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This paper addresses the combined modulatory effects of non-nearest neighbor oscillators
and local injection on synchronized states dynamics with their corresponding stability
boundaries in a network of self-sustained systems. The Whittaker method and Floquet the-
ory are used to predict analytically the stability of these states for identical and non-iden-
tical coupling parameters. Charts revealing the modulation of synchronized states and their
stability boundaries at the second order of interaction in the cases of identical and non-
identical coupling parameters are constructed with and without an external signal locally
injected in the network. Numerical simulations validate and complement the results of
analytical surveys. The limits of the stability regions are numerically explored when a small
amount of Gaussian white noise is also injected in the network.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Coupled nonlinear dynamical systems have become a topic of growing interest since they show very rich phenomena
such as synchronization. The synchronization of nonlinear oscillations occurring in networks, such as arrays or rings, is a
rather attractive topic due to the enormous variety of potential applications. For instance, arrays of coupled nonlinear
oscillators have been used for the description of Josephson-junctions [1], multimodes lasers [2,3], relativistic magnetrons
[4]. Furthermore, arrays of oscillators also arise in studies of biological rhythms of the heart [5], nervous system [5,6], intestines
[7], pancreas [8] and other biological systems [9–12]. The case of ring coupling topology is also of interest. For example, rings
of two neuronal systems have been used to study the mixed inhibitory and excitatory circuit coordinating the motion of lo-
cust wings during flight [13]. It has also been demonstrated that in quadrupedal mammals, the four oscillators controlling
the limb may be coupled in some form of ring [14,15]. A previous study has investigated different states of synchronization
in a ring of mutually coupled self-sustained electrical oscillators [16]. Properties of the variational equations of stability have
been utilized to investigate the dynamics of the ring and a stability map displaying domains of synchronization to a locally
injected external excitation has been reported. Recently, these results have been validated experimentally and the conse-
quences of parameter mismatch have been also emphasized [17]. But, these studies [16,17] and others [18–20] have consid-
ered only the influence of nearest neighbors coupling on stability boundaries using both analytical and numerical
investigations. Thus, we want to investigate in this paper the modulatory effect of non-nearest neighbors and the local injec-
tion on synchronized states and their corresponding stability boundaries. We analyze first the stability of the synchroniza-
tion process when both first and second order couplings are considered. Later, we address the question of the
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synchronization conditions when an external signal is locally injected in the network. The paper is organized as follows. In
Section 2, we introduce the system configuration and problem statement. In Section 3, we investigate the impact of the range
of interaction on the stability boundaries for identical and nonidentical coupling parameters. Section 4 deals with the influ-
ence of a local injection for identical and nonidentical coupling parameters. Conclusions are given in Section 5.

2. System configuration and problem statement

The model shown in Fig. 1 is a ring of N identical mutually coupled self-sustained electrical systems where each unit is
modeled as van der Pol oscillator (see Fig. 2). Each van der Pol oscillator consists of a nonlinear resistor NLR, an inductor L and
a condenser C, all connected in parallel. The coupling between the units is realized through an inductor Lc . Experimentally,
the network can be built using TL – 082 operational amplifiers and AD� 633 multipliers as reported previously [17].

The volt-ampere characteristic of the nonlinear resistor for the kth unit is expressed by a symmetric cubic nonlinearity,
which is illustrated by
ik ¼ �e1Vk þ e3V3
k ; e1; e3 > 0; 1 6 k 6 N: ð1Þ
This form of nonlinearity was introduced by van der Pol who had considered a lumped oscillator with two degrees of free-
dom to discuss simultaneous multi-mode oscillations [21,22]. In such situation, the oscillator traces a particular path
through phase space, and if some perturbation excites it out of its accustomed rhythm, it soon returns to its former path.
Oscillators that have a standard waveform and amplitude to which they return after small perturbations are known as lim-
it-cycle oscillators (e.g. van der Pol oscillators). As shown in the appendix, the network is described by the following set of
second order non-dimensional nonlinear differential equations:
€xk � l 1� x2
k

� �
_xk þ xk ¼ K1ðxkþ1 � 2xk þ xk�1Þ þ K2ðxkþ2 � 2xk þ xk�2Þ; ð2Þ
where xk stands as the voltage amplitude of the kth oscillator and l is a positive coefficient of nonlinearity. K1 and K2 are the
coupling strengths of the first and second nearest neighbors respectively. The model assumes the boundary conditions cyclic
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Fig. 1. Network of N mutually coupled self-sustained electrical oscillators.
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Fig. 2. Model of a self-sustained electrical oscillator.
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and defined as xkþN ¼ xk. When K2 ¼ 0 and K1 – 0, Eqs. 2 lead to a system of mutually coupled van der Pol oscillators for
which only the first nearest neighbors coupling are considered [16,18]. When K1 ¼ K2 ¼ 0, each unit is uncoupled and
can display a variety of phenomena for different values of l. Such a network possesses several potential applications since
van der Pol oscillators are widely used to model different type of biological phenomena [5,23]. Nevertheless, the most com-
mon use of these type of oscillators is in engineering, where they are extensively used for example in the study of vibration
[24].

Such a network is not merely of theoretical interest, but it has also many different applications. For instance, in electronic
engineering, they are useful in determining the dynamical states of microwave oscillators for which the state of each oscil-
lator is influenced not only by first nearest neighbors. Moreover, the model investigated here can be of interest for addressing
some biochemical processes. Indeed, limit cycle oscillations have been observed in a Goldbeter’s 5-variable model of the bio-
logical circadian (approximately 24-h period) clock in the fruit fly Drosophila [25]. The fact that the Goldbeter’s 5-variable
model has been demonstrated to be a biochemical analogue of a van der Pol equation [26] opens other windows of potential
applications for the network under consideration. As a first approach in determining the contributions of second order cou-
pling on synchronized states and stability boundaries, and also for convenience, we set N ¼ 4.

