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We study the evolution of a finite population playing a Hawk–Dove game with mixed strat-
egies. Players have a fixed strategy and their offspring inherit the parental strategy, with a
probability u of mutating to another strategy. Payoff in the game is the only variation in
fitness among individuals, and a selection coefficient d measures the importance of the
game in the overall fitness. Population evolution is carried out through a Moran process.
We compare our numerical simulations with theoretical predictions in earlier work by Tar-
nita et al. (2009). Our results show that the effect of selection on the abundances of favored
strategies is nonlinear, being less intense as d increases. The mutation rate u has an oppo-
site and stronger effect to that of selection. Heuristic theoretical arguments are given in
order to explain this nonlinear relationship.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Evolutionary game theory studies the evolution of populations when fitness is frequency-dependent [1–4]. This means
that the composition of the population influences the fitness of an individual. This discipline was developed by John Maynard
Smith [1,2,5] in order to study the evolution of animal conflicts, although it is a useful framework whenever fitness is depen-
dent on the composition of the population, such as competition between species, host-parasite interactions, and so on.

Individuals in the population interact with each other according to their strategies. Sometimes it is assumed that popu-
lations are well mixed and every individual interacts with each other, while on other occasions some spatial or social lim-
itation is imposed on these interactions (see for example [6,7]). The fitness of an individual is then a function of the average
payoff that he gets when interacting with other players.

In large, well-mixed populations, the dynamics of the population is usually described in terms of deterministic differen-
tial equations, e.g. the replicator equation [4,8]. Here, strategies interact with each other, and the evolution of the population
is measured in terms of frequencies of strategies. The change of frequency of a given strategy in the population is a function
of its fitness and of the mutation rate — the rate at which a strategy changes into another.

In these models, stochastic effects due to ‘‘sampling error’’ are not considered. However, although populations are some-
times large enough to study them through the replicator equation, there are many cases in which stochastic effects due to
small population sizes are very relevant to the evolution of the population [9].
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When considering evolutionary games in finite populations, the evolutionary updating must be done through stochastic
methods. Although there are many possible approaches to this study, e.g. the Wright–Fisher process [10,11] or the pairwise-
comparison process [12], we will focus here on the Moran process [10,13].

The goal of this article is to study the stochastic evolutionary dynamics of well-mixed, finite-sized populations, playing a
Hawk–Dove game. We will work on a model developed previously by Corina Tarnita and collaborators [14]. In this paper,
analytical expressions for the average abundance of any strategy in the population in the limit of weak selection, for arbitrary
mutation rates have been developed. They observed a linear effect of selection on the abundances of different strategies. We
examined the model numerically for stronger levels of selection, finding a nonlinear effect. Although a combination of high
mutation rate and mutation size would not be so realistic, we believe that its study is very interesting for a better under-
standing of this kind of situations and also for showing the complete validity of the previous law.

The organization of this paper is as follows. In Section 2, we present the model used throughout the article, with some of
the theoretical approximations developed in [14]. In Section 3, we present some numerical results obtained from this model.
Heuristic arguments for the behavior of the model are given in Section 4. Finally, a brief discussion is presented in Section 5.

2. Model description

The model developed in this article is based on a previous work [14], where a finite population of individuals playing a
game is considered. There are n pure strategies, and the payoff that strategy i gets after playing against strategy j is given by
the ijth element of the n� n payoff matrix A. In this game, every player has a mixed strategy, choosing to play a pure strategy
i with probability pi. A mixed strategy is defined by a stochastic vector p ¼ ðp1; . . . ; pnÞ, with 0 6 pi � 1 and
p1 þ p2 þ � � � þ pn ¼ 1. The set of all mixed strategies, Sn, is a simplex in Rn. The pure strategies are those in which any
pi ¼ 1, that is, the vertices of the simplex. The payoff of strategy p playing strategy q is Aðp;qÞ ¼ pAqT .

The population size is given by N and its evolution follows a Moran process. At each generation one individual
is chosen for reproduction and another one for elimination. The total population size remains constant. In our model,
the reproduced individual is chosen proportionally to its fitness. Fitness of the player i is dependent on the average
payoff that its strategy pi ¼ ðpi1; . . . ; pinÞ gets after playing every other strategy in the population. The mathematical
expression is
f i ¼ 1þ d

PN
j piApT

j

N
; ð1Þ
where i; j ¼ 1 . . . N are the individuals in the population and d represents the intensity of the selection, i.e., the relevance of
the game played in the overall fitness of the individuals. This equation implies that individuals play the game against them-
selves as well. We have used this approximation according to previous results [14], as it does not affect the results from a
qualitatively point of view. This model considers mutation. We represent the probability of mutation as u. Thus, the offspring
of the chosen individual will inherit the strategy of the parent with a probability 1� u. With a probability u, it mutates by
choosing one mixed strategy uniformly at random from all possible strategies. Then, another individual is chosen randomly
to die. The chosen individual can be the same that was chosen for reproduction.

