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Abstract. In this paper, we investigate into the short time semiclassical entanglement of a general class
of two-coupled harmonic oscillator system that includes additional nonlinear terms in the potential of the
form λxmyn, such that the sum of the degree m and n equals to a fixed constant. An analytical expression
of the short time linear entropy is derived and it shows a clear relationship between the single mode
squeezing and the entanglement dynamics. In addition to that, our theoretical analysis has shown that
the short time semiclassical entanglement entropy displays a dependence on the Planck constant � of the
form �

m+n−2 for this class of systems. By applying our results to the linearly coupled harmonic oscillator,
the Barbanis-Contopoulos, the Hénon-Heiles and the Pullen-Edmonds Hamiltonian, we have found a good
correspondence between the numerical and analytical results in the short-time regime. Interestingly, our
results have demonstrated both analytically and numerically that an appropriate manipulation of initial
squeezing can have the significant effect of enhancing the short time semiclassical entanglement between
the two subsystems.

1 Introduction

The study of short time entanglement has importance in
uncovering the underlying mechanisms where a fast rate
of entanglement production occurs. Such a study has been
performed by Angelo and Furuya [1] through the analy-
sis of the semiclassical limit of the entanglement in the
Dicke model and the coupled Kerr oscillator. In a similar
context, Žnidarič and Prosen [2] have analyzed the gen-
eration of entanglement in regular system by using the
echo operator. In addition, by performing a semiclassi-
cal analysis on entanglement generation within bipartite
quantum system, Jacquod [3] had found that for the short-
ranged interaction potential, the entanglement production
is exponentially fast in chaotic systems, while algebraic in
regular systems. In many other related works, the entan-
glement production at the initial short time is found to be
a good indicator of the regular-to-chaotic transition [4–9].

From a practical point of view, entanglement is known
to be an important resource for the purpose of quan-
tum information processing [10–12]. For example, the abil-
ity to exert control on the rate of entanglement genera-
tion would enable the secure transmission of information
against the most general coherent attacks [13]. An ex-
tremely useful approach to generate continuous variable
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entanglement is that of two-mode squeezing. If we were
to perform single-mode squeezing prior to the two-mode
squeezing, it has been shown via diverse quantum systems
that the generation of entanglement can be enhanced. This
notion has been demonstrated in the Jaynes-Cummings
model where a stronger entanglement between a two-level
atom and an electromagnetic field mode is attained by
employing a squeezed state rather than a coherent state
as the initial photon state [14]. Note that the enhance-
ment only arises when the initial state of the field mode
is sufficiently squeezed. Similar threshold has also been
observed in systems of coupled harmonic oscillators [15].
In these cases, the maximum entanglement is observed to
grow steadily with an increase in the initial squeezing pa-
rameter beyond the threshold. In fact, the enhancement
in entanglement can also be studied by performing un-
equal single-mode squeezing separately on the two field
modes [16]. Notably, entanglement is found to persist even
in a decohering environment with high temperature when
the normal modes are squeezed [17]. In addition to that,
Wang and Sanders [18] have analyzed symmetric multi-
qubit states and they have found a clear relationship be-
tween spin squeezing and pairwise entanglement. More re-
cently, Beduini and Mitchell [19] have extended the results
of reference [18] to optical fields and they have found a
spin-squeezing inequality for photons.
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The consideration of these works has led us to the
question of whether initial squeezing has the effect of en-
hancing the rate of entanglement production in the short
time regime. In this paper, we aim to answer this ques-
tion both analytically and numerically through quanti-
fying entanglement by the linear entropy and studying
its dynamics. Moreover, we will explore the general re-
sult of � dependence in the short time regime. We shall
consider a general interaction potential of the form Vλ =
λxmyn since it is applicable to a wide range of nonlinear
chaotic oscillators. In particular, we investigate into the
linearly coupled harmonic oscillators, and the Barbanis-
Contopoulos [20,21], the Hénon-Heiles [22–28] and the
Pullen-Edmonds Hamiltonian [29–32] in this paper. The
interest in exploring these systems lies in their intrinsic
rich and contrasting classical and quantum dynamical be-
haviour. In addition, there is as yet no research being per-
formed to understand the relationship between entangle-
ment dynamics and the initial squeezing effect in the short
time regime for these systems. For this purpose, we shall
employ the tensor product of a squeezed vacuum state
to initiate the entanglement dynamics. Our restriction to
the consideration of initial squeezed vacuum state instead
of generic squeezed coherent state results from analyti-
cal tractability in the derivation of our final results. In
summary, our main focus in this paper is to analyze the
relationship between initial squeezing and the short time
entanglement dynamics as well as its � dependence in the
short time regime.