3. Stability analysis in the network

The phase of a van der Pol oscillator depends on initial conditions. Then, if four identical van der Pol oscillators are ini-
tiated with different initial conditions, they will finally circulate on the same limit cycle but with four different phases. Thus,
the purpose of the synchronization is to phase-locked those oscillators. Additionally, the model is physically interesting only
if its resulting dynamical state is stable, i.e., all the perturbed trajectories return to the original limit cycle. It is therefore
particularly important to develop criteria that guarantee the asymptotic stability of synchronization if applications are to
be constructed because one can tolerate synchronization to fail but not to be unstable since instability could damage the
system. Consequently the stability of synchronization, which means that the process of synchronization is really taking
place, would be the most desirable outcome from a technological point of view.

3.1. Analytical survey

We assume the two coupling parameters to be proportional and set K2 ¼ aK1 where a is a positive parameter quantifying
the rate of proportionality. For simplicity, we have chosen K1 ¼ K. Thus, the stability of the resulting dynamical state can be
studied by linearizing Eqs. (2) around the unperturbed limit cycle xo as follows:
€nk � l 1� x2
o

� �
_nk þ ½1þ 2Kð1þ aÞ þ 2lxo _xo�fk ¼ Kðnkþ1 þ 2ankþ1 þ nkþ3Þ; 1 6 k 6 4; ð3Þ
where nk ¼ xk � xo stands for the first order perturbation of xk. For small values of l, the behavior of one oscillator can be
described by a pure sinusoidal trajectory of the form
xo ¼ A cosðxt � /Þ; ð4Þ
where A and x are respectively the amplitude and the frequency of the unperturbed limit cycle in first approximation. The
values of A and x are obtained for instance by the averaging method (A ¼ 2:00; x ¼ 0:999 for l ¼ 0:100). This first order
approximation gives a fairly good agreement between the analytical and numerical results as reported in Ref. [16]. By intro-
ducing in Eqs. (3) the rescaling s ¼ xt � / and the diagonal variables (Fourier modes) Hk defined as follows:
H1 ¼ n1 þ n2 þ n3 þ n4;

H2 ¼ n4 � n2 ¼ x4 � x2;

H3 ¼ n3 � n1 ¼ x3 � x1;

H4 ¼ n4 � n3 þ n2 � n1 ¼ x4 � x3 þ x2 � x1; ð5Þ
we obtain after some algebraic calculations to the following variational equations:
€Hk þ ½2kþ FðsÞ� _Hk þ GkðsÞHk ¼ 0; 1 6 k 6 4; ð6Þ
with
k ¼ l
4x

A2 � 2
� �

; FðsÞ ¼ lA2

2x
cos 2s;

G1ðsÞ ¼
1
x2 1� lA2x sin 2s
� �

;

G2ðsÞ ¼ G3ðsÞ ¼
1
x2 1þ ð2þ 4aÞK � lA2x sin 2s
h i

;

G4ðsÞ ¼
1
x2 ð1þ 4K � lA2x sin 2sÞ:
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From the expressions of G2ðsÞ and G4ðsÞ, the critical ranges of the coupling parameter K for which instability arises in the
network can be determined. Thus, for a given a, instability will occur in the network for any value of the coupling parameter
belonging to the union of the following domains
D1 ¼ �1;� 1
2þ 4a

� �
;

D2 ¼ ð�1;�0:250Þ: ð7Þ
Any perturbed trajectory in those domains would lead the oscillators to continuously drift away from their original limit
cycles because the restoring force turns out to be repelling and the cycle loses its attraction character. Consequently, H2; H3

and H4 will grow indefinitely, leading to the instability in the network. To further investigate on the stability analysis, we
rewrite Eqs. (6) in a standard form by using the transformation
Hk ¼ gk expð�ksÞ exp �1
2

Z
FðsÞds

� 	
: ð8Þ
Thus, gk satisfy the following set of independent Hill equations [27,28]
€gk þ ða0k þ 2a1s sin 2sþ 2a1c cos 2sþ 2a2c cos 4sÞgk ¼ 0; 1 6 k 6 4; ð9Þ
where
a01 ¼
1
x2 1� l2

4
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1
x2 1þ ð2þ 4aÞK � l2
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From Eqs. (9), the stability boundaries of the synchronization process are to be investigated around the main parametric
resonances defined at a0 ¼ n2ðn ¼ 1; 2Þ. According to the Floquet theory [27,28], gk may decay to zero or grow to infinity, and
then decide the behavior of the independent Fourier modes Hk whose velocities are defined as:
g2;3 ¼
2þ 4a

x2 ;

g4 ¼
4
x2 � ð10Þ
The stability of each mode Hk will depend on its speed to enter or leave the synchronization manifold. Thus, we need to
determine the range of K for the synchronization process to be achieved. To that end, the Whittaker method [27] is used to
discuss unstable solutions and we assume that at the nth unstable region, each solution of Eqs. (9) is defined as:
gk ¼ e1ks sinðns� qÞ; ð11Þ
with 1k being the characteristic exponents and q a parameter. Substituting Eqs. (11) into Eqs. (9) and equating the coefficient
of cos ns and sin ns separately to zero, makes it to obtain the following characteristic exponents
12
k ¼ �ða0k þ n2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2a0k þ a2

ns þ a2
nc

q
: ð12Þ
The synchronization process is stable when the Fourier modes Hk go to zero as time increases. So that, the real part of
�k� 1k should be negative. Since k is real and positive, the stability condition is reduced to k2 > 12

k . Consequently, we have
from Eqs. (8) that the synchronization process is stable under the conditions
In
k;a ¼ ða0k � n2Þ2 þ 2ða0k þ n2Þk2 þ k4 � a2

ns � a2
nc > 0; n ¼ 1;2: ð13Þ
The ranges of the coupling parameter K leading to stability of synchronized states are analytically determined based upon
Eqs. (13). Investigations will be restricted around the first parametric resonance (n ¼ 1) since for n ¼ 2, the criterion (13) is
always fulfilled. One can then utilize I1

k;a to forecast the stability boundaries of synchronized states in the network. When
K ¼ 0, the system is uncoupled and the Fourier modes H2; H3 and H4 degenerate into H1 which is stable since it remains
bounded as t tends to infinity (see Fig. 3). However, as soon as K – 0, the stability boundaries become a dependent and this
lead to two major coupling cases, namely identical and nonidentical coupling parameters configuration.



