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In any control problem it is desirable to apply the control as infrequently as possible. In this
paper we address the problem of how to minimize the frequency of control in presence of
external perturbations, that we call disturbances, when the goal is to sustain transient
chaos. We show here that the partial control method, that allows to find the minimum con-
trol required to sustain transient chaos in presence of disturbances, is the key to find such
minimum control frequency. We prove first for the paradigmatic tent map of slope greater
than 2 that for a constant value of the disturbances, the control required to sustain tran-
sient chaos decreases when the control is applied every k iterates of the map. We show that
the combination of this property with the fact that the disturbances grow with k implies
that there is a minimum control frequency and we provide a procedure to compute it.
Finally we give evidence of the generality of this result showing that the same features
are reproduced when considering the Hénon map.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The study of transient chaos [1] is a major area of research in Nonlinear Dynamics. This is not surprising, provided that for
any system with permanent chaotic behavior, it is possible to make this chaotic behavior transient by varying some of the
system’s parameters, for example through a boundary crisis [2]. The phenomenon of transient chaos is related with the exis-
tence of a zero-measure set in phase space, the chaotic saddle, inside which the dynamics is chaotic, but (contrarily to what
happens with chaotic attractors) from which trajectories diverge. Thus, transient chaos can be formally related with a phe-
nomenon of escaping dynamics: there exists a region Q enclosing the chaotic saddle from which nearly all trajectories escape.

Due to the widespread nature of this kind of behavior, different methods to control transient chaos by keeping trajectories
inside Q have been proposed [3–6]. These methods aim to sustain the transient chaotic behavior, provided that this type of
dynamics are desirable in different contexts such as species preservation [7,8] (where regular behavior is related to extinc-
tion) and even in engineering [6,9] (where regular behavior implies the misbehavior of an electric component or of an
engine).

An important issue for any kind of control problem is the effect of disturbances such as noise, that typically make the con-
trol task more difficult. We have proposed recently a method that addresses the problem of disturbances when controlling
transient chaos, referred to as partial control of chaotic systems [10–14]. Assuming that the effect of the external perturbations
is bounded by certain constant n0, that we refer to as the disturbances, this method allows one to keep trajectories inside the
region of interest Q with a control that is always smaller than the disturbances. The method is called partial control because it
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does not tell how trajectories will behave inside Q, but it can guarantee that they will not escape from Q, so the transient
chaotic behavior is sustained. This method was first applied to one-dimensional maps [15], and later generalized to maps
with a horseshoe [16] in phase space [10,11,14]. Recently an algorithm to find safe sets, the key ingredient of the partial con-
trol method, has been found, and it allows to apply this method to any system with transient chaotic behavior [13].

Together with the amplitude of the control that needs to be applied, another important issue in any control problem is the
control frequency, understood as the inverse of the maximum time between two consecutive applications of control (keeping
the system controlled). For example, when trying to control the trajectory of a spacecraft, i.e., trying to make it reach certain
target, the amplitude of control is determined by the maximum change in the velocity that we can obtain using the engines.
The control frequency will determine how long we will be able to keep the spacecraft controlled, provided that we have a
limited amount of fuel. Thus, in general, it is desirable to have the minimum possible control frequency. In absence of dis-
turbances, the required frequency depends basically on how precise our knowledge of the state of the system is, and in prin-
ciple it can be made as low as desired. However, the presence of disturbances makes things more difficult as long as
increasing the time between two consecutive applications of control implies an increase of the degree of uncertainty on
the future state of the system, mostly because the effect of the disturbances will grow in time.

We address here this problem in the context of control of transient chaos. Using ideas of the partial control method, we
show that if there is a maximum value of the control that we can apply, say umax, there is a minimum control frequency to
keep trajectories inside the region of interest Q, thus sustaining the chaotic behavior. The paper is organized as follows: In
Section 2 we show that this problem can be understood in terms of partial control of the kth iterate of a map with escapes
and we describe the model that we use to derive our main results: the tent map. In Section 3 we show analytically that this
model presents the interesting property that the control/disturbances ratio required to keep trajectories partially controlled
decreases with k. Section 4 contains our key result. There we first characterize analytically the growth of the disturbances
with k in our model. After this, we show that the combination of our results (the decrease of the control/disturbances with
k and the growth of the disturbances with k) implies that there is a minimum control frequency, showing how to compute it.
As expected, this minimum control frequency depends on the maximum control that can be applied on the system, umax. Evi-
dences of the generality of our results are provided in Section 5, where we show that similar features can also be reproduced
with the paradigmatic Hénon map. In Section 6 we draw the main conclusions of our work.