We focus on estimating the abundance of each strategy through time, in order to discover which strategies are being
favored by selection. Favored selection means that if a strategy is favored then it has higher fitness than the population aver-
age. To this end, we run the process long enough, obtaining the strategies present in the population at every generation. We
then estimate the stationary abundances of every strategy, dividing the ½0;1� interval into finite segments, and counting how
many times do strategies appear in each segment in our data. This number is then related to the average of all the segments,
giving the estimated stationary abundance in each segment. We then plot the abundances of each strategy relative to the
average abundance.

2.1. Weak selection

In the context of this model, a weak selection, i.e. d! 0, means that the relevance of this game in the total fitness of the
players is small. In other words, there are many components that affect fitness, and the game being played is just one of
them. In [14], the authors developed theoretical results for this model in the case of weak selection. Using a perturbative
method employed in a previous work [15], they have found the theoretical abundance of strategy p with respect to the aver-
age abundance in the equilibrium,
~xp ¼
1
jjSnjj

1þ dNð1� uÞ
~Lp þ l~Hp

ð1þ lÞð2þ lÞ

 !
; ð2Þ
where jjSnjj ¼
ffiffiffi
n
p

=ðn� 1Þ! is the volume of the simplex and thus 1=jjSnjj is the average abundance of a strategy and l ¼ Nu is
the rate of mutation in a population of size N. The expressions ~Lp and ~Hp are defined as
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~Lp ¼
1
jjSnjj

Z
Sn

½AðppÞ þ AðpqÞ � AðqpÞ � AðqqÞ�dq; ð3Þ

~Hp ¼
1

jjSnjj2
Z

Sn

Z
Sn

½Aðpq� AðrqÞÞ�dqdr; ð4Þ
and are used for p to be favored by selection in the case of low and high mutation, respectively. For an arbitrary mutation
rate l;p is favored by selection if and only if ~Lp þ l~Hp > 0.

All these results hold for large, but finite population sizes, 1� N � 1=u.

2.2. Hawk–Dove game

In order to numerically simulate this model, we use the Hawk–Dove game. This game was first presented by John May-
nard Smith and George Price in 1973 [1]. This game presents two pure strategies, and is thus a particular case of the general
case with n strategies. The two strategies are hawks and doves. We can think of this game as an intra-population fight for
resources, partners, or any other conflict. Whenever a hawk encounters another individual, it will fight its opponent, inde-
pendent of the opponent’s strategy. Doves, on the contrary, retreat when the opponent escalates the fight. The benefit of win-
ning a fight is given by b, and the cost of injury in a fight is c. When two hawks (H) meet, there is a 0:5 probability that either
one wins the fight, as they are both equally strong. Therefore, the average payoff is ðb� cÞ=2. When a hawk meets a dove (D),
it wins the fight, and the payoff is b. When a dove meets a hawk, its payoff is 0, since it retreats. Finally, when two doves
meet, one wins and the other loses without injury. The payoff is b=2.

The payoff matrix is thus
H G

H

D

b�c
2 b

0 b
2

 !
:

ð5Þ
Normally, and in our model as well, 0 < b < c. Since b < c, if everyone else plays hawk, it is better to play dove, and vice
versa.

This means that there is no pure Evolutionarily Stable Strategy (ESS) — defined as the strategy p that satisfies
either Aðp;pÞ > Aðq;pÞ ð6aÞ
or Aðp;pÞ ¼ Aðq; pÞ and Aðp; qÞ > Aðq; qÞ; ð6bÞ
for all other strategies q – p [1,8]. As a result, hawks and doves can coexist. At the equilibrium, the frequency of hawks is
given by b=c. Thus, if c� b, the equilibrium frequency of hawks will be small.

We can consider mixed strategies that play hawk with probability p and dove with probability 1� p. The ESS in this case
is the mixed strategy that plays hawk with probability p	 ¼ b=c. No other strategy can invade this ESS if there is no mutation
[2]. Strategy p ¼ ½p;1� p� is a function of p only, and thus every mixed strategy can be described just by the parameter p. The
strategies are then confined to the ½0;1� interval.