0 20 40 60 80 100

Time

-5

0

5

10

θ 1

Fig. 3. A stable and bounded oscillation of the Fourier mode H1.

660 H.G. Enjieu Kadji et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 656–672
3.1.1. Stability boundaries for identical coupling parameters (a ¼ 1)
As K increases, our investigation shows that both I1

2;1 and I1
3;1 are positive for K 2 ð�0:1666;�0:0004� [ ½0:0014;þ1Þwhile

I1
4;1 is positive for K 2 ð�0:1666;�0:0006� [ ½0:002;þ1Þ. Thus, an intersection of these results allows the following three do-

mains to be discerned:
D1a ¼ ð�0:1666;�0:0006� [ ½0:0020;þ1Þ;
D2a ¼ ð�0:0006;�0:0004� [ ½0:0014;0:0020Þ;
D3a ¼ ð�0:0004;0Þ [ ð0; 0:0014Þ:
When K 2 D1a, the modes Hk ðk ¼ 2;3;4Þ are together in the stability domain and thus tend all to zero as the time in-
creases. Consequently, all the four oscillators are phase-locked, leading to the following constraint:
x1 ¼ x2 ¼ x3 ¼ x4: ð14Þ
In this case, all the oscillators are phase-locked and then display the same dynamics. Accordingly, a wave signal emitted
emerges more powerful.

When K 2 D2a, the modes Hk ðk ¼ 2;3;4Þ enter into the instability domain and as a consequence, their state variables sat-
isfy the following constraints:
x1 – x3;

x3 – x4 ð15Þ
and
x4 � x3 þ x2 � x1 – 0: ð16Þ
In this configuration, there is no synchronization in the network.
When K 2 D3a, the two degenerated modes and fastest modes H2 and H3 leave the stability domain and one have
x1 � x3;

x3 � x4; ð17Þ
while the slowest mode H4 remains in the instability domain and thus, leading to the following criterion:
x4 � x3 þ x2 � x1 – 0: ð18Þ
This state is sometimes referred to as cluster synchronization (clustering). Two clusters have emerged [Eqs. (17)] while
there is no synchronization between them [Eqs. (18)]. This type of clustering is very useful since it corresponds for instance
to a situation where two microwave oscillators are phase-locked one after the other one with possible implications in auto-
mation engineering, telecommunications, electronics commerce, robotics, transport technologies and many other areas [29].

3.1.2. Stability boundaries for nonidentical coupling parameters (a < 1;a > 1)
In this type of configuration, the coupling strength at both first and second range of interaction among oscillators is dif-

ferent [30]. Such situations are very common in several type of networks. It is for example the case of peri-glomerular cells in
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the olfactory bulb, where stronger coupling might correspond to direct electrical connections and less stronger or weaker to
indirect coupling via interpolated cells [31]. In each zone of a, three values will be considered for better capturing its influ-
ence on the synchronized states dynamics and their stability boundaries.

� Case a < 1

In such a situation, the coupling strength between the first nearest neighbors has more influence compared to the one
between non-nearest neighbors. The arbitrary values chosen here are a ¼ 0:01; a ¼ 0:50 and a ¼ 0:90.

For a ¼ 0:01, instability occurs in the network for K 2 ð�1;�0:250Þ. Around the first main parametric resonance, condi-
tions (13) are satisfied for I1

2;aða ¼ 0:01Þ ¼ I1
3;aða ¼ 0:01Þ if K 2 ð�0:250;�0:0010� [ ½0:0039;þ1Þ and for I1

4;aða ¼ 0:01Þ if
K 2 ð�0:250;�0:00010� [ ½0:0026;þ1Þ. From these results the three following domains are derived
D1a;aða ¼ 0:01Þ ¼ ð�0:250;�0:0010� [ ½0:0039;þ1Þ;
D2a;aða ¼ 0:01Þ ¼ ð�0:0010;�0:0010� [ ½0:0026; 0:0039Þ;
D3a;aða ¼ 0:01Þ ¼ ð�0:0010;0Þ [ ð0;0:0026Þ;
which stand for the regions of complete synchronization, Standard Correlated States (SCS) [32] and no synchronization
respectively.

For a ¼ 0:50, the criteria I1
2;aða ¼ 0:50Þ and I1

4;aða ¼ 0:50Þ are realized when K belong to K 2 ð�0:250;�0:0006�[
½0:0020;þ1Þ and K 2 ð�0:250;�0:0010� [ ½0:0026;þ1Þ respectively. In such a situation, four domains can be determined
as follows
D1a;aða ¼ 0:50Þ ¼ ð�0:250;�0:0006� [ ½0:0026;þ1Þ;
D2a;aða ¼ 0:50Þ ¼ ð�0:0006;�0:00010�;
D3a;aða ¼ 0:50Þ ¼ ð�0:0010;0Þ [ ð0;0:0020Þ;
D4a;aða ¼ 0:50Þ ¼ ½0:0020;0:00260Þ:
Dka;aða ¼ 0:50Þ (k ¼ 1;2;3) correspond to regions of full synchronization, SCS and no synchronization respectively while
D4a;aða ¼ 0:50Þ stands for domains of cluster synchronization.

For a ¼ 0:90, the range of instability is defined for K 2 ð�1;�0:1875Þ. Consequently, if K 2 ð�0:1785;�0:0004�[
½0:0014;þ1Þ and K 2 ð�0:1785;�0:0010� [ ½0:0026;þ1Þ, I1

2;aða ¼ 0:90Þ and I1
4;aða ¼ 0:90Þ are respectively satisfied and four

domains can be determined and classified as follows:
D1a;aða ¼ 0:90Þ ¼ ð�0:1785;�0:0004� [ ½0:0026;þ1Þ;
D2a;aða ¼ 0:90Þ ¼ ð�0:0004;�0:00010�;
D3a;aða ¼ 0:90Þ ¼ ð�0:0010;0Þ [ ð0;0:0014Þ;
D4a;aða ¼ 0:90Þ ¼ ½0:0014;0:00260Þ;
Dka;aða ¼ 0:90Þ (k ¼ 1;2;3;4) represent domains of full synchronization, SCS, no synchronization and clustering
respectively.