Our paper is organized as follows. First, we perform
mathematical analysis on the short time entanglement for
the case of a general interaction potential Vλ = λxmyn

when the initial state is a tensor product of squeezed
vacuum state. This allows us to determine the analyti-
cal expression of the linear entropy of the resulting short
time entanglement dynamics. Then, we apply these re-
sults to the linearly coupled harmonic oscillator, and the
Barbanis-Contopoulos, the Hénon-Heiles and the Pullen-
Edmonds Hamiltonian, where good agreement is found
between our numerical and analytical results.

2 Model description

We consider a general two-dimensional classical
Hamiltonian of the form:

H =
1
2
(
p2

x + p2
y

)
+

1
2
(
x2 + y2

)
+ λxmyn. (1)

In the quantum case, the corresponding Schrödinger equa-
tion can be written as

i�
∂

∂t
ψ(x,y, t) =

−�
2

2m
∇2ψ(x,y, t) + V (x,y)ψ(x,y, t),

(2)
where V (x,y) = 1

2 (x2 + y2) + λxmyn is the two-
dimensional potential with λ being the coupling constant.
For analytical purposes, we shall split the Hamiltonian
into a sum of uncoupled harmonic oscillator Hamiltonian

and an interaction potential. Hence, the Schrödinger equa-
tion can be rewritten as

i�
∂

∂t
ψ(x,y, t) =

(
Ĥ0 + V̂λ

)
ψ(x,y, t), (3)

where Ĥ0 = −�
2

2m ∇2 + 1
2 (x2 + y2) and V̂λ = λxmyn.

The time evolution of the quantum state ψ(x,y, t) is
given by

ψ(x,y, t) = Û(t)ψ(x,y,0), (4)

where the time evolution operator is given by:

Û(t) = exp
(−it

�
(Ĥ0 + V̂λ)

)
.

In our numerical computations, the time evolution of the
wave function is performed by means of the second-order
split operator technique. Feit et al. [33,34] have done a
detailed analysis on the time evolution of the wave packet
in the Hénon-Heiles potential and we have followed their
approach in this work. By using the general quantum
Hamiltonian given by equation (3), we now proceed to
study the short time continuous variable entanglement in
the semiclassical regime both analytically and numerically.

First, we write a pure continuous bipartite state as
follows:

|ψ〉12 =
∫
ψ(x,y)|x〉|y〉dxdy, (5)

where |x〉 and |y〉 are the continuous basis representation
of the position operators of the first and second particle,
respectively. The reduced density function of the first sub-
system ρ1 can be obtained by summing over the second
field mode, and it can be expressed in terms of the bipar-
tite wave function ψ(x,y), i.e,

ρ1(x, z) =
∫
ψ(x,y)ψ∗(z,y)dy, (6)

where ρ1(x, z) is the reduced density function of the first
subsystem in the continuous position basis representation.

To quantify the continuous variable entanglement, we
use the linear entropy of entanglement based on numerical
methods proposed in references [35,36]. The linear entropy
of entanglement δ(t) is defined as

δ(t) = 1 −
∑

i

λ2
i , (7)

where λi are the eigenvalues of the Hermitian kernel
ρ1(x, z). These eigenvalues are numerically computed from
the Fredholm type I integral equation of ρ1(x, z), which is
given by ∫

ρ1(x, z)φi(z)dz = λiφi(x), (8)

where λi are the eigenvalues with the corresponding
Schmidt eigenfunctions φi(x). Note that there exists an-
other definition of the linear entropy in terms of the con-
tinuous basis representation, and it can be written as:

δ(t) = 1 − Tr
(
ρ1

2
)

= 1 −
∫ ∞

−∞

∫ ∞

−∞
ρ1(x, z)ρ1(z,x)dxdz.

(9)
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This definition is well suited for analytical calculation of
the linear entropy. Hence, for numerical computation, we
shall use the definition of linear entropy given by equa-
tion (7) while for theoretical analysis, we use the definition
given by equation (9).

3 The squeezed coherent state

Since we are treating our system in terms of the continu-
ous position basis, we have to represent the squeezed co-
herent state in terms of the coordinate representation. A
year after the discovery by Rai and Mehta’s on the coor-
dinate representation of the squeezed coherent state [37],
Hong-Yi and VanderLinde [38] have found another analyt-
ical expression of the same wave function. Nonetheless, we
prefer the one proposed by Møller et al. [39] due to the rel-
ative simplicity of the wave function. These authors have
followed Hollenhorst [40] and Caves’s [41] definition of the
displacement and squeezing operators, which is given by

D̂(αk) = exp
(
αkâk

† − α∗
kâk

)
(10)

and

Ŝ(ζk) = exp
(

1
2
ζkâk

†2 − 1
2
ζk

∗âk
2

)
. (11)

The squeezed coherent state is thus defined as

|αk, ζk〉 = D̂ (αk) Ŝ (ζk) |0〉. (12)

Here αk = |αk|eiφk and ζk = rke
iθk are complex numbers.