2. Applying partial control every k iterates

2.1. Problem statement

Consider that we are trying to control a dynamical system with transient chaos, i.e., to prevent the escapes from a region
Q where there is transient complex dynamics. The system might be affected by disturbances, and have equations of motion
of the form _p ¼ f ðpÞ þ nðtÞ, where nðtÞ is some type of stochastic process of intensity r. If the dynamics of a time-s map or the
Poincaré map in absence of disturbances are given by psþ1 ¼ f ðpsÞ, in presence of disturbances it will be perturbed by a (ran-
dom) amount nðps;rÞ, so psþ1 ¼ f ðpsÞ þ nsðps;r; sÞ � f ðpsÞ þ ns. In most situations, for moderate r values, such ns will be
bounded by a constant n0.

We are interested in applying infrequent control perturbations to the system or, using the terminology given above, to
apply perturbations every k iterates of the map with k as large as possible. If we consider the time-k � s map or the kth iterate
of the associate Poincaré map, then the perturbed dynamics will be given by psþk ¼ f kðpsÞ þ nksðps; n; kÞ � f kðpnÞ þ nks where
nks will now be bounded by certain n0ðkÞ, so jnksj 6 n0ðkÞ. We are not interested in the precise form of nks, we just need to
know that the higher k is, the bigger n0ðkÞ will be. By redefining the time index s by an index n such that n ¼ k � s, we have
that
pnþ1 ¼ f kðpnÞ þ nn; ð1Þ
where the new index n is the index that accounts for the dynamics of every k iterates of the map. Thus, applying control
every k iterations can be represented mathematically as:
qnþ1 ¼ f kðpnÞ þ nn where jnnj 6 n0ðkÞ
pnþ1 ¼ qnþ1 þ un where junj 6 u0ðkÞ:

(
ð2Þ
This is exactly the mathematical setting required to apply our partial control method [10–14]. Note that if f is a map with a
chaotic saddle in a region Q from which nearly all trajectories escape, the same applies for f k. The control that we apply to
put the trajectory again on a safe set is un, that is applied every k iterates and that we assume that will depend on k. We also
consider that the control is bounded by certain constant u0ðkÞ. We say that a set S � Q is safe, if for each p 2 S, the distance of
f kðpÞ þ n from S is at most u0.

As we said, if f was the map associated to a flow with disturbances as sketched in the introduction, or a map where dis-
turbances act every iteration, the effect of the disturbances will grow with k. This dependence on k is represented by n0ðkÞ, so
jnnj 6 n0ðkÞ. Note that n0ð1Þ � n0. It is important to emphasize that this approximation is valid under mild assumptions for
the kth iterate of a map in which noise is applied each iteration, or for the kth iterate of a Poincaré map or a time�s map
of a flow. However, for certain Poincaré maps in presence of noise it might not be valid. For example, if we consider a
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Fig. 1. The tent map with escapes xnþ1 ¼ TðxnÞ where TðxÞ ¼ kð1� jxjÞ � 1 and k ¼ 3. There is a chaotic saddle in the [-1,1] interval, from which nearly all
trajectories (except a zero-measure set) escape under iterations.
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Poincaré map defined for certain chaotic scattering problems, we might have that for strong noise certain trajectories do not
intersect k times with the Poincaré section. This would make impossible to define n0ðkÞ, so the discussion below does not
apply for these situations. We believe though that a control method to minimize the control frequency in these situations
could be devised using our ideas, but this is far from the scope of the present work.

In order to understand the effect of applying control every k iterations, first we are going to consider the effect of varying k
while keeping n0ðkÞ constant in a simple example of a dynamical system with escapes and transient chaos: the tent map. The
results obtained will be a key ingredient in order to minimize the control frequency in the situations considered.