From the previous cited reference [14] the condition that strategy p ¼ ½p;1� p� is favored for an arbitrary mutation rate
becomes
~Lp þ l~Hp ¼ �p2 þ p 2
b
c
þ l b

c
� 1

2

� �� �
� b

c
� 1

3

� �
� l

2
b
c
� 1

2

� �
> 0: ð7Þ
This equation describes a parabola, whose tip is given by
p̂ ¼ p	 1þ l
2

� �
� l

4
: ð8Þ
Note that for l ¼ 0, then p̂ ¼ p	, as expected. As l increases, the tip of the parabola is ‘‘pushed’’ towards the closest pure
strategy. Thus, if p	 < 1

2, we have p̂ < p	. And similarly if p	 > 1
2. As l!1, the most favored strategy is one of the two pure

strategies. We will study this effect of mutation through numerical simulations.
Finally, the expected abundance of strategy p, from Eq. (2), becomes
~xp ¼ 1þ dNð1� uÞ
~Lp þ l~Hp

ð1þ lÞð2þ lÞ ; ð9Þ
where jjS1jj ¼ 1 as we are considering ~xp as a function of p instead of p ¼ ½p;1� p� and, therefore, we are working in one
dimension, and
~Lp þ l~Hp ¼ �p2 þ p 2
b
c
þ l b

c
� 1

2

� �� �
� b

c
� 1

3

� �
� l

2
b
c
� 1

2

� �
: ð10Þ
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When comparing the results from numerical simulations of the model, [14] showed that Eq. (9) approximated the simula-
tions quite closely, for low values of d. We will use Eq. (9) to compare the numerical simulations of the model to the theo-
retical curves, and also to observe the divergence between those two approaches as the intensity of selection d increases.

3. Results

Here we analyze the effect of selection d and mutation u on the abundances of the different strategies in the ½0;1� interval
playing a Hawk–Dove game. In our numerical simulations, the benefit b is 2 and the cost c is 5. Different choices of b and c
will only move the optimal strategy towards the pure strategy p1 ¼ ½1;0� or the pure strategy p2 ¼ ½0;1�.

3.1. The effect of selection d

The value of d in this model means, as was commented in the last section, the influence of the game being played on total
fitness. Biological organisms are confronted with different challenges during their lifetime that affect their probability of sur-
vival and, as a result, their contribution to the population’s offspring. Lower d values mean that the game being played has
little relevance when compared to all the other factors that affect fitness, i.e., environment, availability of mates, illnesses,
and so on. Higher d values mean that the game is much more important than all the other factors combined and that these
other factors are less influential on fitness. In our model, we compare individuals who are only different in the strategy they
use in the Hawk–Dove game, but are equal in all the other aspects. In other words, all of them are equally susceptible to
illnesses, environmental changes, predation, and so on.

In all cases, strategies’ abundances form a parabola when represented against p, with the optimal strategy being more
favored as d increases.

However, the accuracy of the theoretical parabola, as defined by Eq. (9), is lower as d increases. This is not surprising as in
[14] the authors acknowledged that their approach was useful only when d! 0. As d increases, the theoretical curve for a
certain value of d is closer to the numerical simulations for a lower value of d. This can be observed in Fig. 1, where the the-
oretical curve for d ¼ 0:5 is actually closer to the numerical data for d ¼ 0:7. In other words, the theoretical model is over-
estimating the effect of selection — for high values of d, the model predicts that the effect will be more intense than what is
actually observed.

This inaccuracy is due to the fact that the theoretical approximation developed in the work [15] is based on a perturbative
method which only considers the first terms in the power expansion, namely, those with d. As d increases, the accuracy of the
perturbation method is reduced. This could be corrected using another equation to fit the data, as can be seen in Fig. 2. The
theoretical approximation predicts a linear relationship between d and the abundance of any strategy (see Eq. (2)). The fitted
curve shown in Fig. 2 assumes that this relationship is logarithmic, that is, y ¼ 1þ lnð1þ 0:349dÞ. This expression accurately
includes the diminishing effect of d as it increases.