αk is related to the phase space variables (qk, pk), which
is given by

αk =
1√
2�

(qk + ipk) , (13)

where k = 1, 2, respectively. According to Møller et al. [39]
the squeezed coherent state in the position basis can be
written as

ψ(x, αk, ζk) =
(

1
π�

)1/4 (
cosh rk + eiθ sinh rk

)−1/2

× exp

{
− 1

2�

(
cosh rk − eiθ sinh rk
cosh rk + eiθ sinh rk

)

× (x − qk)2 +
i

�
pk (x − qk/2)

}
. (14)

In our theoretical and numerical analysis, we shall use the
tensor product state of this wave function with αk = 0 to
study the quantum entanglement dynamics for different
squeezing parameter values.

4 Short time entanglement of the squeezed
vacuum

In order to calculate the time evolution of the wave func-
tion, we shall make use of the Zassenhaus formula [42],

which is the dual of the Campbell-Baker-Hausdorff for-
mula. Zassenhaus formula can be written as

et(X+Y ) = etX etY e−
t2
2 [X,Y ] . . . (15)

The short time evolution of the wave function is obtained
through the evaluation of Zassenhaus formula followed by
truncating all the higher order terms in t, with the time
evolution operator expressed in the following way:

Û(t) = exp
(−iΔt

�
Ĥ

)

≈ exp
(−iΔt

�
V̂λ

)
exp

(−iΔt
�

Ĥ0

)
. (16)

Consider the squeezed coherent wave function associated
with the x variable in the position basis ψ(x, α1, ζ1),
as given in equation (14). Here, α1 is the center of the
Gaussian wave packet and ζ1 is the squeezing parameter.
Similarly, we consider the squeezed coherent wave func-
tion associated with the y variable in the position basis
which is ψ(y, α2, ζ2). Hence, the tensor product state at
time t = 0 can be written as

ψ(x,y,0) = ψ(x, α1, ζ1)ψ(y, α2, ζ2). (17)

Now, we treat the tensor product of the squeezed vacuum
state by taking α1 = α2 = 0. Hence, the initial wave
packet at time t = 0 is given by:

ψ(x,y,0) =
(

1
π�

)1/2

N1N2 exp

(
− (x2/η1 + y2/η2

)
2�

)
,

(18)
where

Nk =
(
cosh rk + eiθk sinh rk

)−1/2

and

ηk =
(

cosh rk + eiθk sinh rk
cosh rk − eiθk sinh rk

)

with k = 1, 2.
The time evolution of the wave packet is then calcu-

lated by substituting equations (16) and (18) into equa-
tion (4). This leads to

ψ(x,y,Δt) =
(

1
π�

)1/2

exp
(−iΔt

�
V̂λ

)

× exp
(−iΔt

�
Ĥ0

)
ψ(x,y,0). (19)

In order to calculate ψ(x,y,Δt), we make the assumption
that the action of the unitary operator involving Ĥ0 on
ψ(x,y,0) gives only a phase factor. This is an approxi-
mation since while the vacuum state is an eigenfunction
of Ĥ0, the squeezed vacuum state is not. However, if we
consider a slightly squeezed vacuum state with rk small,
the error made in the approximation is small, which will
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Page 4 of 11 Eur. Phys. J. D (2014) 68: 238

be duly verified through results determined from numeri-
cal computation. Hence, we have the following expression
for the short time evolved wave packet:

ψ(x,y,Δt) ≈
(

1
π�

)1/2

N1N2 exp
(
− i

�
ΦΔt

)

× exp
(−iΔt

�
V̂λ

)

× exp

(
− (x2/η1 + y2/η2

)
2�

)
, (20)

where exp (−iΦΔt/�) is the phase factor resulting from
the above assumption. Note that we will ignore this phase
factor in our subsequent calculation since it has no bearing
on the results of linear entropy.

5 Linear entropy under the general
interaction potential

Next, let us substitute the general expression of the inter-
action term V̂λ = λxmyn into equation (20). We get

ψ(x,y,Δt) =
(

1
π�

)1/2

N1N2 exp
(−iΔt

�
λxmyn

)

× exp
(−(x2/η1 + y2/η2)

2�

)
.

The reduced density function of subsystem (1) is then
given by:

ρ1(x, z) =
(

1
π�

)
|N1|2|N2|2 exp

(
− (x2/η1 + z2/η∗1

)
2�

)

×
∫ ∞

−∞
exp

(−y2

2�
(1/η2 + 1/η∗2)

)

× exp
(−iΔtλ

�
(xm − zm)yn

)
dy.

Expanding the exponential term containing yn, we obtain

ρ1(x, z) =
(

1
π�

)
|N1|2|N2|2 exp

(
− (x2/η1 + z2/η∗1

)
2�

)

×
∞∑

k=0

1
k!

