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Under certain conditions, the collective behavior of a large globally-coupled heterogeneous

network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can

exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced”

ordinary differential equations can be derived that captures this mean field behavior. Here, we

show that chaos control algorithms designed using the reduced equations can be successfully

applied to imperfect realizations of the full network. To systematically study the effectiveness of

this technique, we measure the quality of control as we relax conditions that are required for the

strict accuracy of the reduced equations, and hence, the controller. Although the effects are

network-dependent, we show that the method is effective for surprisingly small networks, for

modest departures from global coupling, and even with mild inaccuracy in the estimate of network

heterogeneity. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882170]

The study of the collective dynamics of large populations

of coupled oscillators is a vibrant area of research. In

2008 and 2009, Ott and Antonsen published seminal

results
1

that made it possible to analytically study the as-

ymptotic behavior of a certain class of such systems. In

particular, they showed that under certain conditions, it

is possible to derive a set of “reduced” low-dimensional

ordinary differential equations (ODEs) that describe the

asymptotic behavior of the mean field of such a network.

The accuracy of this reduction requires, among other

things, that the network of interest consist of infinitely

many oscillators, be globally coupled, and be heterogene-

ous. The latter condition means that a parameter of the

individual oscillators is distributed according to a partic-

ular distribution, whose functional form enters into the

analysis. These tools have been applied to many systems,

including the bimodal
2

and forced Kuramoto systems,
3

chimeras,
3

etc. References 4 and 5 noted that this analy-

sis permits the study of non-autonomous versions of

these networks, as when a network parameter is made to

vary sinusoidally in time, and demonstrated that under

these circumstances the mean field parameter of the net-

work can exhibit complex behavior including chaos.

Here, we apply chaos control techniques
6,7

to stabilize

various unstable periodic orbits (UPOs) that are embed-

ded in a chaotic attractor of the mean field of a non-

autonomous network. Control is effected by applying

small perturbations to a network parameter. We design

the control algorithm based on the reduced equations,

but apply the perturbations to a finite realization of the

full network. We further investigate the effectiveness of

this control method under circumstances in which the

accuracy of the reduced equations is compromised in

various ways.

I. INTRODUCTION

The study of populations of coupled oscillators has

attracted an enormous amount of attention. Nevertheless, it

remains a field rich in new discoveries and new applications.

Even seemingly elementary systems, such as globally

coupled networks of simple phase oscillators (e.g., the

Kuramoto model8), are surprisingly powerful models for

studying collective network phenomena observed in nature,

especially synchronization. Recently, a series of works1 has

shed new light, as it was found that in a wide class of such

networks, when the number of oscillators approaches infin-

ity, the macroscopic mean field (or order parameter) con-

verges to a low-dimensional manifold. Furthermore, a small

set of ordinary differential equations can be derived that cap-

tures the asymptotic behavior of the mean field on this mani-

fold. This astonishing result opens new perspectives into

novel applications and analyses of these systems, and several

works have resulted.2,3,9–11

For example, in Ref. 4, an extension of the Kuramoto

system was studied in which (1) the natural frequency distri-

bution was bimodal, and (2) the overall coupling strength

was made to vary sinusoidally in time. For this case, the

reduced equation set that describes the asymptotic mean field

behavior consists of two non-autonomous ODEs. These equa-

tions were used to identify regions of the parameter space for

which the network exhibits macroscopic chaos. The same

behavior can also be found in a more general class of phase

oscillator networks in which the equations of motion can be

expressed in “sinusoidally coupled form.”10 For example, in

Ref. 5, chaos and other complex behaviors were also shown

to occur in a non-autonomous network of theta neurons.

a)alexandre.wagemakers@urjc.es
b)ebarreto@gmu.edu
c)miguel.sanjuan@urjc.es
d)paso@gmu.edu

1054-1500/2014/24(2)/023127/11/$30.00 VC 2014 AIP Publishing LLC24, 023127-1

CHAOS 24, 023127 (2014)

http://dx.doi.org/10.1063/1.4882170
http://dx.doi.org/10.1063/1.4882170
mailto:alexandre.wagemakers@urjc.es
mailto:ebarreto@gmu.edu
mailto:miguel.sanjuan@urjc.es
mailto:paso@gmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4882170&domain=pdf&date_stamp=2014-06-09


In this paper, we study three networks drawn from appli-

cations that range from the physical to the biological: the

two networks described above, i.e., the bimodal Kuramoto

network and the theta neuron network,12 as well as a network

of coupled Josephson junctions.13 For the latter system, we

establish the occurrence of macroscopic chaotic behavior, in

the sense that the mean field or order parameter of the net-

work exhibits chaos.

Our main interest is to apply chaos control techniques to

all three systems in order to stabilize various macroscopic

unstable periodic orbits. The interest in controlling the net-

work arises in practical situations where the chaotic behavior

of the system is undesirable or sub-optimal. Alternatively,

chaos control offers the possibility of rapidly switching

between several of the periodic orbits that are embedded in

the uncontrolled chaotic attractor.14 Some commonly used

network control techniques include pinning15 and global

feedback.16 In the first method, a small group of nodes is

chosen to be controlled, modified or even removed in order

to affect the dynamics of the whole network. With the feed-

back methods, the activity of the whole network is monitored

and processed into a control signal that is fed to the network.

A recent work17 showed that an unstable chimera state from

a network of identical phase oscillators can be stabilized

using a proportional feedback control scheme. Here, we

adopt the global feedback approach and describe a method

to control the macroscopic chaotic behavior of the network

via small changes to one or more accessible network

parameters.

