and ω2

0 = −1.

Qmax = 1
√[ωα cos(απ/2)−γ +γ cos(ωτ)]2+[γ sin(ωτ)−ωα sin(απ/2)]2

.

(23)

According to these analytical predictions, the regions corresponding to different res-
onance patterns in the α–τ plane for the double-well case are shown in figure 4. The
resonance patterns are influenced by the delayed time τ , the fractional order α and the
delayed feedback strength γ . In region R1, the single resonance occurs at F (2)

VR; in region
R2, the double resonance occurs at F (1)

VR and F (2)
VR; in region R3, the single resonance

occurs at Fc.
When the amplitude of the high-frequency signal is a control parameter, FVR or Fc

gives the location of the resonance, whose corresponding expressions are given above. In
figure 5, with the change of the values of the delayed time τ , the conditions in eq. (20) or
in eq. (22) can be satisfied. It results in Fc, F (1)

VR and F (2)
VR appearing periodically. Hence,

the single resonance and the double resonance also occur periodically. The delayed time
τ induces a bifurcation periodically in the number of the steady states at intervals of
half period of the low-frequency signal. With the increase of the delayed time τ , FVR

varies periodically with two periods, which corresponds to the periods of the two exciting
signals.

In figures 6a–6c, the bifurcation of FVR induced by the fractional order α is clearly
shown. In these subplots, αc is the bifurcation point. VR is in the single-resonance pattern
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VR and F (2)

VR appear
periodically for ω = 0.5, � = 6.0, β = 1, γ = 0.1, ω2

0 = −1.0 and α = 0.9.

when α is located on the left side of αc; while it is in the double-resonance pattern when α

is located on the right side of αc. Another fact is that αc is influenced by the delayed time
τ . In order to find out the effect of the delayed time τ on the location of the bifurcation
point αc, we give figure 6d in which αc is clearly shown in the α–τ plane. With the
increase of τ , the bifurcation point αc varies periodically with the period of the low-
frequency signal. Hence, the delayed time τ determines the location of the bifurcation
point αc. For a fixed value of the delayed time τ , there is only one bifurcation point αc.
However, there may be countless delay parameter values that satisfy one bifurcation point
αc. Also in figure 6d, we see that the bifurcation point αc is always located on the left
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Figure 6. (a)–(c) The bifurcation of FVR induced by the fractional order α for differ-
ent delayed times. (d) The bifurcation point αc on the α–τ plane. Other parameters
are ω = 0.5, � = 6.0, ω2

0 = −1.0, β = 1 and γ = 0.1.
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side of α = 1. It can be obtained from eq. (22) in which the bifurcation point αc should
satisfy ωα cos(απ/2) = γ − γ cos(ωτ). When γ is a small positive parameter, one has
αc ≤ 1. This equation is also the reason for the periodic variation of the bifurcation point
αc induced by the delayed time τ .

3.2 The single-well potential case

For the single-well case, ω2
0 + γ ≥ 0, one has the following results:

(a) If

ωα cos
(απ

2

)

< −[ω2
0 + γ cos(ωτ)], (24)

then,

FVR =
{

−2μ2

3β

[

ω2
0 + ωα cos

(απ

2

)

+ γ cos(ωτ)
]}1/2

. (25)

The maximum of the response amplitude Q is expressed by eq. (19).
(b) If

ωα cos
(απ

2

)

≥ −[ω2
0 + γ cos(ωτ)], (26)

then Q decreases with the increase of F . At F = 0, the response amplitude Q
arrives at the local maximum

Qmax = 1
√

[ωα cos(απ/2)+ω2
0 +γ cos(ωτ)]2+[γ sin(ωτ)−ωα sin(απ/2)]2

.

(27)

According to the conditions in eqs (24) and (26), the regions for single resonance and no-
resonance pattern for the single-well case are given in figure 7. The line in each subplot
denotes the equation ωα cos(απ/2) = −[ω2

0 + γ cos(ωτ)]. On the left side of the line,
eq. (26) is satisfied, resulting in the no-resonance pattern for any value of F , while on
the right side of the line, eq. (24) is satisfied, leading to the single-resonance pattern
at FVR.