2.2. Our model: the tent map

We consider here in detail the effect of applying the control scheme provided in Eq. (2) to the kth iterate of the tent map
of slope k > 2; TðxÞ ¼ kð1� jxjÞ � 1. From now on, we keep k ¼ 3 fixed: the resulting map is shown in Fig. 1. Recall that points
that do not diverge to infinity in the limit k!1 under Tk form the ‘‘middle-third’’ Cantor set built using the ½�1;1� interval
as initial segment: these points are the chaotic saddle of this system.

The map T is a good example of a map for which partial control can be applied. This map presents escapes from a region Q,
the ½�1;1� interval, that encloses a chaotic saddle with a well-characterized complex dynamics.

We want to study the role of applying the control every k iterates. As we said above, this is equivalent to the following
control problem:
qnþ1 ¼ TkðxnÞ þ nn

xnþ1 ¼ qnþ1 þ un;

(
ð3Þ
with jnnj 6 n0ðkÞ and junj 6 u0ðkÞ. In what follows, we are going to consider the role of k in this control problem while keeping
n0ðkÞ constant. The results will then be used to find the minimum control frequency needed in this type of problems.

3. Partial control of the k iterate of the tent map

3.1. The k ¼ 1 case

The k ¼ 1 case of Eq. (3) was thoroughly studied in Ref. [15]. There is shown that the sets Sm � T�mð0Þ work as suitable
safe sets for different values of n0. This means that trajectories of points fxng1n¼1 can be kept close to this set with
u0ð1Þ < n0ð1Þ. The points of the safe set Sm are of the form:
�2
3
� 2

32 �
2
33 � � � � �

2
3m : ð4Þ
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The key property, that makes them safe sets, is that each point of Sm�1 has one point of Sm placed 2=3m away to its left, and a
point of Sm placed 2=3m to its right (those given for the last ‘‘�’’ sign).

In Ref. [15] is shown that for n0 ¼ 4=3m the safe set that minimizes the required u0 is given by Sm. In order to see this,
consider for example that n0 ¼ 4=3. As we said, this implies that the adequate safe set is S1, which reads
Fig. 2.
sets are
in two e
in both
referen
S1 ¼ T�1ð0Þ ¼ �2
3
;
2
3

� �
: ð5Þ
The points of S1 are displayed in Fig. 2(a). Note that TðS1Þ ¼ 0, so the image of S1 under T has one point of S1 to its left, �2=3,
and another to its right, 2=3. This property of the image of the safe set being ‘‘surrounded’’ by the safe set itself is the good
property that allows one to keep trajectories on them with a control smaller than the disturbances. The reason is the follow-
ing: assume that the first point of the trajectory x1 is on S1. Then no matter what the disturbance n1 is, a control u1 smaller
than n0ð1Þ can put the trajectory back on S1. In particular:

� If 0 6 jn1j 6 2
3, a correction of amplitude ju1j 6 2

3� jn1j 6 2
3 can steer the trajectory to a point on S1.

� If 2
3 6 jn1j 6 4

3, a correction of amplitude ju1j 6 n0 � 2
3 6

2
3 can take the trajectory to a point on S1.

These situations are illustrated in Fig. 2(a). After applying the accurate correction u1, we can make x2 lie in S1 and this can
be repeated forever. Thus, we can estimate from the above considerations the control/disturbances ratio required to keep
trajectories in ½�1;1� for k ¼ 3 and k ¼ 1 iterates of the map,
u0ð1Þ
n0ð1Þ

jn0ð1Þ¼4=3 ¼
maxðju1jÞ
maxðjn1jÞ

¼ 1
2
: ð6Þ
We will show later that this is actually the minimum control/disturbances ratio for n0ð1Þ ¼ 4=3. Due to the self-similar-
ities of the sets Sm (Sm consists of two small-scale copies of Sm�1, etc.. . .) we can see that for n0ð1Þ ¼ 4=3m trajectories can be
kept inside Q with a control that is exactly half the value of disturbances, bounded by u0ð1Þ ¼ 2=3m. On the other hand, for
large values of the disturbances, (larger than the typical size of the chaotic saddle) the control/disturbances ratio is also smal-
ler than one, and tends asymptotically to one as we increase the value of the disturbances.