It should be emphasized that when a < 1, the number of dynamical states passes from three to four and as a increases,
the range of the Standard Correlated States continuously decreases while ranges of clustering (cluster synchronization) begin
to emerge.

� Case a > 1

In such a configuration, the coupling strength between the non-nearest neighbors has more influence compared to the
one between nearest neighbors. We have chosen the values of a to be 2;6 and 10 and their corresponding domain of insta-
bility are K 2 ð�1;�0:10Þ; K 2 ð�1;�0:03840Þ and K 2 ð�1;�0:02380Þ respectively.

For a ¼ 2; I1
2;aða ¼ 2Þ > 0 when K 2 ð�0:10;�0:0003� [ ½0:0008;þ1Þ while I1

4;aða ¼ 2Þ > 0 if K 2 ð�0:10;�0:00010�[
½0:0026;þ1Þ. Consequently, the domains of complete synchronization, Standard Correlated States, no synchronization
and clustering are respectively defined as:
D1a;aða ¼ 2Þ ¼ ð�0:10;�0:0003� [ ½0:0026;þ1Þ;
D2a;aða ¼ 2Þ ¼ ð�0:0003;�0:00010�;
D3a;aða ¼ 2Þ ¼ ð�0:0010;0Þ [ ð0;0:0008Þ;
D4a;aða ¼ 2Þ ¼ ½0:0008;0:00250�:
For a ¼ 6, the criteria I1
2;aða ¼ 6Þ and I1

4;aða ¼ 6Þ are respectively satisfied for K 2 ð�0:0384;�0:0001� [ ½0:0004;þ1Þ and
K 2 ð�0:0384;�0:00010� [ ½0:0026;þ1Þ. Thus, the states of full synchronization, no synchronization and clustering are de-
fined respectively as:



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

1.5

2

Fig. 4.
H4 (po

662 H.G. Enjieu Kadji et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 656–672
D1a;aða ¼ 6Þ ¼ ð�0:0384;�0:0001� [ ½0:0026;þ1Þ;
D2a;aða ¼ 6Þ ¼ ð�0:0010;0Þ [ ð0;0:0004Þ;
D3a;aða ¼ 6Þ ¼ ½0:0004;0:0026Þ:
For a ¼ 10, the criteria I1
2;aða ¼ 10Þ and I1

4;aða ¼ 10Þ are satisfied respectively when K 2 ð�0:0238;�0:0001� [ ½0:0002;þ1Þ
and when K 2 ð�0:0238;�0:00010� [ ½0:0026;þ1Þ. From where, the following intervals
D1a;aða ¼ 10Þ ¼ ð�0:0238;�0:0001� [ ½0:0026;þ1Þ;
D2a;aða ¼ 10Þ ¼ ð�0:0010;0Þ [ ð0;0:0002Þ;
D3a;aða ¼ 10Þ ¼ ½0:0002;0:0025Þ;
stand respectively for domains of full synchronization, no synchronization and cluster synchronization.
3.2. Results of numerical simulations

Numerical simulations are carried out to support the accuracy and complement the findings of analytical investigations.
Thus, a fourth-order Runge–Kutta algorithm with a time step Dt ¼ 10�2 and the following initial conditions
ðx1ð0Þ; x1ð0ÞÞ ¼ ð1:0; 1:0Þ; ðx2ð0Þ; x2ð0ÞÞ ¼ ð1:5; 1:5Þ; ðx3ð0Þ; x3ð0ÞÞ ¼ ð2:0; 2:0Þ and ðx4ð0Þ; x4ð0ÞÞ ¼ ð3:0; 3:0Þ are used. In the
cases of non-identical and identical coupling parameters, the network is considered in phase synchronization when each
mode Hk vanishes with the precision 10�4.

� Case a ¼ 1

The corresponding time series of Hk ðk ¼ 2;3;4Þ for synchronization, no synchronization and instability are plotted as
shown in Fig. 4. for values of K in each area Dka ðk ¼ 1;2;3Þ,
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The numerical simulation of Eqs. (2) reveal that the network is completely synchronized for K 2 ½�0:1474;�0:0010�
[½0:0018;þ1Þ where Hk ¼ 0. There is a lack of synchronization in the system for K 2 ð�0:0006;0Þ [ ð0;0:0013Þ. Such a lack
happens because Hj – 0. Clusters occur for K 2 ½�0:0009;�0:0006� [ ½0:0013;0:0017� where H2 ¼ H3 ¼ 0 while H4 – 0. This
clustering corresponds to the state where x2 ¼ x4 and x1 ¼ x3 with x4 � x3 þ x2 � x1 – 0. The numerical simulations also re-
veal the existence of the Standard Correlated States for K 2 ½�0:1666;�0:1474Þ. For this last oscillatory pattern, the faster
mode is H4 ¼ 0 while the slower and degenerated modes are greater than the given precision and therefore remain in
the instability domain. Overall, there is a quite good agreement between the results of the analytical and the numerical
investigations.

� Case a < 1

For a ¼ 0:01, complete synchronization takes place for K belonging to D1n;aða ¼ 0:01Þ ¼ ½�0:2363;�0:0017�
[½0:0037;þ1Þ while the SCS (H2 – H3 – 0;H4 ¼ 0) arises if K 2 D2n;aða ¼ 0:01Þ ¼ ½�0:0010;�0:00090� [ ½0:0029;0:0036�
and no synchronization for K 2 D3n;aða ¼ 0:01Þ ¼ ð�0:00090;0Þ [ ð0; 0:0028�. Apart these dynamical states forecasted
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Fig. 5. Temporal variation of the Fourier modes Hk with l ¼ 0:10 for a ¼ 0:01. (a): K ¼ �0:240, (b):K ¼ �0:0014. H2 (lines), H3 (dashed lines), H4 (points).
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analytically, clusters also appear for K 2 ½�0:250;�0:2364� while the Cluster Correlated States (CCS) for which
H2 – 0;H3 ¼ 0 and H4 ¼ 0 emerge in the range of K defined as ½�0:00160;�0:00110�.