(−iλΔt
�

)k

(xm − zm)k

×
∫ ∞

−∞
exp

(
−�(η2)y2

�|η2|2
)

ynkdy.

The y integral gives a non-zero contribution only when
nk is an even number or zero. Here, �(η2) denotes the
real part of the variable η2. By evaluating the standard
Gaussian integral, we obtain the reduced density function
of subsystem (1) which is associated with the variable x

as follows:

ρ1(x, z) =
(

1
π�

)
|N1|2|N2|2

× exp

(
− (x2/η1 + z2/η∗1

)
2�

)

×
∞∑

k=0

1
k!
−
(−iλΔt

�

)k

(xm − zm)k

× �
(nk+1)

2

(
|η2|2
�(η2)

) (nk+1)
2

Γ

(
nk + 1

2

)
.

It has already been mentioned that the linear entropy δ(t)
of the reduced density function ρ1(x, z) can also be defined
as a double integral (see Eq. (9)). This definition is best
suited for analytical calculation of the linear entropy of
entanglement. Thus, to find the linear entropy, it is nec-
essary to first find the trace of the square of ρ1(x, z):

Tr(ρ2
1(x, z)) =

(
1
π�

)2

|N1|4|N2|4

×
∞∑

k,k′=0

(−1)k
′ 1
k!k′!

(−iλΔt
�

)k+k′

× �
nk+1+nk′+1

2

(
|η2|2
�(η2)

) (nk+1+nk′+1)
2

× Γ

(
nk + 1

2

)
Γ

(
nk′ + 1

2

)

×
∫ ∞

−∞

∫ ∞

−∞
exp

(
− (x2 + z2)

�

�(η1)
|η1|2

)

× (xm − zm)k+k′
dxdz. (21)

In order to evaluate the double integral in equation (21),
we are required to perform a Cartesian to polar-coordinate
transformation. This leads to the following result:

Tr
(
ρ2
1(x, z)

)
=
(

1
π�

)2

|N1|4|N2|4

×
∞∑

k,k′=0

(−1)k′ 1
k!k′!

(−iλΔt
�

)k+k′

× �
nk+1+nk′+1

2

(
|η2|2
�(η2)

)nk+1+nk′+1
2

× Γ

(
nk + 1

2

)
Γ

(
nk′ + 1

2

)

×
∫ ∞

0

exp

(
−r2�(η1)

�|η1|2
)
rm(k+k′)+1dr

×
∫ 2π

0

(cosm φ− sinm φ)k+k′
dφ. (22)
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After solving the Gaussian integral, we obtain

Tr
(
ρ2
1(x, z)

)
=
(

1
π

)2

|N1|4|N2|4
(

|η1|2|η2|2
�(η1)�(η2)

)

×
∞∑

k,k′=0

(−1)k′

k!k′!
(−iλΔt)k+k′

× 1
2

�
((n+m)/2−1)(k+k′))

×
(

|η1|2
�(η1)

)m(k+k′)
2

(
|η2|2
�(η2)

)n(k+k′)
2

× Γ

(
nk + 1

2

)
Γ

(
nk′ + 1

2

)

× Γ

(
m(k + k′)

2
+ 1
)
Im,k+k′ , (23)

where Im,k+k′ is a φ integral given by:

Im,k+k′ =
∫ 2π

0

(cosm φ− sinm φ)k+k′
dφ. (24)

Since Im,k+k′ is independent of � and also independent
of the variables η1 and η2, it is not necessary to evaluate
this integral to find the �-dependence of the short time
entanglement. Furthermore, by using basic trigonometric
and hyperbolic identities, it can be easily shown that

|N1|4|N2|4
(

|η1|2|η2|2
�(η1)�(η2)

)
= 1. (25)

The linear entropy can be evaluated by substituting equa-
tion (23) into equation (9), and we can clearly see that
the first term in the summation, i.e., k = k′ = 0, gives
unity and it will cancel with the +1 term in the definition
of δ(t). Hence, we have the following expression for the
linear entropy:

δ(t) =
(

1
π

)2 ∞∑
k,k′=0,(k=k′ �=0)

i(k+k′) (−1)(k+1)

k!k′!