We want to point out that for values other than n0ð1Þ ¼ 4=3, it is also possible to keep trajectories bounded with a control
that is smaller than the disturbances. This typically requires though other safe sets different from S1, that can be computed
making use of our Sculpting Algorithm [13]. These sets turn out to be preimages of an interval around 0. Using this simple
idea, we can see that the result using other disturbances values will be qualitatively similar to the one observed for
n0ð1Þ ¼ 4=3 and trajectories can be kept bounded with u0ð1Þ < n0ð1Þ.
3.2. The k P 1 case

We consider now how to apply the partial control method for k P 1 and for the value of n0ðkÞ ¼ 4=3, the same that for
k ¼ 1. A good guess would be to use the set Sk ¼ T�kð0Þ. First, because by definition, we can see that the points of Sk are
mapped under Tk to 0, a point that again has points of the set Sk to its left, and points of the set Sk to its right. Thus, as in
the k ¼ 1 case, the image under Tk of Sk; TkðSkÞ ¼ 0, is ‘‘surrounded’’ by Sk, so Sk is an adequate safe set. The strategy with this
Examples of situations that can arise by applying the partial control strategy for the slope-three tent map and for n0 ¼ 4=3. Points belonging to safe
marked with a ‘	’, the zero is marked with a ‘
’. (a) Control needed (blue arrows) to get the trajectories back on the safe set S1 for k ¼ 1, or n0 ¼ 4=3
xtreme situations, with maximum disturbances (red arrow) and no disturbances. (b) The same but for the k ¼ 4 case, using as a safe set S4. Note that
cases the control needed is smaller than the disturbance n0, but that for k ¼ 4 the control needed is smaller than for k ¼ 1. (For interpretation of the
ces to colour in this figure caption, the reader is referred to the web version of this article.)
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set would be the following: We choose x1 in Sk, then Tkðx1Þ ¼ 0. No matter what the value of the disturbances n1 is, we only
have these possibilities:

� If 0 6 jn1j 6 2
3� 2

32 � 2
33 � � � � � 2

3k ¼ 1
3þ 1

3k, a correction of amplitude ju1j 6 1
3þ 1

3k � jn1j 6 1
3þ 1

3k can steer the trajectory to a
point on Sk.
� If 1

3þ 1
3k 6 jn1j 6 2

3þ 2
32 þ 2

33 þ � � � þ 2
3k ¼ 1� 1

3k , a correction of amplitude either 2
3k or 4

3k (the two possible values of half the
distance between two consecutive negative or positive points of Sk) can take the trajectory to a point on Sk.
� If 1� 1

3k 6 jn1j 6 4
3, a correction of amplitude ju1j 6 n0 � ð1� 1

3kÞ 6 1
3þ 1

3k can take the trajectory to a point on Sk.

Two of these possibilities are illustrated in Fig. 2(b) for k ¼ 4. Thus, again, after applying the control u1, smaller than n0ðkÞ,
we can make the next point of the trajectory x2 to lie on a point on the safe set Sk and this can be repeated forever.

Using the above considerations the control/disturbances ratio u0ðkÞ=n0ðkÞ needed to keep the trajectories bounded for the
k iterate of the tent map of slope k ¼ 3 and for n0ðkÞ ¼ 4=3 is
Fig. 3.
map fo
corresp
values
u0ðkÞ
n0ðkÞ

jn0ðkÞ¼4=3 ¼
maxðju1jÞ
maxðjn1jÞ

¼
1
3þ 1

3k

4
3

¼ 1
4
þ 1

4 � 3k�1 : ð7Þ
Clearly, its value decreases with k. In particular, we can see that as k!1
lim
k!1

u0ðkÞ
n0ðkÞ

����
n0ðkÞ¼4=3

¼ 1
4
: ð8Þ
Thus, we can see that by increasing k while keeping n0ðkÞ constant, the control/disturbances ratio required to sustain tran-
sient chaos decreases, and for high k values trajectories can be partially controlled with a control u0ðkÞ that is 25% of the dis-
turbances n0ðkÞ. We have calculated numerically the minimum control/disturbances ratio needed for each value of k by using
the Sculpting Algorithm [13] for the value n0ðkÞ ¼ 4=3 and we have compared with the theoretical value given by Eq. (7). The
results are shown in Fig. 3, showing a very good agreement with our theoretical result.