3.2. The effect of mutation u

Mutation is the originator of diversity. When a population is dominated by one strategy, what generates a new strategy is
the mutation and, as a result, a new selection process starts. Therefore, the effect of mutation is opposed to that of selection.
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Fig. 1. Plot showing abundance density ~x in a Hawk–Dove game with b ¼ 2 and c ¼ 5 as a function of the probability p of playing Hawk. The theoretical
curve (lines) from Eq. (9) is compared to numerical simulation results (symbols). The parameters in the simulation are N ¼ 10;u ¼ 0:01 and d ¼ 0:1 (oblique
crosses, solid line), 0:3 (crosses, dashed line), 0:5 (circles, dotted line) and d ¼ 0:1 (asterisks, dotted and dashed line). The tip of the parabola, i.e., the most
favored strategy, is at p̂ ¼ 0:395 for all curves, according to Eq. (8).
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Fig. 2. Plot showing abundance densities ~x of the most favored strategy for different d values. The theoretical prediction (solid line) assumes a linear
relationship between the value of d and the abundance, as seen in Eq. (2). The dashed line follows the expression y ¼ 1þ lnð1þ 0:349dÞ. Numerical
simulation values are represented with filled squares. The dashed line represents an heuristic approximation to the curve, given by the following equation:
y ¼ 1þ d� cd2 þ c2d3, with c ¼ 0:7689, computed using m ¼ 41. The other parameters are N ¼ 10 and u ¼ 0:1.
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Where selection eliminates variation, choosing among the optimal strategies, mutation creates more and more diversity. The
combined effect of these forces leads to what is known as a mutation-selection equilibrium.

If u is very low, the effect of selection is stronger and, as a result, the favored strategies are more abundant in the pop-
ulation, as can be seen in Fig. 3, which represent the effect of changing u for d ¼ 0:5. As u increases, mutation dilutes the
effect of selection and abundances get closer to the average. We can observe how, the effect of selection when u ¼ 0:01 is
much more pronounced than when u ¼ 0:1. Although the theoretical curves do not fit well with the numerical results
(due to the high d value).

Besides, as u increases, the optimal strategy is ‘‘pushed’’ towards p ¼ 0, as described in Eq. (8) and in the previous section.
The previous theoretical model [14] is valid for any mutation rate and, therefore, their predictions match up with the numer-
ical simulations.

We can study how the effect of selection is diminished by an increase in u. These abundance values decay exponentially,
as shown in Fig. 4, where the abundance values of the optimal strategies are plotted as a function of u. This means that, in
this model, mutation is stronger than selection, as the abundances increase with selection logarithmically but decrease with
mutation exponentially. The strength of mutation in this model is a consequence of the form in which the mutation has been
introduced in the model. When an individual mutates, it chooses a new strategy at random from the interval ½0;1�. In fact,
this is a very strong way to model mutation. Depending on the context of the model, we could introduce mutation in a
weaker form: whenever an individual mutates, it chooses a new strategy at random from the subinterval ½pþ i; p� i�, with
p being the parental strategy. This way, the strength of mutation would increase with i. Another possibility would be to
choose strategies from the ½0;1� interval following a Normal distribution with mean p. The relationships between abun-
dances and mutation rates u could then follow different expressions that could be explored in further work. Such an
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Fig. 3. Plot showing abundance density ~x in a Hawk–Dove game with b ¼ 2 and c ¼ 5 as a function of the probability p of playing Hawk. The theoretical
curve (lines) from Eq. (9) is compared to numerical simulation results (symbols). The parameters in the simulation are N ¼ 10; d ¼ 0:5 and u ¼ 0:01 (crosses,
dotted line) or u ¼ 0:1 (oblique crosses, solid line). The tip of the parabola, i.e., the most favored strategy, is at p̂ ¼ 0:395 (a) and p̂ ¼ 0:35 (b), according
to Eq. (8).
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Fig. 4. Plot showing abundance densities ~x of the most favored strategy for different u values. The fitted curve (solid line) follows the expression
y ¼ 1:003þ 0:125e�10:189u . Numerical simulation values are represented with filled squares. The other parameters are N ¼ 10 and d ¼ 0:1.

P. Catalán et al. / Commun Nonlinear Sci Numer Simulat 25 (2015) 66–73 71
approach has been carried out recently [16]. It is possible that the very strong effect of mutation compared to selection may
be weakened when considering these alternative forms of mutation.