× (λΔt)k+k′ × 1
2

�
((n+m)/2−1)(k+k′))

×
(

|η1|2
�(η1)

)m(k+k′)
2

(
|η2|2
�(η2)

)n(k+k′)
2

× Γ

(
nk + 1

2

)
Γ

(
nk′ + 1

2

)
Γ

(
m(k + k′)

2
+ 1
)

× Im,k+k′ . (26)

Now, we have to determine the lowest power of � within
δ(t). We have already known that to get a nonzero contri-
bution, nk should be an even number. Similarly, for the
second summation index k′, to get a nonzero term, nk′
should also be an even number. Hence, the constraints to
yield nonzero values of the integrals imply that nk′ and nk

should be even integers or zero. Moreover, based on the
real positive definiteness property of the linear entropy
and using the sign of i(k+k′) × (−1)(k+1), we realize the
conditions: k + k′ must be even, and k + k′ ≥ 2. After
considering all the possible options for the smallest values
of k and k′ depending on the nature of m and n, we come
to the conclusion that the k and k′ which obey k+ k′ = 2
shall give the non-vanishing lowest order terms for �. This
tells us that the lowest order exponent for the time in-
terval in the short time semiclassical regime is two, i.e.,
k + k′ = 2. At the same time, this implies that the min-
imum power of the � term in the expression for δ(t) is
given by:

minimum power of � = m+ n− 2. (27)

Hence, the general short time entanglement for the
squeezed vacuum state under the interaction potential
λxmyn takes the form

δ(t) = κΔt2λ2
�

m+n−2

(
|η1|2
�(η1)

)m( |η2|2
�(η2)

)n

, (28)

where the coefficient κ is given by

κ =
∑

k,k′,(k+k′=2)

i(k+k′)

2π2

(−1)k+1

k!k′!

× Γ

(
nk + 1

2

)
Γ

(
nk′ + 1

2

)
Γ

(
m(k + k′)

2
+ 1
)

× Im,k+k′ .

(29)

Then, by taking k′ = k − 2, we can replace the double
summation with a single dummy summation with index j
such that

κ =
∑

j

κj . (30)

If we were to consider the special case θ1 = θ2 = 0, the
squeezing parameters are real and consequently η1 and η2
are also real. Hence, for real squeezing parameters, our
expression of the linear entropy reduces to

δ(t) = κt2λ2
�

m+n−2|η1|m|η2|n. (31)

In the case of coherent vacuum state, we have |η1| = 1 and
|η2| = 1, and equation (31) of the linear entropy reduces to

δ(t) = κt2λ2
�

m+n−2. (32)

From these results, it can be clearly seen that the � de-
pendence of short time entanglement entropy depends on
the nature of the interaction potential. More specifically,
if the degree m and n have orders higher than unity, an
� dependent short time entanglement dynamics is to be
expected.

The type of interaction potentials that we have studied
appears in many models, especially the interaction poten-
tial λxy occurs in the study on the entanglement dynamics
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of the coupled Kerr oscillator [1]. Instead of exploring this
system, we shall investigate into the coupled harmonic os-
cillators with the interaction term λxy. Furthermore, our
general result on the linear entropy can be easily applied
to diverse coupled oscillator systems such as the Barbanis-
Contopulos, the Hénon-Heiles and the Pullen-Edmonds.

6 Application of analytical results to coupled
oscillator systems

6.1 Squeezed vacuum under the linearly coupled
harmonic oscillator

Let us first consider the following Hamiltonian with a lin-
ear interaction term in x and y:

H =
1
2
(
p2

x + p2
y

)
+

1
2
(
x2 + y2

)
+ λxy. (33)

Applying our earlier theoretical analysis, we found that
the value of the coefficient κ = 1

2 . Hence, the expression
for the linear entropy given by equation (28) becomes

δ(t) =
1
2
Δt2λ2

(
|η1|2
�(η1)

)(
|η2|2
�(η2)

)
. (34)

For real squeezing parameter, this expression reduces to

δ(t) =
1
2
Δt2λ2|η1||η2|. (35)

For coherent vacuum state, |η1| = 1 and |η2| = 1. The
linear entropy of equation (35) then further simplifies to

δ(t) =
1
2
Δt2λ2. (36)

This result clearly shows that for interaction potential
V̂λ = λxy, the short time linear entropy of entanglement
is independent of the Planck constant �.

6.2 Squeezed vacuum under the Barbanis-Contopoulos
Hamiltonian

This Hamiltonian was introduced by the astronomers
Contopoulos and Barbanis [20,21]. It is written in the fol-
lowing form:

H =
1
2
(
p2

x + p2
y

)
+

1
2
(
x2 + y2

)
+ λx2y. (37)

The linear entropy for this system can be obtained by
employing equation (28) directly with m = 2 and n = 1.
This leads to the short time linear entropy:

δ(t) =
1
2
Δt2λ2

�

(
|η1|2
�(η1)

)2( |η2|2
�(η2)

)
. (38)

For real squeezing parameters, i.e., θ1 = θ2 = 0, the linear
entropy reduces to

δ(t) =
1
2
Δt2λ2

�|η1|2|η2|. (39)

For the coherent vacuum state |η1| = 1 and |η2| = 1, the
linear entropy in equation (39) becomes

δ(t) =
1
2
Δt2λ2

�. (40)