Single resonance occurs for the single-well potential case when FVR > 0. Figure 8
indicates that single resonance occurs only for some appropriate delayed time τ . For this
case, FVR = 0 and FVR > 0 exist periodically. Hence, the no-resonance and single-
resonance patterns of VR occur periodically as well. It can also be obtained from the
condition in eq. (24) which means that single resonance occurs only when α > 1. From
figure 8, we know that the fractional-order damping has an important effect on the reso-
nance pattern, and the delayed time τ influences the amplitude of FVR, i.e., the location
of the resonance.

In figure 9, the bifurcation of FVR induced by the fractional-order damping is given.
In figures 9a–9c, FVR turns to FVR > 0 from FVR = 0 as α increases. It implies that
VR turns to single-resonance pattern from a no-resonance pattern. The location of the
bifurcation point αc depends on the delayed time τ . In figure 9d, the bifurcation point
αc is given in the α–τ plane. αc varies periodically with period 2π/ω as τ increases.
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Figure 7. The regions correspond to different resonance patterns for the single-well
case. In the α–τ plane, no resonance occurs on the left side of the line while single
resonance occurs at FVR on the right side of the line. Other parameters are ω =
1.0, β = 1.0 and ω2

0 = 0.1.

Another fact is that αc is always located on the right side of α = 1. It is different from
the double-well potential case in figure 6d. This is because single resonance occurs only
when eq. (24) is satisfied resulting in the bifurcation point being located on the right side
of α = 1.

3.3 Numerical simulations

It is important to analyse the validity of the theoretical method used on VR in this paper.
In this subsection, several examples will be given to verify the analytical predictions.

0 5 10 15 20 25 30
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τ

F
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R

Figure 8. With the increase of the delayed time τ , FVR = 0 and FVR > 0 appear
periodically for ω = 1, � = 10, β = 1, γ = 0.1, ω2

0 = 0.1 and α = 1.05.
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Figure 9. (a)–(c) The bifurcation of FVR induced by the fractional order α for differ-
ent delayed times. (d) The bifurcation point αc on the α–τ plane. Other parameters
are ω = 1, � = 10, β = 1, γ = 0.1 and ω2

0 = 0.1.

For the numerical simulations, the response amplitude is calculated by using the
expression

Q =
√

Q2
sin + Q2

cos

f
, (28)

with

Qsin = 2

rT

∫ rT

0
x(t) sin(ωt)dt, Qcos = 2

rT

∫ rT

0
x(t) cos(ωt)dt,

where T = 2π/ω and r is a positive integer which should be chosen big enough. For
convenience, we choose r = 100 in our simulations. According to refs [15,21], the Euler
version of the integration of eq. (1) is given by

xk+1 = −
k

∑

j=1

wα
j xk+1− j

+�tα
[−ω2

0xk − βx3
k − γ xk−N + f cos(ωk�t) + F cos(�k�t)

]

,

(29)

where w
(α)
0 = 1, w

(α)
j = (1− α+1

j )w
(α)
j−1, j = 1, 2, 3, 4, . . . , k. �t is the integral time step

and N = τ/�t is the number of discrete delayed time steps.
For the double-well case, the bifurcation of the resonance peak induced by the value

of the fractional order α is given in figure 10. With the increase of α, the plot of Q turns
to double resonance from single resonance in the three-dimensional theoretical curve
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Figure 10. Different resonance patterns induced by the fractional order α for ω = 0.5,
f = 0.025, � = 6.0, ω2

0 = −1.0, β = 1, γ = 0.1 and τ = 0.5. (a) The three-
dimensional theoretical curve of the response amplitude. (b) The single resonance
occurs for α = 0.5. (c) The resonance occurs when α is close to the bifurcation point
αc. (d) The double resonance occurs for α = 1.5. The solid lines are the analytical
results while the dotted lines are the numerical results.