As for k ¼ 1, we can discuss now briefly the effect of using other values of the disturbances. As in the k ¼ 1 case, due to the
self-similarities of the safe sets it can be seen that for values of n0ðkÞ ¼ 4=3m the relation given by Eq. (7) holds. A similar
behavior would be observed for other values of the disturbances, so we can conclude that the decrease of u0ðkÞ=n0ðkÞ with
k seen in Fig. 3 will be observed for any value of n0ðkÞ. In what follows we investigate further the generality of this result.

3.3. The effect of changing the slope

The results above hold for the tent map of slope k ¼ 3. It is not very difficult to see that similar results hold for values of k
above the critical value k ¼ 2, where the map possesses a boundary crisis. In particular, a decrease on the control/distur-
bances ratio needed to sustain transient chaos at n0ðkÞ will also be observed. The way to see this is that, as for k ¼ 3, for a
given k > 2 and for values of the disturbances n0ðkÞ ¼ ð2k� 2Þ=k the sets Sk ¼ T�kð0Þ are safe sets. Furthermore, it can be
proved that the asymptotic value of the ratio as k increases depends on the slope k
lim
k!1

u0ðkÞ
n0ðkÞ

����
n0ðkÞ¼2�2=k

¼ k� 2
2k� 2

: ð9Þ
This is confirmed again in Fig. 3, where the minimum control/disturbances ratio obtained theoretically using these safe sets
for different k values and those calculated numerically with the Sculpting Algorithm [13] are shown. Note that this implies
Numerical estimation of the minimum control/disturbances ratio u0ðkÞ=n0ðkÞ needed to keep trajectories bounded for the kth iteration of the tent
r values of the slope k ¼ 3 (
), k ¼ 2:1 (þ) and k ¼ 2:01 (	). For each value of k considered a constant disturbance n0ðkÞ ¼ 2� 2=k is used. Solid lines
ond to theoretical values. The asymptotic value obtained decreases as we get closer to the critical value k ¼ 2. Similar results are obtained for other
of the disturbances.
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that as k approaches 2, the ratio goes to zero. The main reason for this is the fact that as k gets close to 2, the gap through
which trajectories escape from the interval ½�1;1�, that is the interval (s) that is (are) mapped out of it under T (Tk) becomes
narrower and points in the safe sets are closer from each other as k increases. This result is also confirmed by the intuition
that a slower escaping dynamics should imply that the control/disturbances ratio needed to avoid escapes is smaller.

For other values of the disturbances, we can see that due to the self-similarity properties of the safe sets the above results
will hold for disturbances of the form n0ðkÞ ¼ ð2k� 2Þ=km and that qualitatively similar results would hold for other values of
n0ðkÞ (although, as for k ¼ 3 they will require other safe sets). With this idea in mind, we can show that this property enables
us to determine a minimum control frequency for our control problem.

4. A minimum control frequency

4.1. Increase of the disturbance with k

The above results characterize the behavior of the control/disturbances ratio u0ðkÞ=n0ðkÞ assuming that our control prob-
lem is as described by Eq. (3) and taking n0ðkÞ constant, i.e., n0ðkÞ does not depend on k for different values of k. We have
concluded that this ratio decreases with k to an asymptotic value that depends only on the system’s parameters. However,
as we noted in Section 2, when we are dealing with the kth iteration of a map in which every iteration we apply the noise, or
when we are considering a map associated to a flow affected by the noise, n0ðkÞ is not constant: in principle it will increase
with k. In other words the choice of k, the number of iterates of our map (or the number of time-s maps considered, or the
number of intersections of the Poincaré section considered in our flow) will have an influence in the value of n0ðkÞ, something
that we represented by the dependence on k of n0ðkÞ.