6.3 Squeezed vacuum under the Hénon-Heiles
Hamiltonian

The Hénon-Heiles system was first studied by the as-
tronomers Hénon and Heiles in 1964 [22] in the context of
analyzing the constants of motion in galactic dynamics.
Due to its simplicity and rich dynamical properties, chaos
theorists had extensively explored different classical dy-
namical aspects of this system [23–27]. The Hénon-Heiles
Hamiltonian can be written as

H =
1
2
(
p2

x + p2
y

)
+

1
2
(
x2 + y2

)
+ λ

(
x2y − y3

3

)
. (41)

Unlike the earlier Hamiltonian, the Hénon-Heiles system’s
interaction potenital V̂λ = λ(x2y − y3/3) possesses an
extra term y3/3. By means of the same theoretical ar-
guments as given in Section 4, we arrive at the reduced
density function of the first subsystem ρ1 as follows:

ρ1(x, z) =
(

1
π�

)
|N1|2|N2|2 exp

(−(x2/η1 + z2/η1
∗)

2�

)

×
∫ ∞

−∞
exp

(−y2�(η2)
�|η2|2 − iλΔt

�
(x2−z2)y

)
dy.

(42)

Here, we notice that the y3 term vanishes in the reduced
density function and it does not contribute to the entan-
glement in the short time regime. Hence, we can directly
apply our general expression given by equation (28) to
obtain the linear entropy:

δ(t) =
1
2
Δt2λ2

�

(
|η1|2
�(η1)

)2( |η2|2
�(η2)

)
. (43)

Again, for real squeezing parameters, the linear entropy
reduces to

δ(t) =
1
2
Δt2λ2

�|η1|2|η2|. (44)

For the coherent vacuum state, the linear entropy in equa-
tion (44) becomes

δ(t) =
1
2
Δt2λ2

�. (45)

Here, the short time linear entropy is identical to the
Barbanis-Contopoulos Hamiltonian since both systems
share the same interaction potential x2y.
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Table 1.

Hamiltonian Squeezed Vaccum Coherent Vaccum (θ = 0)

Linearly coupled harmonic oscillator δ(t) = 1
2
Δt2λ2

(
|η1|2
�(η1)

) (
|η2|2
�(η2)

)
δ(t) = 1

2
Δt2λ2

Barbanis-Contopoulos δ(t) = 1
2
�Δt2λ2

(
|η1|2
�(η1)

)2 ( |η2|2
�(η2)

)
δ(t) = 1

2
�Δt2λ2

Hénon-Heiles δ(t) = 1
2
�Δt2λ2

(
|η1|2
�(η1)

)2 ( |η2|2
�(η2)

)
δ(t) = 1

2
�Δt2λ2

Pullen-Edmonds δ(t) = 1
2
�

2Δt2λ2
(

|η1|2
�(η1)

)2 ( |η2|2
�(η2)

)2

δ(t) = 1
2
�

2Δt2λ2

6.4 Squeezed vacuum under the Pullen-Edmonds
Hamiltonian

The Pullen-Edmonds Hamiltonian can be written as:

H =
1
2
(
p2

x + p2
y

)
+

1
2
(
x2 + y2

)
+ λx2y2. (46)

Pullen and Edmonds had shown that the classical dy-
namical behaviour of this model can range from purely
regular, to a mixture of regular and chaos, and to fully
chaotic [29]. This Hamiltonian had been used extensively
in many works related to classical and quantum dy-
namics [30–32,43,44]. By employing our general analyti-
cal expression given by equation (28) with m = 2 and
n = 2, the short time linear entropy of entanglement
for the squeezed vacuum state in the Pullen-Edmonds
Hamiltonian is given by

δ(t) =
1
2
Δt2λ2

�
2

(
|η1|2
�(η1)

)2( |η2|2
�(η2)

)2

. (47)

For the squeezed vacuum state with zero squeezing angles,
this expression becomes

δ(t) =
1
2
Δt2λ2

�
2|η1|2|η2|2. (48)

Also for the coherent vacuum state |η1| = 1 and |η2| = 1,
the linear entropy reduces to

δ(t) =
1
2
Δt2λ2

�
2. (49)

Finally, we summarize our results for all the above systems
in Table 1 for the sake of comparison. From Table 1, we
clearly see that the entanglement dynamics is independent
of the Planck constant for the linearly coupled oscillator.
For all the generic Hamiltonians which possess chaotic be-
havior, there is an � dependent entanglement dynamics
according to the degree of their interaction term. It is im-
portant to mention that these theoretical results are valid
only in the short time regime and the squeezing on the
vacuum state is assumed to be small.

7 Theoretical and numerical comparison
of the short time linear entropy

In this section, we detail our results from numerical com-
putations and compare them against our analytical re-
sults. First, we study the entanglement dynamics of the
coherent vacuum state for the linearly coupled harmonic
oscillators, the Barbanis-Contopoulos, the Hénon-Heiles
and the Pullen-Edmonds Hamiltonian, respectively. Then,
we focus on the entanglement of the squeezed vacuum
state, and finally we explore the � dependence of the en-
tanglement for these systems.