A summary of the combined effect of selection and mutation can be seen in Fig. 5. We can see the abundance values for
the optimal strategies for different values of d and u in Fig. 5(a). As seen earlier in other figures, the abundance values for the
optimal strategies tend to increase with d and decrease with u, with the effect of u being stronger. We can see the standard
deviation for the data in the simulations for different values of d and u in Fig. 5(b). Higher d values lead to lower dispersion in
the data, as the optimal strategies become more common. Higher u values lead to higher dispersion, as mutation tends to
make the abundances of all strategies uniform. When both u and d are high, the effect of u is more pronounced.
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Fig. 5. Plot showing (a) abundance densities ~x for optimal strategies for different values of d and u and (b) standard deviation in the data from numerical
simulations for different values of d and u. For all simulations N ¼ 10.
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Fig. 6. Plot showing abundance densities ~x of the most favored strategy for different d values. The curve obtained from the qualitative analysis (dashed line)
has the expression y ¼ 1þ d� cd2 þ c2d3, with c ¼ 0:7689, computed using m ¼ 41. The fitted curve (solid line) follows the expression
y ¼ 1þ lnð1þ 0:349dÞ. The other parameters are N ¼ 10 and u ¼ 0:1.
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4. Qualitative analysis

In this section, we develop heuristic arguments to understand the logarithmic relationship between d and the abundance
of the most favored strategy. In order to do so, we have to refer to the work of Antal and collaborators [15], where they
develop the linear approximation for xk, the expected abundance of strategy k in the equilibrium, for the case with a finite
number of strategies. In our model, there are infinite mixed strategies playing the game. In order to use the result developed
by Antal and collaborators, we will make an approximation using only a finite subset of those mixed strategies. Antal and
collaborators write the formula for the expected abundance of strategy k as
hxki ¼
1
m
þ Nð1� uÞ

u
Dxsel

k

	 

; ð11Þ
where m is the number of strategies playing the game, N is the population size, u is the mutation rate and hDxsel
k i is the var-

iation in xk due to the effect of selection. The value hDxsel
k i is equal to xkxk � xk, where xk is
xk ¼ 1� 1
N
þ 1þ dðAxÞk

Nð1þ dxT AxÞ : ð12Þ
As this is a fairly complicated expression, it seems reasonable to compute its Taylor series and use it to obtain an expression
for hxki. The Taylor expansion for xk is
xk ¼ 1þ d
Axð Þk � xT Ax

� �
N

þ
X1
i¼2

di ð�1Þiþ1 ðAxÞk � xT Ax
� �

ðxT AxÞi�1

N
: ð13Þ
Introducing this value of xk into the computation of hDxsel
k i, and following the calculations done in Ref. [15], we arrive at the

following expression:
Dxsel
k

	 


 ðd� cd2 þ c2d3 � c3d4 þ � � �Þ lðLk þ lHkÞ

mNð1þ lÞð2þ lÞ ; ð14Þ
where c ¼ ½ðmþ lÞ
P

iaii þm
P

i;j–aij�=½Nm2ð1þ lÞ� and c 6 1. The number of strategies playing the game is m, and aij is the
ijth element of the payoff matrix A. Using this value in Eq. (8) yields
xk 

1
m

1þ ðd� cd2 þ c2d3 � c3d4 þ � � �ÞNð1� uÞ
~Lk þ l~Hk

ð1þ lÞð2þ lÞ

 !
: ð15Þ
All the terms involving d follow a logarithm-like Taylor expansion, and if we plot the first powers versus d and compare it
with the numerical fit obtained earlier, y ¼ 1þ lnð1þ 0:349dÞ (see Fig. 6), we see that there is a good agreement.

5. Discussion and conclusions

Mutation and selection are opposite forces. Selection takes the fittest strategies which increase their frequencies with
time. Mutation, on the other hand, is always generating new strategies. As a result, the population stays out of equilibrium,
as mutation is always restarting the selection process.
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In our model, selection increases the frequencies of the most favored strategies, while mutation tends to make all abun-
dances closer to the average. The effect of mutation is stronger than that of selection, as stated previously which has impor-
tant implications in the field of evolutionary dynamics.

On the other hand, we have analyzed, through numerical simulations, the effect of selection and mutation on the evolu-
tion of a population playing a Hawk–Dove game with time. We have focused on which strategies are selected and what is
their abundance when selection and mutation change. Selection and mutation are opposite forces, with selection tending to
eliminate diversity and ‘‘select’’ the optimal strategies and mutation generating new diversity continuously.

We have explored different scenarios involving both high and low selection and mutation, and we have estimated the
relationship between the coefficients of selection d and mutation u and the abundances of the optimal strategies. Heuristic
arguments are given to explain these nonlinear relationships. Besides, we have explored the ðd;uÞ space, showing how these
two forces interact and affect the evolution of the population. As we have indicated, this kind of effects are not so common in
realistic situations but are very helpful to understand what would happen for any value of selection and mutation
parameters.

Finally, we expect that the current work can be useful for a better understanding of this kind of games which are relevant
in the context of the evolutionary dynamics.
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