As a continuously increases, there is no significant change on the nature of dynamical states occurring in the network and
their stability boundaries until a ¼ 0:50 for which full synchronization is now defined for K 2 D1n;aða ¼ 0:50Þ ¼
½�0:2294;�0:0009� [ ½0:0020;þ1Þ while the SCS emerges for K 2 D2n;aða ¼ 0:50Þ ¼ ½�0:2497;�0:2494�[
½�0:2303;�0:2295�.

No synchronization is observed if K 2 D3n;aða ¼ 0:50Þ ¼ ½�0:250;�0:2498� [ ½�0:2493;�0:2304� [ ð�0:0005;0Þ[
ð0;0:0020Þ. One should notice the non appearance of clustering analytically predicted for a ¼ 0:50 but instead, the occur-
rence Clusters Correlated States for K 2 ð0:0017; 0:0020Þ.

But, when a ¼ 0:90, all dynamical states predicted analytically are observed during numerical simulations and classified
as follows: For K 2 D1n;aða ¼ 0:90Þ ¼ ð�0:1580;�0:0010Þ [ ð0:0017;þ1Þ, synchronous states are observed while the SCS oc-
cur for K 2 D2n;aða ¼ 0:90Þ ¼ ½�0:1785;�0:1580�. Instability is displayed for K 2 D3n;aða ¼ 0:90Þ ¼ ð�0:0006;0Þ [ ð0;0:0012Þ
while clusters exist for K 2 D4n;aða ¼ 0:90Þ ¼ ð�0:0011;�0:0005Þ [ ½0:0014;0:0017�.

Overall, there is a good agreement between results of analytical and numerical investigations.
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Fig. 6. Temporal variation of the Fourier modes Hk with l ¼ 0:10 for a ¼ 10. (a): K ¼ 0:0018, (b): K ¼ �0:0230. H2 (lines), H3 (dashed lines), H4 (points).
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� Case a > 1

For a ¼ 2, full synchronization occurs if K 2 D1n;aða ¼ 2Þ ¼ ð�0:0884;�0:00080Þ [ ð0:0018;þ1Þ and the SCS are observed
for K 2 D2n;aða ¼ 2Þ ¼ ½�0:10;�0:0884�. Instability appears for K 2 D3n;aða ¼ 2Þ ¼ ½�0:0002; 0Þ [ ð0;0:0006�while clusters are
defined for K 2 D4n;aða ¼ 2Þ ¼ ½�0:0008;�0:0005� [ ½0:0009;0:0018�.

For a ¼ 6, the domain of complete synchronization, no synchronization, clustering and SCS obtained are respectively
D1n;aða ¼ 6Þ;D2n;aða ¼ 6Þ;D3n;aða ¼ 6Þ;D4n;aða ¼ 6Þ and defined as:
D1n;aða ¼ 6Þ ¼ ð�0:0343;�0:00070Þ [ ð0:0019;þ1Þ;
D2n;aða ¼ 6Þ ¼ ð�0:0001;0Þ [ ð0;0:0003Þ;
D3n;aða ¼ 6Þ ¼ ½�0:00070;�0:00020� [ ½0:00030; 0:00196�;
D4n;aða ¼ 6Þ ¼ ½�0:0384;�0:0343�:
For a ¼ 10, synchronous motions are found in the ring for K 2 D1n;aða ¼ 10Þ ¼ ð�0:0216;�0:00070Þ [ ð0:0019;þ1Þ. No
synchronization is observed for K 2 D2n;aða ¼ 10Þ ¼ ð�0:0001;0Þ [ ð0;0:0002� while the clusters and the SCS are observed
for K 2 D3n;aða ¼ 10Þ ¼ ½�0:0007;�0:0001� [ ð0:0002;0:0020Þ and K 2 D2n;aða ¼ 10Þ ¼ ð�0:0001;0Þ [ ð0;0:0002�. In this case
also, there is a overall good agrement between analytical and numerical results in spite of some little discrepancies observed.
The time histories of cluster synchronization and Standard Correlated States are shown in Figs. 5 and 6 respectively for
a ¼ 0:01 and a ¼ 10. Figs. 5(a) and 6(a) show the time series of cluster synchronization while Figs. 5(b) and 6(b) display
the SCS.
4. Influence of a locally injected signal

4.1. Analytical survey

In order to consider the effects of undesirable parasite coupling or external perturbation, an external periodic signal is
locally injected in the network. Thus, the dynamics of the network in this representation is described by the following
equations:
€x1 � l 1� x2
1

� �
_x1 þ x1 ¼ K x2 þ 2ax3 þ x4 � 2ðaþ 1Þx1½ � � Cðx1 � xcÞ;

€xl � l 1� x2
l

� �
_xl þ xl ¼ K xlþ1 þ 2axlþ2 þ xl�1 � 2ðaþ 1Þxl½ �; 2 6 l 6 4; ð19Þ
where xc stands for the dynamics of the external oscillator and also plays the role of the command signal while C is the local
injection strength. Throughout this survey, we take xc as the periodic solution of a van der Pol equation. Thus, the first order
perturbation equations for the stability analysis may now be written as:
€f1 � l 1� x2
o

� �
_f1 þ ½1þ 2Kð1þ aÞ þ 2lxo _xo�f1 ¼ Kðf2 þ 2af3 þ f4Þ � Cf1;

€fl � l 1� x2
o

� �
_fl þ ½1þ 2Kð1þ aÞ þ 2lxo _xo�fl ¼ Kðflþ1 þ 2aflþ2 þ fl�1Þ; ð20Þ
with the deviation fk ¼ xk � xc .
Eqs. (20) can also be rewritten as the following set of coupled Hill’s equations:
€e1 þ ða01 þ 2a1s sin 2sþ 2a1c cos 2sþ 2a2c cos 4sÞe1 ¼
1
x2 ½Kðe2 þ 2e3 � 4e1 þ e4Þ � Ce1�;

€el þ ða01 þ 2a1s sin 2sþ 2a1c cos 2sþ 2a2c cos 4sÞel ¼
1
x2 ½Kðelþ1 þ 2elþ2 � 4el þ el�1Þ�; ð21Þ
where
fk ¼ ek expð�ksÞ exp �1
2