For a given dynamical system with a largest Lyapunov exponent L, we can expect that n0ðkÞwill grow with k following the
equation
Fig. 4.
n0 ¼ 10
n0ðkÞ / ekL: ð10Þ
In fact, we have verified that this is exactly the case when considering the slope-k tent map. For this map the largest Lyapu-
nov exponent is log k so the above equation becomes
n0ðkÞ � n0k
k�1: ð11Þ
In Fig. 4 we show the numerical estimates of n0ðkÞ for different n0 values, computed as the maximum divergence of the
uncontrolled trajectories from their deterministic path for every k. We see that the above expression provides a good esti-
mate of n0ðkÞ and confirms that it grows exponentially with k. In general, then, n0ðkÞ will grow with k and this implies that
the frequency of the control cannot be arbitrarily low, but it can be minimized. We have now all the ingredients to show how
to achieve this goal.

4.2. Finding the minimum control frequency

Up to know, we have shown an interesting property for the tent map: that if we increase the value of k while keeping
n0ðkÞ constant, the control/disturbance ratio needed to keep the trajectories controlled decreases. If the disturbances were
constant with k there would not be a minimum control frequency: in principle the most advantageous thing to do would
be to apply the perturbations as unfrequently as possible, because this would minimize the required control. However,
Numerical estimation of the ratio n0ðkÞ=n0 vs the number of iterations k. Notice that the n0ðkÞ=n0 axis is in logarithmic scale. We have used the values
�2 (‘
’), n0 ¼ 10�1 (‘+’) and n0 ¼ 1 (‘	’) in the slope-three tent map. The solid line indicates the numerical estimation given by Eq. (11).
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we have just shown that in general when we increase k the value of n0ðkÞ will also increase, and this will make necessary a
bigger control. From this trade-off emerges the main practical implication of our results, that can be summarized as follows:
using the partial control strategy we can derive a minimum control frequency that is determined by umax, the maximum con-
trol that we can apply to our system.

The way to determine this minimum control frequency is the following: we know that the control/disturbances ratio at
fixed n0 decreases with k. On the other hand, we know that the value of n0ðkÞ grows with k. Thus, for every value of k we need
an estimate of n0ðkÞ. With this value, we calculate the minimum control required to keep the trajectories bounded for this
value of n0ðkÞ, i.e., the required u0ðkÞ using the partial control strategy. Provided that n0ðkÞ now grows with k, the value of
u0ðkÞ, although always smaller than n0ðkÞ, will grow with k. We recall that the computation of u0ðkÞ can be done automat-
ically with our Sculpting Algorithm [13]. Then, the minimum control frequency will be determined by the bigger k such that
Fig. 5.
n0 ¼ 0:0
the ma
every k
the rea

Fig. 6.
frequen
u0ðkÞ 6 umax; ð12Þ
where umax is the maximum control that we can apply to our system. If we apply our controlling perturbation u every k iter-
ates we can be sure that transient chaos can be sustained in our system. We want to emphasize that provided that the partial
control method gives the minimum control/disturbances ratio u0ðkÞ=n0ðkÞ needed to keep trajectories bounded (i.e., for every
k we get the smaller u0ðkÞ needed) we can be sure that the control frequency that we obtain following this procedure is the
minimum possible one.

As an example of the above procedure, consider that we are dealing with the slope 3 tent map and that the maximum
control that we can apply is umax ¼ 0:5. Consider as well that every iteration the map is affected by a disturbance bounded
by n0 ¼ 0:01. Of course, it would not be difficult to keep trajectories bounded with frequent perturbations, i.e., applying a
control every iteration to the system. However, we want to know what is the smallest frequency allowing us to keep trajec-
tories controlled using always a control that is smaller than our bigger allowed control, umax. To do this, we can use our esti-
mate of the effect of disturbances after k iterations, n0ðkÞ, that we already have shown in Fig. 4. Then, with each value of n0ðkÞ
we have to compute the safe set that requires the minimum u0ðkÞ using the Sculpting Algorithm [13]. The result for this
example is shown in Fig. 5. From this figure we can infer that the minimum control frequency allowed to sustain transient
chaos is to apply a control every k ¼ 5 iterations, provided that for k ¼ 6 a control bigger than umax ¼ 0:5 would be needed.
We can see an example of the controlled trajectory in Fig. 6(a), whereas in Fig. 6(b) we can see the control applied, that is
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Numerical estimation of u0ðkÞ, the control needed when applying a control every k iterations (‘	’), vs the number of iterations k. We use here
1. The value of u0ðkÞ is determined using the partial control scheme for the corresponding n0ðkÞ, that as we know grows with k. The red line indicates