The novelty of our approach is that our control strategy

is designed using the mean field description of the reduced

equation set before it is applied to the actual population of

oscillators. This approach has several advantages. A major

benefit of this technique is that the control perturbations are

calculated using just a few equations, thus avoiding the need

to integrate a very large network of coupled differential

equations. The latter would be costly or impossible due to

the large system size and long simulation time. Furthermore,

the controller only requires the state of the macroscopic

mean field and at least one accessible network parameter.

Thus, if it is possible to measure the mean field of the net-

work directly, then one avoids having to monitor all of the

oscillators individually.

A natural question that arises is whether this approach

applies to situations in which the accuracy of the reduction

described above is compromised. Thus, we check for robust-

ness by examining the effect of finite network size, imperfect

global coupling, and inaccuracy in estimating the natural fre-

quency distribution of the network.

II. CONTROL OF COLLECTIVE NETWORK CHAOS:
THEORY

A. Macroscopic reduction of a sinusoidally coupled
network

We consider globally coupled networks of oscillators

that can be written in sinusoidally coupled form,10 i.e.,

_hj ¼ f ðz; t; C; gjÞeihj þ hðz; t; C; gjÞ þ f �ðz; t; C; gjÞe�ihj : (1)

Here, hj denotes the phase of the j-th oscillator, j ¼ 1; � � � ;N,

and * denotes complex conjugation. The collective behavior

of the network is quantified by z, the macroscopic mean field

or order parameter (defined below), C ¼ ca; cb; � � �f g is a set

of network-level parameters, and gj is an oscillator-level

parameter. We assume that our network is heterogeneous in

that the parameters gj are chosen randomly from a

time-independent normalized distribution function g(g). The

key feature of Eq. (1) is that the individual oscillator phase hj

appears only via the harmonic functions eihj and e�ihj.

Particular cases of this general form include, for example,

the classic Kuramoto system and many of its exten-

sions,1,2,11,18,19 the theta neuron network,5,20 and networks of

Josephson junction arrays.9 Note that this formalism allows

the functions f and h to have explicit dependence on time

and/or other auxiliary dynamics. As in most statistical reduc-

tion methods, the reduced macroscopic mean field equations

will, in general, depend on the distribution function g and

other network-level parameters, but not on the individual

oscillator-level diversity parameters gj.

Following the mean-field approach pioneered by

Kuramoto in 19758 (and later used by many others21), we

consider the limit N!1 and move to a continuum descrip-

tion by introducing a probability density function q(h, g, t)
that describes the distribution of the oscillators. Specifically,

the quantity q(h, g, t)dhdg gives the fraction of oscillators

whose phases lie in the range [h, hþ dh] and whose micro-

scopic diversity parameters lie in [g, gþ dg], at a particular

time. Since the total number of oscillators is conserved, q
satisfies the following continuity equation:

@q
@t
þ @

@h
qvhð Þ ¼ 0; (2)

where the phase velocity vh is given by the continuum

version of Eq. (1)

vh ¼ f ðz; t; C; gÞeih þ hðz; t; C; gÞ þ f �ðz; t; C; gÞe�ih: (3)

The macroscopic mean-field variable z(t) is a complex

quantity given by

zðtÞ ¼
ð1
�1

ð2p

0

qðh; g; tÞeih dhdg: (4)

If one imagines the state of each individual oscillator being

represented by a phasor on the unit circle, the macroscopic

mean field z(t) gives the centroid of these phasors. Writing

zðtÞ ¼ rðtÞei/ðtÞ, the magnitude r(t) � [0, 1] characterizes the

instantaneous degree of network coherence, and /ðtÞ is the

instantaneous mean-field phase. Below, we derive a low-

dimensional dynamical system whose asymptotic behavior

coincides exactly with that of the discrete network described

by Eq. (1), with N!1.

Many analytical techniques have been developed for the

analysis of these systems (e.g., Refs. 1–5, 8, 9, 11, 13,

18–20). Here, we follow the procedure of Ref. 1 and adopt

the ansatz (known as the Ott-Antonsen, or OA ansatz) that

the solution to the continuity equation, Eq. (2), can be writ-

ten as a Fourier series:
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qðh;g; tÞ¼ gðgÞ
2p

1þ
X1
q¼1

a�ðg; tÞqeiqhþaðg; tÞqe�iqh
� �( )

; (5)

in which a(g, t) is a yet-to-be-determined complex function.

In Eq. (5), the amplitudes in the Fourier expansion are

monomials in a. This defines a reduced manifold M (para-

meterized by the real and imaginary parts of a) within the

infinite-dimensional space of all possible probability density

functions. In Ref. 1, Ott and Antonsen showed that this

reduced manifold M is invariant for the macroscopic dynam-

ics if and only if a satisfies the differential equation

_a ¼ iðfa2 þ haþ f �Þ; (6)

and jaðg; tÞj < 1 for all time.

The macroscopic mean field can be expressed in terms

of a by substituting Eq. (5) into Eq. (4), resulting in

zðtÞ ¼
ð1
�1

aðg; tÞgðgÞdg: (7)

We show in Sec. III that this integral can be evaluated in

closed form for our three example systems, and that Eqs. (6)

and (7) result in low-dimensional systems of ordinary differ-

ential equations for the dynamics on M. Furthermore, it can

be shown that M is attracting if the distribution function g(g)

has a non-zero width.1 Consequently, these ODEs describe

the asymptotic dynamics of the network’s macroscopic mean

field z(t).
We will refer to these ODEs generically as the “reduced”

equations, and for notational convenience, we write them as

_z ¼ FðzðtÞÞ. Our goal is to develop a parametric control

scheme based on this reduced macroscopic model to control

collective chaotic states in the full discrete network.