Z
FðsÞds

� 	
; 1 6 k 6 4 ð22Þ
In order to investigate the stability of the process around the parametric resonances, we assume that each solution of Eqs.
(21) is defined as follows:
ek ¼ CkeSs sinðns� rÞ; ð23Þ
where S represents a characteristic exponent while Ck and r are arbitrary constants. Substituting the solutions (23) into Eqs.
(21) and equating the coefficients of sin ns and cos ns separately to zero gives us the following set of algebraic equations in
Ck:
½S2 þ @nðaÞ� cos rþ ð2nS� ansÞ sin r
n o

C1 �
K
x2 cosrC2 �

2aK
x2 cosrC3 �

K
x2 cos rC4 ¼ 0;



666 H.G. Enjieu Kadji et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 656–672
ð2nSþ ansÞ cosr� ½S2 þ NnðaÞ� sin r
n o

C1 þ
K
x2 sin rC2 þ

2aK
x2 sin rC3 þ

K
x2 sinrC4 ¼ 0;

� K
x2 cosrC1 þ ½S2 þ!nðaÞ� cosrþ ð2nS� ansÞ sin r

n o
C2 �

K
x2 cos rC3 �

2aK
x2 cos rC4 ¼ 0;

K
x2 sinrC1 þ ð2nSþ ansÞ cos r� ½S2 þWnðaÞ� sin r

n o
C2 þ

K
x2 sin rC3 þ

2aK
x2 sinrC4 ¼ 0;

�2aK
x2 cos rC1 �

K
x2 cosrC2 þ ½S2 þ!nðaÞ� cosrþ ð2nS� ansÞ sin r

n o
C3 �

K
x2 cos rC4 ¼ 0;

2aK
x2 sinrC1 þ

K
x2 sin rC2 þ ð2nSþ ansÞ cos r� ½S2 þWnðaÞ� sinr

n o
C3 þ

K
x2 sinrC4 ¼ 0;

� K
x2 cosrC1 �

2aK
x2 cosrC2 �

K
x2 cos rC3 þ ½S2 þ!nðaÞ� cosrþ ð2nS� ansÞ sinr

n o
C4 ¼ 0;

K
x2 sinrC1 þ

2aK
x2 sin rC2 þ

K
x2 sinrC3 þ ð2nSþ ansÞ cosr� ½S2 þWnðaÞ�

n o
W4 ¼ 0: ð24Þ
When Ck and r are discarded in Eqs. (24), the characteristic equation for S is defined by
Dn;aðSÞ �

D11 D12 D13 0 D15 0 D17 0
D21 D22 0 D24 0 D26 0 D28

D31 0 D33 D34 D35 0 D37 0
0 D42 D43 D44 0 D46 0 D48

D51 0 D53 0 D55 D56 D57 0
0 D62 0 D64 D65 D66 0 D68

D71 0 D73 0 D75 0 D77 D78

0 D82 0 D84 0 D86 D87 D88

�������������������

�������������������

¼ 0; n ¼ 1;2; ð25Þ
where
D11 ¼ S2 þ @nðaÞ; D22 ¼ �ðS2 þ NnÞðaÞ; D33 ¼ D55 ¼ D77 ¼ S2 þ!nðaÞ;
D44 ¼ D66 ¼ D88 ¼ �ðS2 þWnÞ; D12 ¼ D34 ¼ D56 ¼ D78 ¼ 2nS� ans;

D21 ¼ D43 ¼ D65 ¼ D87 ¼ 2nSþ ans;

D13 ¼ D31 ¼ D17 ¼ D71 ¼ D35 ¼ D53 ¼ D57 ¼ D75 ¼ �
K
x2 ;

D24 ¼ D42 ¼ D28 ¼ D82 ¼ D46 ¼ D64 ¼ D68 ¼ D86 ¼
K
x2 ;

D15 ¼ D51 ¼ D37 ¼ D73 ¼ �
2aK
x2 ; D26 ¼ D62 ¼ D48 ¼ D84 ¼

2aK
x2

d ¼ 2ðaþ 1ÞK þ C
x2 ; @nðaÞ ¼ a01 þ d� n2 � anc; NnðaÞ ¼ a01 þ d� n2 þ anc;

!nðaÞ ¼ a01 þ
2ðaþ 1ÞK

x2 � n2 � anc; WnðaÞ ¼ a01 þ
2ðaþ 1ÞK

x2 � n2 þ anc;
with n ¼ 1 for D1ðSÞ and n ¼ 2 for D2ðSÞ (see Eq. (25)).
Since the stability condition is given by k2 � S2 > 0 when we assume that k > 0, we have at the boundary of the nth unsta-

ble domain
Dn;aðkÞ ¼ 0: ð26Þ
The stability analysis here is reduced around the first unstable area because D2;aðkÞ > 0 remain positive for all values of
the coupling parameter K. Therefore, the process will be considered stable if D1;aðkÞ > 0 and unstable otherwise. Thus, to ana-
lyze the modulation of stability boundaries by the local injection strength, Eq. (26) is solved for a ¼ 1; a < 1 and a > 1.

4.1.1. Stability boundaries for identical coupling parameters (a ¼ 1)
Two main ranges of stability boundaries are found around D1ðSÞ as C is varied. The first one is defined as 0 < C < 1:20

where the range of stability domain in the network is a function of the local injection strength C. For instance, when
C ¼ 0:03, synchronized states are found in the ring for K 2 ½�0:1009;�0:0015� [ ½0:0014;0:0016�. But when C ¼ 0:05, a phase
synchronization process is achieved for K 2 ð�0:1666;�0:0016� [ ½0:0014;0:0016� [ ½0:0139;þ1Þ and for
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K 2 ð�0:1666;�0:0016� [ ½0:0014;0:0016� [ ½0:0087;þ1Þ when C ¼ 0:09. In the second range (C > 1:20), the stability
boundaries of phase synchronization remain unchanged and are defined for K 2 ð�0:1666;�0:0018� [ ½0:0014;0:0016�
[½0:0062;þ1).