ximum control allowed in the example considered in the text. This implies that the minimum control frequency occurs when we apply the control
¼ 5 iterations, as long as for k > 5 a control bigger than umax would be necessary. (For interpretation of the references to colour in this figure caption,

der is referred to the web version of this article.)

A controlled trajectory of the tent map with a disturbance n0 ¼ 0:01 when applying the control every k ¼ 5 iterations (the minimum control
cy) (a) and applied control (b). Note that the applied control is always smaller than the maximum allowed control in this example, umax ¼ 1.



Fig. 7. We show here in blue the safe sets for the Hénon map for a ¼ 2:16 for different values of k. The green ball is the maximum admissible disturbance
and the yellow ball the maximum admissible control, which clearly decreases with k. For every k we consider a constant disturbance with a maximum value
equal to 0.3. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 8. We show here in blue the safe sets for the Hénon map for a ¼ 3 for different values of k. The green ball is the maximum admissible disturbance and
the yellow ball the maximum admissible control, which clearly decreases with k. For every k we consider a constant disturbance with a maximum value
equal to 0.3. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 9. (a) Ratio u0ðkÞ=n0ðkÞ computed for constant n0ðkÞ ¼ 0:3 for k iterates of the Hénon map with a ¼ 2:16 (line) and a ¼ 3 (segments). As expected the
ratio decreases faster in the case of a ¼ 2:16 due to the fact that the size of the escaping region is smaller. (b) Time series of the x variable of a controlled
trajectory with k ¼ 6 and n0ð6Þ ¼ 0:3 and (c) the control applied in this case, which is clearly smaller than the noise value n0ð6Þ ¼ 0:3 (shown with a red
line). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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clearly smaller than the maximum prescribed value umax. Thus, by using partial control we have found a way to keep the
system’s trajectories bounded by applying a control smaller than the maximum value allowed and as unfrequently as pos-
sible. We note that given umax and by using any other strategy to sustain transient chaos, that would require a bigger u0ðkÞ
given n0ðkÞ, a higher control frequency would be required. Thus, our reasoning above provides a way to minimize the control
frequency needed to sustain transient chaos.

Note that this procedure is based on the property unveiled for the tent map: that the ratio u0ðkÞ=n0ðkÞ at a constant value
of n0ðkÞ decreases with k. This compensates in part the fact that the disturbance effect would grow with k. In the following
section we show that the same property holds for the Hénon map, which suggests that this result is of a general nature and



736 S. Zambrano et al. / Commun Nonlinear Sci Numer Simulat 19 (2014) 726–737
thus our procedure to minimize the control frequency when sustaining transient chaos could be applied to any dynamical
system.
5. Results for the Hénon map

In order to investigate the generality of our results, we consider now the Hénon map, defined as
xnþ1 ¼ a� byn � x2
n

ynþ1 ¼ xn:

(
ð13Þ
If we fix the parameter b ¼ 0:3 and we take a value of a > 2:12 almost all the initial conditions escape after a finite amount of
time from the square Q ¼ ½�5;5� 	 ½�5;5�. The behavior of the trajectories while they are inside the square
Q ¼ ½�5;5� 	 ½�5;5� is chaotic, but not permanent. That means that after a finite time of complex behavior inside that square,
almost all the deterministic trajectories escape, and in the presence of disturbances all trajectories escape.