B. Collective control of networks

In the cases we consider in this paper, macroscopic

chaos can arise (for suitably chosen parameters) in a hetero-

geneous network when one of the network parameters c � C
is varied periodically in time, i.e.,

cðtÞ ¼ c0 þ A sinð2pt=sÞ; (8)

where A is the amplitude and s is the period. Notably, we

assume that c is a parameter that affects the network as a

whole, and not just a subset of the individual oscillators.

We apply the well-known Ott-Grebogi-Yorke (OGY)

method of chaos control6,7,22 to the reduced mean field mod-

els derived in Secs. II A and III in order to design our control

strategy. Particular low-order UPOs of the macroscopic cha-

otic attractor are targeted to be stabilized with small but care-

fully chosen perturbations. Since the network is assumed to

be driven by a continuous periodic signal of period s (Eq.

(8)), we design our controller based on a stroboscopic map

znþ1¼Us(zn) of the reduced equations with the same period.

This map is obtained numerically from the integration of the

reduced ODEs _z ¼ FðzÞ over successive time intervals of pe-

riod s.

We will refer to periodic orbits as “period-q orbits,”

where q is a positive integer. By this we mean an orbit of

period q on the stroboscopic map Us; this corresponds to an

orbit of period qs of the continuous-time ODEs. Unstable

period-q orbits embedded within a chaotic attractor corre-

spond to unstable fixed points of q-fold compositions of this

stroboscopic map. These can be extracted by solving the

equation Uq
sð�ziÞ � �zi ¼ 0 with a modified Newton algo-

rithm.23,24 It is important to note that a period-q orbit does

not necessarily exhibit q “loops” in the continuous-time state

space.

To control an unstable periodic orbit, we use the method

described in Ref. 7, which is a slight modification of the

original method in Ref. 6 that is more appropriate when

the period of the orbit is larger than one. First, we define the

stroboscopic map in terms of rn and /n, where

zn ¼
rn

/n

� �
(9)

is the nth stroboscopic sampling of the continuous macro-

scopic mean field zðtÞ ¼ rei/. We denote this map as

follows:

znþ1 ¼ Us zn; pð Þ; (10)

where p � C is an accessible macroscopic control parameter

of the network.

If a period-q orbit �ziþq ¼ �zi exists in the reduced system

for p ¼ �p, the stroboscopic dynamics is linearized around a

small neighborhood of the i-th component of the orbit

znþ1 � �ziþ1 ¼ Ci zn � �zið Þ þ DiDpn; (11)

where Dpn ¼ pn � �p. Here, the Ci are 2� 2 Jacobian matri-

ces and the Di are two-dimensional column vectors. These

characterize the local dynamics along the q consecutive

branches of the chosen period-q orbit, and are defined by

Ci ¼ DzUsðzn; pÞjzn¼�zi;p¼�p

Di ¼ DpUsðzn; pÞjzn¼�zi;p¼�p ;
(12)

with i ¼ 1; � � � ; q. The right sides of Eqs. (12) are obtained by

integrating the linearization of F(z(t)), that is, _dz ¼ DzFðzðtÞÞdz

and _dp ¼ DpFðzðtÞÞdp, where DzF(z(t)) and DpF(z(t)) are

Jacobian matrices computed along the unstable periodic orbit.22

The integration proceeds from t¼ t0 to t0þ s, t0þ 2s, …,

where we chose t0 to optimize control as described below.

By requiring that the macroscopic orbit land on the sta-

ble manifold of the desired periodic orbit, one can write

down an explicit condition for the required perturbation of

the control parameter

Dpn ¼
Ci � zn � �zið�pÞ½ �
� �

� eu;iþ1

�Di � eu;iþ1

; (13)

where the column vector eu,iþ1 is the contravariant vector

corresponding to the unstable direction of the (iþ 1)-th com-

ponent of the period-q orbit. The trajectory is thus driven at

each stroboscopic step toward the desired macroscopic

period-q orbit from one point to the next with judiciously
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chosen small perturbations Dpn. As in all classic chaos con-

trol methods, we are utilizing the intrinsic local dynamics of

the unstable periodic orbit. Thus, the required parameter per-

turbations can, in principle, be arbitrarily small (in the ab-

sence of noise).

The key idea in this control scheme is that we obtain the

control matrices Ci and Di, and contravariant vectors eu,i,

using the reduced dynamical system exclusively. Then, by

stroboscopically sampling the macroscopic mean field zn of

the full discrete network, the collective dynamics of the

discrete network can be controlled by applying the perturba-

tions Dpn as prescribed by Eq. (13).

A controlled trajectory of the stroboscopic map Us typi-

cally remains close to the intended target, but deviates from

it iteration by iteration due to finite-population size effects

and the limitations of the linearization used in the control

scheme. We quantify the efficiency of control by counting

the number of iterations for which the controlled trajectory

remains within a Euclidean distance e of a targeted fixed

point, and defining the control rate R as the ratio of this num-

ber to the total number of iterations in the simulation. In the

case of orbits of period q> 1, we count in the numerator

only those iterations for which the controlled trajectory

remains within e of each of the q components of the orbit. In

our simulations, we use e¼ 0.15.

III. THREE NETWORK EXAMPLES

In this section, we describe the three networks of phase

oscillators which we use to demonstrate the applicability of

our collective control scheme. Our networks include an

extension of the classic Kuramoto model, a heterogeneous

network of canonical Type-I neurons, and a network of noni-

dentical overdamped Josephson junctions. These examples

were chosen to represent a range of applications from neuro-

science to physics. In all cases, we choose parameters such

that they all exhibit macroscopic chaos in the uncontrolled

state.