4.1.2. Stability boundaries for nonidentical coupling parameters (a < 1;a > 1)
In both ranges of a, two main ranges are found as C varies. Generally, stability boundaries are dependent on C in the first

range. On the other hand, stability boundaries remain unchanged in the second range for any value of the local injection
strength. Moreover, the size of that first range differs as a increases.

When a < 1, the first range for a ¼ 0:01; a ¼ 0:5 and a ¼ 0:9 are defined as 0 < C 6 0:5; 0 < C 6 0:75 and 0 < C 6 0:80
respectively. But when a > 1, the first range for a ¼ 2; a ¼ 6 and a ¼ 10 is respectively defined as 0 < C 6 0:5; 0 < C 6 0:30
and 0 < C 6 0:24. The threshold of the local injection strength from which stability boundaries of main dynamical states re-
main unchanged is inversely proportional to a when a > 1 but proportional to a for a < 1. In other words, when a 2 ð0;1Þ,
the threshold of the local injection strength at which the stability boundaries of the synchronization dynamics remain prac-
tically unchanged, increases. On the other hand for a 2 ð1;þ1Þ, that threshold decreases as C increases. Therefore, a can be
viewed as a modulatory parameter of the local injection threshold.

4.2. Results of numerical simulations

The validity of the analytical findings is checked by solving Eqs. (19) numerically for identical and nonidentical coupling
parameters. In both coupling configurations, two oscillators u and v are synchronized if the distance of their phase
trajectories
Fig. 7.
parame
duv ¼ jxu � xv j < h; ð27Þ
where h ¼ 10�4 is the precision. Thus, synchronization among all the oscillators is achieved if the total separation of all pairs
of trajectories (TS) is smaller than the precision, namely
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Stability map showing the resulting synchronized states when both the first and second nearest neighbors are considered for identical coupling
ters.
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TS ¼
X

pairsðuvÞ
duv < h: ð28Þ
For higher accuracy (with a smaller h), the computational time has been extended to 105.

� Case of identical coupling parameters

A chart reporting possible synchronized states with their corresponding stability boundaries is constructed in the (K;C)
plane as shown in Fig. 7. by combining results of numerical simulations of Eqs. (19) and the analytical findings. Fig. 7 is com-
posed of five different regions: (R1), (R2), (R3), (R4) and (R5). (R1) occurs from intersection between the analytical and
numerical stabilities areas while (R3) represents the common solutions obtained from the numerical and analytical instabil-
ity domains. (R2) is the stability area forecasted analytically but absent from numerical simulations. (R4) and (R5)
are respectively the stability and the instability domains obtained numerically but not predicted analytically. Discrepancy
between the analytical and the numerical results decreases as C increases. For instance, synchronization is numeri-
cally achieved when K 2 ½�0:1488;�0:0261� [ ½�0:0113;�0:0020� [ ½0:0337;þ1Þ for C ¼ 0:03 and when K 2 ½�0:1666;
�0:0013� [ ½0:0081;0:0112� [ ½0:0161;þ1Þ for C ¼ 0:09. Clustering occurs in ðR5Þ since a full synchronization requires all
clusters to be synchronized among them. For example, when C ¼ 0:02, six clusters (x1 ¼ x2; x1 ¼ x3; x1 ¼
x4; x2 ¼ x3; x2 ¼ x4; x3 ¼ x4) exist for K defined as K 2 ½�0:135;�0:033� while for C ¼ 0:05, there are three clusters
(x2 ¼ x3; x2 ¼ x4; x3 ¼ x4) when K 2 ½0:007; 0:0096�. These clusters which mostly occur for small values of the local injection
strength progressively disappear by becoming synchronized as C increases. C ¼ 1:20 is the critical value above which sta-
bility boundaries of synchronized states remain unchanged when both the first and second nearest neighbors coupling
are taken into account. This critical value is lower than the one reported (C ¼ 1:44) when only first neighbors coupling is
considered [16]. Therefore, the range of interaction in a network not only modulates synchronized states with their stability
boundaries, but also the energy threshold needed to be injected in the system in order to observe a steadiness of stability
boundaries.
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Stability map showing the resulting synchronized states when both the first and second nearest neighbors are considered for non-identical coupling
ters (a ¼ 0:01).
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� Case of nonidentical coupling parameters

For nonidentical coupling parameters, the accuracy of the analytical results predicted by Eq. (26) is solved for a < 1 and
a > 1 (namely a ¼ 0:01; a ¼ 0:50; a ¼ 0:90; a ¼ 2; a ¼ 6 and a ¼ 10). A very good agreement is obtained between the re-
sults of numerical and analytical investigations, both for a < 1 and a > 1. To illustrate such situations, we have constructed
two stability charts showing the resulting synchronized states for a ¼ 0:01 and a ¼ 10 as shown in Fig. 8 and Fig. 9
respectively.

In both zones of a, two main ranges of C emerge. Here as well, stability boundaries in the first range vary for different
values of the local injection strength while in the second range, those boundaries remain the same despite increasing values
of C. For example, when a ¼ 0:01, the synchronization is effective if K 2 ½�0:2382;�0:0547�[
½�0:0234;�0:0067� [ ½0:0726;þ1Þ for C ¼ 0:03. This domain changes for C ¼ 0:18 and occurs when
K 2 ð�0:25;�0:0041� [ ½0:0154;þ1Þ. But as soon as C > 0:50, the synchronization process is achieved for
K 2 ð�0:25;�0:0042� [ ½0:0133;þ1Þ.

On the other hand for a ¼ 10, synchronized states are displayed for K 2 ½�0:0221;�0:0191� [ ½�0:0063;�0:0017�[
½0:0218;þ1Þ if C ¼ 0:03 while when C ¼ 0:09, those states occur for K 2 ð�0:0238;�0:0013Þ [ ½0:0060;þ1Þ. Very little
changes are noticed on these stability boundaries for C > 0:24 and they are defined as being
ð�0:0238;�0:0014� [ ½0:0044;þ1Þ.