7.1 Coherent vacuum state and the linear entropy

It is worthwhile to first observe the validity of our the-
oretical results against the numerical results for the case
of vacuum state. For this purpose, Figure 1 plots the lin-
ear entropy against time for the four systems of interest.
Note that the solid blue curve and the dashed red curve
show the entanglement entropy evaluated numerically and
theoretically, respectively. The results in Figure 1 clearly
demonstrate the close agreement between the analytical
and numerical results in the short time regime. In fact, a
similar Δt2 dependence of the entanglement has been ob-
served in previous works [1,2] and a similar behavior has
also been found for the idempotency defect in a dissipative
system [45].

It can be observed from Figure 1 that the difference be-
tween the theoretical and numerical results increases with
time. This is due to the theoretical assumption that the
time evolution operator containing Ĥ0 gives only a phase
factor, with the error from this assumption increasing with
time. In addition, the truncation of the Zassenhaus for-
mula and δ(t) given by equation (28) where higher or-
der terms are dropped also introduces error that increases
with time. This explains the observed difference between
the theoretical and the numerical results in the long time
regime.

7.2 Squeezed vacuum state and the linear entropy

In Figure 2, the numerical and theoretical linear entropy
of entanglement for the squeezed vacuum state is shown

http://www.epj.org
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(a) Linearly coupled harmonic oscillator with λ = 1√
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(b) Barbanis-Contopoulos Hamiltonian with λ = 0.25
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(c) Hénon-Heiles Hamiltonian with λ = 1√
80
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(d) Pullen-Edmonds Hamiltonian with λ = 0.25

Fig. 1. Plots of the linear entropy of entanglement δ(t) versus short time Δt for initial coherent vacuum state. The solid blue
curve and the dashed red curve show the entanglement entropy evaluated numerically and analytically, respectively. The plots
show that both the analytical and numerical results are in good agreement within the short time regime. Note that we have
employed the following parameter values: ζ1 = ζ2 = 0, and � = 1.

for three different Hamiltonians. It is observed that these
results of linear entropy of entanglement for the squeezed
vacuum state is in good agreement with the theoreti-
cal prediction in the short time regime. It has already
been noted that squeezing can enhance entanglement and
our result clearly demonstrates this phenomenon. In fact,
equation (28) clearly indicates that the linear entropy de-
pends on the values of η1 and η2 as well as the exponents
of the interaction terms, i.e., m and n. As the values
of m and n become larger, we expect the entanglement
growth via squeezing to become larger. Moreover, it can
be ascertained that the entanglement growth is higher
when both modes of the wave function are simultane-
ously squeezed, i.e., ζ1 and ζ2 are nonzero. It is apparent
that initial squeezed state always leads to higher entan-
glement compared to initial coherent vacuum state within
the short time regime. For the Hénon-Heiles Hamiltonian,

there occurs the interesting situation where the exponents
of η1 and η2 as shown in equation (44) are not symmet-
ric. This asymmetry in the exponent of η1 and η2 comes
from the asymmetry of the Hénon-Heiles interaction term
x2y. This asymmetry can bring about a unique property:
swapping of the squeezing parameter ζ1 and ζ2 of the ini-
tial squeezed wave function can give rise to a different
entanglement. Specifically, if one aims to attain a higher
rate of entanglement growth for this case, it would be
better to squeeze the field modes associated with the x
variable than the y variable. This fact can be easily es-
tablished from Figures 2c and 2d. Indeed, these figures
clearly show that the red curve, where the x variable
is squeezed (ζ1 = 0.5, ζ2 = 0.0), has a higher entangle-
ment compared to the green curve where the y variable is
squeezed (ζ1 = 0.0, ζ2 = 0.5). Both the numerical and the-
oretical results illustrate the same outcome. In the case of
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(a) Numerical result: linearly coupled harmonic
oscillator λ = 1√
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(b) Theoretical result: linearly coupled harmonic
oscillator λ = 1√
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(c) Numerical result: Hénon-Heiles Hamiltonian
λ = 1√
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(d) Theoretical result: Hénon-Heiles Hamiltonian
λ = 1√
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(e) Numerical result: Pullen-Edmonds
Hamiltonian λ = 0.25
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(f) Theoretical result: Pullen-Edmonds
Hamiltonian λ = 0.25