A. A bimodal Kuramoto network

It has been shown that the collective state of a

Kuramoto network with bimodal frequency distribution and

time-varying coupling can oscillate chaotically.4 The indi-

vidual oscillators of the network are defined by the following

differential equation:

_hj ¼ gj þ
kðtÞ
N

XN

i¼1

sinðhi � hjÞ; (14)

where k(t) � C is a network-level macroscopic parameter

that describes the global coupling strength of the network

and is assumed to vary periodically in time according to

kðtÞ ¼ k0 þ A sinð2pt=sÞ: (15)

The diversity parameter gj gives the natural frequency of the

j-th phase oscillator. These are randomly picked from a

bimodal Lorentzian distribution

gðg;g0;DÞ ¼
D
2p

1

ðg� g0Þ2 þD2
þ 1

ðgþ g0Þ2 þD2

 !
: (16)

This distribution is the sum of two distinct unimodal distri-

butions with central frequencies atþ g0 and �g0, where the

half-width at half-maximum of each peak is D. The system

can be interpreted as two interacting populations of oscilla-

tors, with each oscillator being associated with either one or

the other unimodal distribution.2,27

To put this network into sinusoidally coupled form, the

two mean field coupling functions f and h of Eq. (1) are

given by

f ¼ kðtÞzðtÞ
2i

; (17)

and

h ¼ g: (18)

Here, z(t) is again the macroscopic mean field variable

defined by Eq. (4).

As we have seen, in the thermodynamic limit of an infi-

nite number of oscillators, the OA ansatz yields a pair of

integro-differential equations for the asymptotic mean field

given by Eqs. (6) and (7). With the choice of Eq. (16) for g,

one can evaluate the integral in Eq. (7) in closed form by

analytically continuing a(g, t) into the upper half of the com-

plex g-plane and evaluating at the residues at g¼6g0þ iD.

This gives zðtÞ ¼ zaðtÞþzbðtÞ
2

, where za(t)¼ a(þ g0þ iD, t) and

zb(t)¼ a(�g0þ iD, t) can quite naturally be interpreted as

“sub” order parameters that capture the mean fields of the

populations in the two-population interpretation of the

system.

Then, by evaluating Eq. (6) at the residues and substitut-

ing the above expression for a(t), we obtain the following

equations for the macroscopic dynamics of the network:

dza

dt
¼ �zaðDþ ig0Þ þ

kðtÞ
4

za þ zb � z2
aðz�a þ z�bÞ

� �
; (19)

dzb

dt
¼ �zbðDþ ig0Þ þ

kðtÞ
4

za þ zb � z2
bðz�a � z�bÞ

� �
: (20)

This system is four-dimensional, and our control scheme

could be applied directly at this point. However, we can

exploit symmetries inherent in the system and further reduce

to two dimensions. Writing zx ¼ rxeiwx , where x¼ a or b, the

asymptotic behavior of the macroscopic mean field can be

written in terms of r¼ ra¼ rb and the phase difference

/ ¼ wb � wa between the two populations.2 This yields

dr

dt
¼ �Dr þ kðtÞ

4
rð1� r2Þð1þ cos /Þ; (21)

d/
dt
¼ 2g0 �

kðtÞ
2
ð1þ r2Þsin /: (22)

In our subsequent investigations, these equations play the

role of F with the order parameter redefined as zðtÞ ¼ rei/,
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and stroboscopic samples of r and / from Eqs. (21) and (22)

enter into Eq. (9) when designing the controller.

The autonomous version of this two-dimensional system

has a variety of dynamical features and bifurcations, as

described in Ref. 2. For the non-autonomous version, it was

shown in Ref. 4 that for appropriate values of k0, A, and s,

the collective state of the network can exhibit many complex

behaviors including quasi-periodic oscillations, multistabil-

ity, and chaos.

In Fig. 1, we compare a chaotic trajectory obtained from

the reduced system of Eqs. (21) and (22) to one obtained

from the full discrete network of Eqs. (14)–(16) with 5000

oscillators and the same parameter set. In both cases, we

show the time series of the order parameter zðtÞ ¼ rei/ in the

complex plane. The reduced equation provides an excellent

prediction of the asymptotic behavior of the network even

for a finite number of oscillators. The trajectory from the dis-

crete network also shows that the dynamics of the population

converges rapidly to the OA manifold described by the

reduced system.

B. A network of theta neurons

The theta neuron is the canonical model for neurons

with Type-I excitability.12,25 Although its properties are dif-

ferent from and are more complex than the simple phase

oscillators of the Kuramoto model, the OA reduction method

can be applied to networks of theta neurons, yielding another

low-dimensional set of ODEs for the asymptotic mean field.

The evolution equation of one theta neuron is

_h ¼ 1� cos hð Þ þ 1þ cos hð Þ g½ �: (23)

This features a saddle-node on an invariant circle (SNIC)

bifurcation, where g is the bifurcation parameter. For g< 0,

a stable “resting” equilibrium and an unstable “threshold”

equilibrium exist on the invariant circle. At g¼ 0 these

merge, and for g> 0, a “spiking” limit cycle exists.