In an attempt to explore the limits of the stability regions, a small amount of noise is added to the locally injected signal in
the network. Under this circumstance, the network is governed by the following equations.
Fig. 9.
parame
€x1 � l 1� x2
1

� �
_x1 þ x1 ¼ K x2 þ 2ax3 þ x4 � 2ðaþ 1Þx1½ � � Cðx1 � xcÞ þ nðtÞ;

€xl � l 1� x2
l

� �
_xl þ xl ¼ K xlþ1 þ 2axlþ2 þ xl�1 � 2ðaþ 1Þxl½ �; 2 6 l 6 4: ð29Þ
The stochastic term nðtÞ is a Gaussian white noise of zero mean (i.e. hnðtÞi ¼ 0 and hnðtÞnðt0Þi ¼ 0) and correlation
hnðtÞnðt0Þi ¼ 2Ddðt � t0Þ with D being the intensity of the noise. From the numerical simulations of the above equations
and utilizing the synchronization criterion defined by Eq. (28), Figs. 10 and 11 are obtained for both identical and
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ters (a ¼ 10).



Fig. 10. Effects of a small Gaussian white noise on the stability map when both the first and second nearest neighbors are considered for identical coupling
parameters (a ¼ 1; D ¼ 0:02).

Fig. 11. Effects of a small Gaussian white noise on the stability map when both the first and second nearest neighbors are considered for non-identical
coupling parameters (a ¼ 0:01; D ¼ 0:02).
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non-identical coupling parameters respectively. In the case of identical coupling parameters, the stability boundaries of syn-
chronization states are merely affected by local injection of a small amount of noise while the most remarkable change is
related to the critical value of C above which the stability boundaries remain unchanged for admissible values of coupling
parameters. In fact, without injection of noise, C ¼ 1:20 while in the presence of noise, that value decreases around C ¼ 0:75
(see Fig. 10). When the coupling parameters are considered non-identical, the stability domain of synchronization states is
considerably reduced as the range of instability increases. Moreover, there is no reduction of the critical value of C for which
all boundaries are almost unchanged. That value remains around 0.5.
5. Conclusions

We have investigated here the modulatory effects of the second range of interaction and local injection on the main
dynamical states and their stability boundaries in a network of self-sustained systems. Without and with a locally injected
signal in the network, these effects have been analytically investigated for identical and non-identical coupling parameters
using the Whittaker method and the Floquet theory. Numerical simulations have been utilized to validate and complement
the results of analytical findings. Charts displaying modulatory influences of both the second range of interaction and local
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injection on stability boundaries of synchronized states have been drawn. Our investigations revealed that non-nearest
neighbors are able not only to influence significantly the stability boundaries of the synchronized states, but also the type
of dynamical patterns able to occur in the network. The same finding is true when it comes to local injection. However,
the threshold of local injection strength from which stability boundaries remain unchanged can be minimized when the sec-
ond range of coupling becomes stronger compared to the nearest neighbor coupling. In the case of identical coupling param-
eters, the threshold’s value is considerably reduced when a small amount of Gaussian white noise is also locally injected into
the system. But the threshold of local injection strength keeps almost the same value in the case of non-identical coupling
parameters without and with a presence of small amount of noise. Thus, injecting a small amount of noise merely disrupts
boundaries of stability, but instead, contributes to minimizing energy needed to achieve steady stability boundaries for iden-
tical couplings parameters. On the contrary, when it comes to the case of non-identical coupling parameters, adding a small
amount of noise into the system leads to a perturbation of stability boundaries. As a matter of fact, domains of synchroni-
zation in this case decrease while regions of instability become bigger. Constructing an experimental model of this network
to validate these finding would be an interesting task to be performed. Moreover, extending this study to more than four
oscillators will be of interest in order to further our understanding of large networks constituted of self-sustained oscillators.
As a matter of fact, in the case of a network where only the nearest neighbors coupling is considered and without local injec-
tion, it is known that the synchronization domain is inversely proportional to the number of oscillators embedded in the
network [18]. On the contrary, the domain of non-synchronization increases with the number of oscillators. Thus, to adding
the contribution of non-nearest neighbors in the stability analysis may further reduce regions of full synchronization states
while amplifying those of no synchronization. However, expanding the number of oscillators to an arbitrary number N while
a signal is locally injected in the network will probably lead to non-trivial and complex modulation of stability boundaries.
These boundaries can differ for excitatory coupling (positive values of coupling strength) or inhibitory coupling (negative values
of coupling strength) as reported by a previous study [33]. Addressing this issue will be an interesting task to consider in the
future.
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Appendix A

When N self-sustained oscillators are linked such that, the kth oscillator interacts with ðk� 1Þth and ðkþ 1Þth, we obtain
the following equations.
Ik ¼
1
Lc

Z
ðVk � Vkþ1Þds

Ik�1 ¼
1
Lc

Z
ðVk�1 � VkÞds: ðA:1Þ
But when the interaction between the kth; ðk� 2Þth and ðkþ 2Þth are also considered (with L12 the coupling coefficient),
we now have:
Ik�2 ¼
1

L12

Z
ðVk�2 � VkÞds

Ik ¼
1

L12

Z
ðVk � Vkþ2Þds; ðA:2Þ
and the kth oscillator is described by the following equations:
ðIk�1 � IkÞ þ ðIk�2 � IkÞ ¼ iL þ iC þ ik ¼
1
L

Z
Vk � C

dVk

ds
� e1Vk þ e3V3

k : ðA:3Þ
The first time derivative of Eq. (A.3) enables us to obtain that the voltage in the capacitor of the kth oscillator is
d2Vk

ds2 �
a1

C
1� 3

a3

a1
V2

k

� �
dVk

ds
þ 1

LC
Vk ¼

1
LcC
ðVk�1 � 2Vk þ Vkþ1Þ þ

1
L12C

ðVk�2 � 2Vk þ Vkþ2Þ: ðA:4Þ
By using the quantities
w2
e ¼

1
LC
; t ¼ wes; Vk ¼

ffiffiffiffiffiffiffiffi
e1

3e3

r
xk;
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the non-dimensional equations of motion are
€xk � lð1� x2
kÞ _xk þ xk ¼ K1ðxk�1 � 2xk þ xk þ 1Þ þ K2ðxk�2 � 2xk þ xkþ2Þ:

l ¼ e1

ffiffiffi
L
C

r
; K1 ¼

L
Lc
; K2 ¼

L
L12

:
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