The goal here is to check if for this map there is a decrease in the control/disturbances ratio as a function of k for a fixed
value of n0ðkÞ, that as we have shown above is the key to minimize the control frequency. For that reason, we have computed
the safe sets associated for k ¼ 1;2;3;4;5 and 6 iterates of the Hénon map using a constant disturbance amplitude
n0ðkÞ ¼ 0:3 in all the simulations. For the safe sets computed, we have always looked for the minimum control u0ðkÞ. That
means that for every k the safe sets found have been computed with a u0 below which no safe set exists. The precision in
the value of u0ðkÞ is of three decimals.

The resolution that we have used for the computation of the safe sets has been a challenge since what seemed to be right
for k ¼ 1;2;3 was clearly not enough for k ¼ 4;5;6. The reason for this phenomenon is that with every k the complexity of
each safe set seems to increase considerably. That is why the computations of the safe sets for k ¼ 1;2;3 have been done
with a resolution of 9000	 9000 points while those of k ¼ 4;5;6 with a resolution of 12000	 12000. The methodology that
we have followed to choose an appropriate resolution was to increase recurrently the resolution used with the Sculpting
Algorithm until we got two different resolutions in which the difference between the minimum u0ðkÞ computed were rather
small. Interestingly, for these resolutions the appearance of the safe sets was always almost identical.

In Fig. 7 we show the safe sets that we have computed for the Hénon map with parameters a ¼ 2:16 and b ¼ 0:3 and con-
stant n0ðkÞ ¼ 0:3. For these parameters the state of the system is very close to the boundary crisis that appears when
a ¼ 2:12, so we expect the rate of escape to be low. An interesting feature that we can see in this figure is that as we increase
the value of k the shape of the safe sets becomes more and more complex. But the main result that this figure shows is that at
a constant disturbance the control needed to keep the trajectories bounded is severely reduced as is increased k.

We have also done another set of simulations for the Hénon map with a value a ¼ 3, that can be considered to be far away
from the crisis. We can see the safe sets computed for different k values in this situation again for constant n0ðkÞ ¼ 0:3 in
Fig. 8. In this case the escape rate is bigger than in the previous example and the trajectories will leave Q much faster. Again,
here it is possible to observe that as k is increased the minimum control needed to avoid escapes decreases, but not as fast as
for a ¼ 2:16. This is confirmed by the segments in Fig. 9(a), where the ratios u0ðkÞ=n0ðkÞ for fixed n0ðkÞ ¼ 0:3 are shown. There
we can see that this ratio decreases with k in both cases and that the values are smaller for a ¼ 2:16, closer to the crisis, than
for a ¼ 3, a feature that we also observed for the tent map.

As an example of how the control would work in this case, in Fig. 9(b) we show a time series of x for a controlled trajectory
of the Hénon map with a ¼ 2:16, where we have chosen to apply control every k ¼ 6 iterations and with a disturbance
n0ð6Þ ¼ 0:3. In Fig. 9(c) we show the control applied: we can see that it is applied every k ¼ 6 iterations and it is well below
the maximum disturbance n0ð6Þ ¼ 0:3, that is highlighted with the red line.

Summarizing, we have seen that the features previously observed for the tent map also apply for the Hénon map, which
implies that for this system we could also minimize the control frequency once the value of umax is known.
6. Conclusions and discussion

In this paper we have investigated what is the minimum control frequency needed to sustain transient chaos in a system
in presence of disturbances, showing that the partial control method gives a way to minimize such frequency. We have
shown that in spite of the fact that the effects of the disturbances grow with the number of iterations, it is possible to min-
imize the control frequency.This result is possible due to an interesting property that we have derived analytically for the
tent map: at constant disturbances, the minimum control/disturbances ratio required, decreases with the number of iterates
k towards an asymptotic value. Furthermore, we have shown that this value is smaller as we get closer to the parameter val-
ues for which the chaotic saddle arises. We have shown that our results also hold for the Hénon map, so we believe that in
principle they would hold for any dynamical system with a chaotic saddle, although an exact proof on the generality of our
results for any system would require further theoretical investigation. Our work also shows that the main advantage of the
partial control method, its ability to minimize the control needed to sustain transient chaos in presence of disturbances, can
also be used (in a more indirect way) to achieve other valuable control goals.
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