Allowing g to vary slowly in time such that the SNIC

bifurcation is traversed periodically results in a model of a

parabolically bursting neuron.12 We construct a network of

such bursters such that each neuron evolves according to

_hj ¼ 1� cos hj

� 	
þ 1þ cos hj

� 	
gjðtÞ þ Isyn

� �
; (24)

where

gjðtÞ ¼ �gj þ A sin 2pt=sþ uð Þ: (25)

Heterogeneity is introduced by randomly drawing �gj (i.e.,

the mean value of gj(t)) from a distribution gð�gÞ. We choose

the standard unimodal Lorentzian distribution

gð�gÞ ¼ 1

2p
D

ð�g � g0Þ2 þ D2
: (26)

The neurons are coupled via Isyn, which models pulse-like

post-synaptic currents that sum according to

Isyn ¼
k

N

XN

i

PmðhiÞ; (27)

where PmðhÞ ¼ am 1� coshð Þm; m 2N, and am is a normal-

ization constant such thatð2p

0

PmðhÞdh ¼ 2p:

The parameter m defines the sharpness of each pulse-like

post-synaptic potential, and in this work we restrict consider-

ation to m¼ 2. We assume that the synaptic strength k is the

same for all neurons in the network.

The autonomous version of the network defined by Eqs.

(24)–(27) was analyzed in Ref. 20, and Ref. 5 demonstrated

that the non-autonomous version can exhibit macroscopic

chaos and other complex behaviors.

In order to write the theta neuron network of Eqs.

(24)–(27) in sinusoidally coupled form, we first express the

rescaled synaptic current (Isyn/k) as a function of the mean

field z and the synaptic sharpness parameter m as follows:

Hðz;mÞ ¼ an B0 þ
Xm

q¼1

Bq zq þ z�ð Þq
� �( )

; (28)

with

Bq ¼
Xm

j;l¼0

dj�2l;qQjl; (29)

FIG. 1. Chaos in the uncontrolled non-autonomous bimodal Kuramoto

network. The trajectories shown are obtained from the reduction (a) and a

discrete population (b) of 5000 oscillators. Approximately 100 cycles are

shown. Parameters are: A¼ 0.65, g0¼ 1.29, k0¼ 4, s¼ 5, D¼ 0.8, and the

initial condition used in (b) was near the origin. Notice the noise in (b) due

to the finite-size population effect.
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and

Qjl ¼
ð�1Þj�2lm!

2jl!ðm� jÞ!ðj� lÞ!
; (30)

where di,j is the standard Kronecker delta function on the

indices (i, j). Then, the mean field functions f and h of Eq.

(1) are given by

f ¼ � 1

2
ð1� gðtÞÞ � kHðz;mÞ½ �; (31)

and

h ¼ ð1þ gðtÞ þ kHðz;mÞÞ; (32)

where g(t) is given by Eq. (25).

Finally, by substituting these into Eqs. (6) and (7) and

evaluating at the residue �g ¼ g0 þ iD, we obtain

_z ¼ �i
ðz� 1Þ2

2
þ ðzþ 1Þ2

2
�Dþ iĝðtÞ þ ikHðz;mÞ½ �; (33)

where

ĝðtÞ ¼ g0 þ A sin 2pt=sþ uð Þ: (34)

This equation plays the role of F in our control scheme, with

zðtÞ ¼ rei/.

The macroscopic mean field of this theta neuron

network exhibits chaos for appropriate parameters, as can be

observed in Fig. 2. The prediction from the reduction

(Eq. (33)) is plotted in panel (a), while the order parameter

calculated from a finite population of 5000 theta neurons

appears in panel (b).

C. A network of Josephson junctions

The circuit equation of a series array of resistively

loaded Josephson junctions can be formulated in terms of

coupled phase oscillators9,13 as

_hj ¼ bj � ð1þ bðtÞÞcos hj þ
1

N

XN

i¼1

cos hi; (35)

where b(t) � C is proportional to the load resistance of the

array. Note that the Josephson junction array considered in

Refs. 9 and 13 was driven by a constant current. For our con-

siderations, we prefer to formulate the array such that it is

driven by a constant voltage, i.e., by an idealized battery.

This permits us to allow the load resistance to vary periodi-

cally in time while the potential difference across the whole

array remains constant. Accordingly, we allow b(t) to vary in

time as

bðtÞ ¼ b0 þ A sinð2pt=sÞ: (36)

The parameter bj is inversely proportional to the critical

current of the j-th junction, and the set of all critical currents

are assumed to be different and distributed according to a

unimodal Lorentzian distribution

gðbÞ ¼ 1

2p
D

ðb� b0Þ2 þ D2
: (37)

To put this into sinusoidal coupling form, the mean field

functions f and h of Eq. (1) become

f ¼ 1þ bðtÞ
2

; (38)

and

h ¼ gþ zþ z�

2
: (39)

Following the same reduction procedure as described above,

the asymptotic macroscopic dynamics for this resistively-

loaded overdamped Josephson junction network is given by:

dz

dt
¼ zð�Dþ ib0Þ �

bðtÞi
2
ðz2 þ 1Þ þ i

2
ðjzj2 � 1Þ; (40)

with Eq. (36). Equation 40 plays the role of F in our control

scheme, with zðtÞ ¼ rei/.

As with the previous systems, it is possible to find a

region of the parameter space where the macroscopic mean

FIG. 2. Chaos in the uncontrolled non-autonomous theta neuron network.

The trajectories shown are obtained from the reduction (a) and a discrete

population (b) of 5000 oscillators. Approximately 100 cycles are shown.

Parameters are: A¼ 4.8, g0¼ 10.75, k¼�9, s¼ 1, D¼ 0.5.
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field exhibits chaos. In Fig. 3, the numerical integration of

the reduction in Eq. (40) is compared with the simulation of

the population described by Eqs. (35)–(37). Both simulations

are in good agreement with as few as 5000 oscillators in the

population.