as shown in figure 10a. When the condition in eq. (22) is satisfied, e.g., α = 0.5 in
figure 10b, Q arrives at the local maximum at F = Fc. In figure 10c, α = 1.0, although
eq. (20) is satisfied, α is very close to the bifurcation point αc that is shown in figure
6b. It leads to double resonance which is hardly seen. When α = 1.5, the condition in
eq. (20) is satisfied, and it induces double resonance, as shown in figure 10d. For the
double-resonance pattern, the response amplitude Q arrives at two identical peaks at the
locations F (1)

VR and F (2)
VR, while Q reaches a local minimum at F = Fc. Figure 10 proves

the role of the fractional-order damping on the resonance pattern again.
For the single-well case, figure 11 shows that single resonance can be induced by the

fractional-order damping. In figure 11a, the three-dimensional theoretical curve of the
response amplitude Q vs. the values of α and F is given. A single resonance appears in
the Q–F plot for increasing values of α. However, in the ordinary overdamped Duffing
oscillator with a single-well potential, there is no resonance at all, and this fact can be
easily derived from eq. (26). Figures 11b–11d give three specific examples for the infor-
mation of Q in the two-dimensional curves. For α = 0.5 and 1.0, eq. (26) is satisfied,
and therefore Q arrives at the local maximum at F = 0. For these two situations, Q
is a decreasing function of the variable F . When α = 1.5, the condition in eq. (24) is
satisfied, and hence resonance occurs at FVR that is expressed in eq. (25), and the local
maximum of Q is expressed by eq. (19). Figure 11 explains that the fractional-order
damping changes the resonance pattern in the monostable Duffing oscillator once again.
By comparing the theoretical predictions and numerical simulations in figures 10 and
11, we see that the errors between the analytical results and the numerical ones are very
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Figure 11. Different resonance patterns induced by the fractional order α for ω = 1,
f = 0.025, � = 1.0, ω2

0 = 0.1, β = 1, γ = 0.1 and τ = 0.5. (a) The three-
dimensional theoretical curve of the response amplitude. (b) and (c) There is no
resonance for α = 0.5 or α = 1.0. (d) The single resonance occurs for α = 1.5. The
solid lines are the analytical results while the dotted lines are the numerical results.

small. The analytical results of Q are in good agreement with the numerical ones, which
confirms our theoretical analysis.

4. Conclusions

In the present paper, the pitchfork bifurcation and vibrational resonance in a delayed
fractional-order Duffing oscillator are investigated for double-well potential and the
single-well potential respectively. Based on the vibrational mechanism, the method of
separation of slow and fast motions is used to predict the bifurcation and resonance.
We find that the amplitude of the high-frequency signal induces the subcritical pitch-
fork bifurcation, while the frequency of the high-frequency signal and the value of the
fractional-order induces supercritical pitchfork bifurcation. The delayed time induces
both subcritical and supercritical pitchfork bifurcations. We also find that not only the
delayed time but also the value of the fractional-order induce different resonance patterns.
The effects of the fractional damping and the time delay feedback on the VR phenomenon
are very different. The value of the fractional order mainly determines the pattern of VR.
With the change of the fractional order, the VR pattern transforms itself between sin-
gle resonance and double resonance for the double-well potential case, and between no
resonance and single resonance for the single-well potential case. There is a bifurcation
point of the fractional order to distinguish these different resonance patterns. The delayed
parameter affects the location and the peak value of VR, and it also affects the location of
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the bifurcation point of the fractional order. The connection between bifurcation and reso-
nance is that the pitchfork bifurcation is the necessary condition for the double-resonance
pattern. In order to confirm the validity of the theoretical analysis, some numerical com-
puted examples are given. The theoretical predictions and the numerical simulations are
in good agreement. The results in this paper contribute to a better understanding of the
VR phenomenon in the fractional and delayed systems.
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