Fig. 2. Plots of the entanglement entropy δ(t) versus short time Δt, where curves of different colors indicate initial vacuum
states with different squeezing parameters ζ1 and ζ2. The figures clearly show that initial squeezing enhances the entanglement
entropy for all the three systems. Note that similar results are found for the Barbanis-Contopoulos Hamiltonian although they
are not illustrated. We have employed � = 1 in all the plots in this figure.
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(a) Numerical result: linearly coupled harmonic
oscillator λ = 1√
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(b) Numerical result: Barbanis-Contopoulos
Hamiltonian λ = 0.25
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(c) Numerical result: Hénon-Heiles Hamiltonian
λ = 1√
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(d) Numerical result: Pullen-Edmonds
Hamiltonian λ = 0.25

Fig. 3. Plots of the entanglement entropy δ(t) versus the short time Δt for different values of the Planck constant �. It can be
observed from these figures that as � → 0, the linear entropy of entanglement tends to zero for the Barbanis-Contopoulos, the
Hénon-Heiles and the Pullen-Edmonds Hamiltonian. However, for the linearly coupled harmonic oscillator, δ(t) is observed to
be independent of �. This can be discerned through the different curves overlapping on each other to form a single line such
that different markers have to be used to distinguish between them. Note that these results are consistent with our theoretical
prediction. We have employed ζ1 = ζ2 = 0.0 for all the plots in this figure.

symmetric interaction, such a swapping of squeezing pa-
rameter would not cause any changes to the entanglement
dynamics, which have been verified by us both analytically
and numerically.

7.3 Dependence of linear entropy on the Planck
constant

Theoretically, we have observed that the short time en-
tanglement is directly proportional to the Planck con-
stant for the Barbanis-Contopoulos and the Hénon-Heiles
Hamiltonian. As for the Pullen-Edmonds Hamiltonian, we
obtain instead a �

2 dependence. On the other hand, the
short time linear entropy is found to be independent of �

for the linearly coupled harmonic oscillator. In Figure 3,
we have plotted the dynamics of linear entropy initiated

by the coherent vacuum state for different values of the
Planck constant �. These plots were obtained numerically
for each of the four systems. From Figures 3b–3d, we ob-
serve that as � → 0, the linear entropy of entanglement
tends to zero in accordance with our theoretical predic-
tion. On the contrary, the linearly coupled harmonic os-
cillator displays an � independence of the linear entropy as
indicated by our theoretical analysis. Thus, these results
affirm the fact that the linear entropy should tend to zero
as � → 0 if the interaction potential has a sum of degree
that is higher than two, since theoretically the power of �

is given by m+ n− 2.

It is important to note that in our final result the lin-
ear entropy always depends on the square of the time in-
terval Δt at the short time regime in accordance with
previous works [1,2], except for the � dependence. How-
ever, we would like to emphasize that our results for the
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� dependence of the linear entropy do not contradict with
this previous general results. In fact, the � independent en-
tanglement entropy that we obtain for the linearly coupled
harmonic oscillator is identical to that of reference [1]. The
expression of the semiclassical linear entropy consists of a
product of the square of the short time interval and the
summation of � terms of different order. More precisely,
there exist nonzero values for the � terms with nonnega-
tive exponents, and in the semiclassical limit, the zeroth
order term of � dominates. For certain potentials, like the
potentials that we have investigated, the zeroth order term
of � can vanish. In consequence, a higher order term of �

gives the dominant contribution, resulting in an � depen-
dent entanglement dynamics.

8 Conclusion

We have analyzed the short time quantum entanglement
of the squeezed vacuum for a general interaction potential
of the form Vλ = λxmyn. We have applied our general re-
sults to the specific cases of linearly coupled harmonic os-
cillator, the Barbanis-Contopoulos, the Hénon-Heiles and
the Pullen-Edmonds Hamiltonian, where we have explored
both the initial coherent and squeezed coherent vacuum
state. We have found good correspondence between the
analytical and numerical results within the short time
regime. More significantly, we have uncovered that ini-
tial squeezing invariably enhances the entanglement in
this regime. It is interesting that for the Hénon-Heiles as
well as the Barbanis-Contopoulos Hamiltonian, the lin-
ear entropy of entanglement has an asymmetric depen-
dence on the squeezing parameters for the x and y modes.
Hence, a swapping of the squeezing parameter of the ini-
tial wave function can give rise to a different entanglement
dynamics. For the linearly coupled harmonic oscillator,
the entanglement dynamics is found to be independent
of the Planck constant �. Conversely, for the Barbanis-
Contopoulos, the Hénon-Heiles and the Pullen-Edmonds
Hamiltonian, the short time entanglement entropy tends
to zero in the semiclassical limit where the Planck con-
stant goes to zero. As a general result, we have found that
the short time linear entropy of entanglement depends on
� raised to an exponent that is the sum of the degree of
the interaction term minus two.

Authors want to thank K.B. Møller for his careful reading and
constructive comments on the manuscript. This work was sup-
ported by the Spanish Ministry of Science and Innovation un-
der project number FIS2009-09898.
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