IV. COLLECTIVE CHAOS CONTROL: RESULTS

The reduced equations for our three example networks,

i.e., Eqs. (21), (22), (33), and (40), allow us to study the

asymptotic behavior of the macroscopic mean field of these

networks with ease, without having to directly simulate the

full networks themselves. The parameter spaces can be stud-

ied numerically and analytically to isolate regions where

macroscopic chaos arises, and unstable periodic orbits

embedded within a given chaotic attractor can be identified.

The design of the controller starts with the examination of

the stability near the desired macroscopic UPO using the

reduced mean field equations as described in Sec. II B. Once

the matrices Ci, Di, and the contravariant vectors eu,i have

been obtained for a given stroboscopic map, control of the

full network is effected using an instantaneous measurement

of the mean field of the population and applying control per-

turbations according to Eq. (13).

A. Control of the bimodal Kuramoto network

For the bimodal Kuramoto network example, we used

the reduced equations (Eqs. (21) and (22)) to identify four

different unstable periodic orbits of periods 1, 2, 3, and 3 em-

bedded in the chaotic attractor shown in Fig. 1. These orbits

are shown in the left column of Fig. 4 (i.e., panels a, c, e,

and g).

We sought to control these UPOs in a discrete network

of 50 000 oscillators by applying control perturbations to the

average coupling strength k0; see Eq. (15). The results are

shown in the right column of Fig. 4 (i.e., panels b, d, f, and

h) for ease of comparison. The controlled orbits are shown in

gray. Black dots and arrows indicate the phases at which the

controlling perturbations were applied. These instants were

chosen by varying t0 in order to obtain the best possible con-

trol. Although both series of figures are in good agreement,

we can observe noise in the discrete population trajectories

because the population is not infinite in size. Orbits of period

FIG. 3. Chaos in the uncontrolled non-autonomous Josephson junction net-

work. The trajectories shown are obtained from the reduction (a) and a dis-

crete population (b) of 5000 oscillators. Approximately 100 cycles are

shown. Parameters are: A¼ 1.5, b0¼ 0.3, b0¼�0.6, s¼ 5, D¼ 0.025.

FIG. 4. Control in the chaotic non-autonomous bimodal Kuramoto network.

The left column shows four different unstable periodic orbits embedded in

the chaotic attractor of Figure 1 that were identified using the reduced equa-

tions. These have periods (a) 1, (c) 2, (e) 3, and (g) 3, relative to the strobo-

scopic map Us. The right column shows controlled trajectories in a discrete

population of 50 000 oscillators that target these orbits. Black dots and

arrows mark the instants at which controlling perturbations were applied.
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larger than 3 were also identified in the reduced system, but

their control was not possible in the population, possibly due

to these noisy finite-size effects.

B. Control of the theta neuron network

For the theta neuron network, we implemented control

using the phase shift u in Eq. (34), and separately the overall

synaptic coupling strength k in Eq. (27). UPOs of period 1, 2,

and 3 embedded in the chaotic attractor of Fig. 2 were identi-

fied and are shown in the left column of Fig. 5. Controlled tra-

jectories targeting these fixed points using u and k in a discrete

network of 10 000 theta neurons are shown in the middle and

left columns, respectively. Again, black dots and arrows indi-

cate where controlling perturbations were applied. It is clear

that control of these UPOs is not only possible, but is accurate

using either of these control parameters. Also, noise due to the

finite-size effect is much less apparent in this case.

C. Control of the Josephson junction network

For our final example, the Josephson junction network,

we chose the mean load resistance of the array, i.e., b0 in

Eq. (36), as the control parameter. UPOs of period 1, 2, and

4 embedded in the chaotic attractor of Fig. 3 were identified

and are shown in the left column of Fig. 6. Control of these

orbits was successfully realized in a discrete network of

5000 oscillators, and the results are shown in the right

column of the same figure. As in the case of the controlled

bimodal Kuramoto system, finite-size effect noise is again

apparent. A period 3 orbit was also identified, but we were

unable to find a suitable controller for it.

V. NETWORK CHARACTERISTICS AND ROBUSTNESS
OF CONTROL

In this section, we address the robustness of our control

method. Strictly speaking, the OA reduction method

described in Sec. II A, which yields the mean field equations

on which our controller is based, requires (1) an infinite

number of oscillators, (2) global coupling, and (3) perfect

knowledge of the heterogeneity parameter distribution. Here

FIG. 5. Control in the chaotic non-

autonomous theta neuron network. The

left column shows three different

unstable periodic orbits embedded in

the chaotic attractor of Figure 2 that

were identified using the reduced equa-

tions. These have periods (a) 1, (d) 2,

and (h) 3, relative to the stroboscopic

map Us. The middle and right columns

show controlled trajectories in a dis-

crete population of 10 000 theta neu-

rons that target these orbits using u
and k as control parameters, respec-

tively. Black dots and arrows mark the

instants at which controlling perturba-

tions were applied. All panels also

show the unit circle, within which the

mean field z must remain.

FIG. 6. Control in the chaotic non-autonomous Josephson junction network.

The left column shows three different unstable periodic orbits embedded in

the chaotic attractor of Figure 2 that were identified using the reduced equa-

tions. These have periods (a) 1, (c) 2, and (e) 4, relative to the stroboscopic

map Us. The right column shows controlled trajectories in a discrete popula-

tion of 5000 oscillators that target these orbits using b0 as the control param-

eter. Black dots and arrows mark the instants at which controlling

perturbations were applied.
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we examine how the control rate R (defined in Sec. II B) is

degraded as each of these assumptions is gradually relaxed.

A. Finite size effect

As it evolves in time, the mean field of a network con-

sisting of a finite number of oscillators approximates that of

an infinite network, but appears noisy. This is evident in

Fig. 1, which compares a chaotic attractor of the infinite non-

autonomous bimodal Kuramoto network (obtained via the

OA reduction) to the attractor realized by a network of just

5000 oscillators. As the number of oscillators in the finite

network is further decreased, this noisy effect becomes more

pronounced, and naturally one would expect our control

method to fail at some point. Nevertheless, the results pre-

sented in Sec. IV demonstrate that our control method can be

successful when applied to non-infinite networks of suffi-

ciently large size.

In Fig. 7, we show how control of the period-1 UPO

shown in Figs. 4(a) and 4(b) degrades as the number of oscil-

lators in the network is decreased from 50 000 to 500. We

observe that for progressively smaller networks, the con-

trolled orbit deviates more and more from the targeted UPO

and instead traces out the chaotic attractor of Fig. 1. In addi-

tion, the locations on the trajectory where controlling pertur-

bations are applied (shown by black dots in Fig. 7) become

more and more scattered.

We computed the minimum number of oscillators Nmin

necessary to keep a UPO perfectly controlled for all the

UPOs that were considered in Sec. IV above (i.e., those

shown in Figs 4–6). We defined perfect control as having a

control rate of R¼ 1 for a run of 600 periods. The results are

summarized in Table I.

For the bimodal Kuramoto network, only 4000 oscilla-

tors are necessary to maintain control of the period-1 orbit at

all times, while the period-2 and period-3 UPOs require

more than 10 000 units to achieve such control. Interestingly,

to perfectly control the second period-3 UPO (denoted 3* in

the table), the network must have an order of magnitude

more oscillators, indicating that this particular orbit is espe-

cially vulnerable to the finite-size noise effect.

Both the theta neuron network and the Josephson junc-

tion network appear to be less susceptible to the finite-size

noise effect than our bimodal Kuramoto network, as is evi-

dent by comparing Figs. 1–3. Accordingly, control is more

robust with respect to network size in these cases. It is nota-

ble that for the theta neuron network, k-control proved to be

more robust to network size than u-control. Finally, control

of the Josephson junction network was the most effective of

the examples we studied.

B. Link removal

Next, we examined the effect of relaxing the require-

ment that the network be globally coupled by generating net-

works in which we randomly removed a certain percentage

of (bidirectional) links. For brevity, we restricted attention to

period-1 orbits. Starting with networks of 10 000 oscillators,

we constructed five realizations of networks with p-percent

link removal, and computed the average control rate hRip of

the period-1 UPO over these networks. We then repeated

this procedure, searching for the largest value of p for which

hRip � 0:95.

Results are shown in Table II. For the bimodal

Kuramoto network, effective control of the period-1 orbit is

possible with at most 0.5% of the links missing. Compared

to the results for the other networks, this is a poor perform-

ance; we found that the theta neuron network and the

Josephson network were more robust with respect to this

manipulation. For the theta neuron network, control fails

suddenly around 2% of the total links for the k-controller and

around 6% for the u-controller. It is important to note that

for N¼ 10 000, 2% link removal corresponds to removing

one million out of a total of fifty million links in the globally

coupled network. Finally, results for the Josephson junction

network were similar to those of the theta neuron network.

FIG. 7. Example of the degradation of control as the size of the discrete network decreases. The controlled period-1 UPO shown in Figs. 4(a) and 4(b) is shown

for discrete networks consisting of N¼ 50 000, 5000, 2000, and 500 oscillators. Black dots indicate the location at which controlling perturbations are applied.

The control rate R for each case is reported below the corresponding figure.

TABLE I. Robustness of control with respect to network size. Nmin is the

number of oscillators in the smallest discrete network for which perfect con-

trol of the UPO listed could be achieved. Perfect control was defined as

R¼ 1 for 600 cycles.

Network UPO Nmin

Bimodal Kuramoto Period 1 4 000

Period 2 10 000

Period 3 30 000

Period 3* 200 000

Theta neuron (u-control) Period 1 6 000

Period 2 4 000

Period 3 30 000

Theta neuron (k-control) Period 1 3 000

Period 2 3 000

Period 3 10 000

Josephson junction Period 1 1 000

Period 2 4 000

Period 4 5 000
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C. Distribution of the heterogeneous parameter

Finally, we note that the OA reduction procedure

requires perfect knowledge of the heterogeneity parameter

distribution in the network of interest, because the functional

form of this distribution enters into the derivation of the

reduced equations. Recall that the heterogeneity parameters

for our example networks are gj in Eq. (14), �gj in Eq. (25),

and bj in Eq. (35). In real-world applications, the actual dis-

tributions of these or similar parameters may be imperfectly

estimated. To test the consequences of this, we prepared two

sets of oscillators for each of our example systems in which

one set had heterogeneity parameters chosen randomly from

a Lorentzian distribution (with parameters g0 and D as in

Eq. (26)), and the other set had them drawn from a similar

Gaussian distribution (with mean g0 and standard deviation

D). For our bimodal Kuramoto example system, we used

bimodal versions of these distributions, e.g., Eq. (16) and its

Gaussian analog. These sets of oscillators were then mixed

in varying proportions to form a single network for study.

Since the controller is based on the reduced equations, which

are derived using Lorentzian distributions, we expected that

as the proportion of Gaussian oscillators in the network

increased, our control method would eventually fail.

Proceeding as before, we started with networks of

50 000 oscillators and constructed five realizations of net-

works with p-percent Gaussian mixing, and computed the

average control rate hRip of a UPO over these networks. We

then repeated this procedure, searching for the largest value

of p for which hRip � 0:95. Results are shown in Table III.

In the bimodal Kuramoto network, control is effective

when the population contains less than roughly 5% of

Gaussian-distributed oscillators. Interestingly, we found that

when the ratio exceeds 10%, the network behavior abruptly

switches to a stable period-1 attractor not related to the origi-

nally targeted orbit. Thus, the mixing procedure leads to a

drastic change in the system such that the chaos that one is

trying to control no longer exists for sufficiently large mix-

ing. The critical mixing percentage for this kind of failure

may depend on the particular implementation of the control-

ler. Nevertheless, our results show that our control algorithm

is appreciably robust with respect to ambiguity in the distri-

bution describing the heterogeneous population.

In the theta neuron network, both controllers (k and u)

are able to stabilize the targeted UPOs when the Gaussian-

distributed oscillators represent less than 10% of the popu-

lation. Once again, simulations show that the controlled

network switches abruptly to a stable period-1 attractor

when the mixing reaches a critical threshold of about 50%,

thus indicating the disappearance of the uncontrolled

chaotic attractor. We note that the k-controller is more

effective against this type of failure as compared to the

u-controller.

Surprisingly, the period-1 UPO in the Josephson junction

network was controllable with as much as 90% of the oscilla-

tors drawn from the Gaussian distribution. Control of higher-

order UPOs was less robust but similar to k-control in the

theta neuron network. In both cases, however, control was sig-

nificantly more robust than in the bimodal Kuramoto case.

VI. CONCLUSION

The collective behavior of a large network of coupled

oscillators can be complex or even chaotic. Controlling the

microscopic constituents of such a chaotic network can be

prohibitively difficult, and it may be more practical to control

the macroscopic behavior of the network through a series of

small perturbations delivered to an accessible global network

parameter. Here, we have shown that efficient control of

collective network chaos in this manner is indeed possible.

Recent results have demonstrated that the asymptotic

mean field of a certain class of globally coupled oscillator

networks can, in the continuum limit, be fully described by a

set of low-dimensional ordinary differential equations. We

used this approach to obtain the reduced equations for three

example networks, and used them to (1) identify parameter

sets for which the networks exhibit chaos, (2) identify sev-

eral unstable periodic orbits embedded in selected network

chaotic attractors, and (3) design a controller based on OGY-

type chaos control techniques. Note that doing any of these

without the reduced equations would be extremely difficult if

not outright impossible.

We then applied this controller directly to realizations of

the full discrete network, and demonstrated that targeted

UPOs can indeed be stabilized. It was not a priori obvious

that this approach would be successful. Since the control algo-

rithm is based on the reduced equations, this scheme requires

that the reduced dynamical system be a faithful representation

TABLE II. Robustness of control with respect to link removal. The right

column lists the maximum percentage of link removal for which the average

control rate of the listed UPO remains above 0.95.

Network UPO Avg. maximum % link removal

Bimodal Kuramoto Period 1 0.5%

Theta neuron (u-control) Period 1 6%

Theta neuron (k-control) Period 1 2%

Josephson junction Period 1 4%

TABLE III. Robustness of control with respect to inaccurate estimation of

the heterogeneity distribution. The right column lists the maximum percent-

age of Gaussian-distributed oscillators in the population for which the aver-

age control rate of the listed UPO remains above 0.95.

Network UPO Maximum % of mixing

Bimodal Kuramoto Period 1 5%

Period 2 2%

Period 3 5%

Theta neuron (u-control) Period 1 10%

Period 2 50%

Period 3 10%

Theta neuron (k-control) Period 1 80%

Period 2 60%

Period 3 50%

Josephson junctions Period 1 90%

Period 2 30%

Period 4 40%
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of the full discrete network. This is guaranteed only under the

assumption of a globally coupled network consisting of an in-

finite number of oscillators, with perfect knowledge of the net-

work heterogeneity. But such networks are not possible to

either simulate exactly or realize experimentally.

Therefore, we tested the robustness of our control

method in networks in which we systematically compro-

mised these three assumptions. Indeed, if the networks had

too few oscillators, control would fail. Nevertheless, control

was effective and robust in networks of just a few thousand

oscillators. Control appears to fail when noise due to the fi-

nite population size effect obscures the fine details of the

state-space structure of the targeted orbits, such as when dif-

ferent arcs or “loops” of the orbit are very close together.

These features occur more commonly in higher-order orbits.

Accordingly, we found that control was most effective for

low-order UPOs that have a simpler structure.

Similarly, removing too many links from the network

led to the failure of control, but again, control was indeed

possible for modest departures from global coupling. The

same was true for departures from the Lorentzian heteroge-

neity distribution, which was assumed when designing the

controller. It is likely that a noise effect similar to that seen

in small networks underlies the initial breakdown of control

in these cases. However, we did observe instances of a

more catastrophic failure, especially with breakdown of the

heterogeneity distribution assumption, in which the overall

dynamical structure of the network changed drastically. In

these cases, it appears that the chaotic attractor that exists

in the ideal network was destroyed and abruptly replaced

with an unrelated stable periodic orbit. Thus, departing

from the prediction of the reduced equations by gradually

relaxing the theory’s underlying requirements cannot be

expected to be a smooth process.

Finally, we observe that it may be possible to mitigate

some of these deleterious effects. For example, we showed

that control of our theta neuron network was possible using

either the network coupling strength k or the phase shift u. It

is likely that the effectiveness of control can be significantly

improved by using both of these parameters together, as was

demonstrated in Ref. 26.
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