
MNRAS 447, 3797–3811 (2015) doi:10.1093/mnras/stu2733

The forecast of predictability for computed orbits in galactic models

J. C. Vallejo1,2‹ and M. A. F. Sanjuán2

1European Space Astronomy Centre, PO Box 78, E-28691 Villanueva de la Canada, Madrid, Spain
2Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Fı́sica, Universidad Rey Juan Carlos, Tulipan s/n, E-28933 Mostoles,
Madrid, Spain

Accepted 2014 December 20. Received 2014 December 19; in original form 2014 June 3

ABSTRACT
The predictability of a system indicates how much time a computed orbit is close to an actual
orbit of the system, independent of its stability or chaotic nature. We derive a predictability
index from the distributions of finite-time Lyapunov exponents of several prototypical orbits,
both regular and irregular, in a variety of galactic potentials. In addition, by analysing the
evolution of the shapes of the distributions with the finite-time intervals sizes, we get an
insight into the time-scales of the model when the flow dynamics evolve from the local to the
global regime.
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1 IN T RO D U C T I O N

With the widespread use of computer simulations to solve complex
dynamical systems, the reliability of numerical calculations is of in-
creasing interest. This reliability is directly related to the regularity
and instability properties of the analysed orbits. In this scenario, the
modelling of galactic potentials is an interdisciplinary field, where
the astrophysics field provides the simulated models, the non-linear
dynamics field provides the chaoticity and instability properties and
the computational sciences provide the actual numerical implemen-
tation.

The gravitational N-body simulation is a common tool to study
the evolution of the galaxies and the formation of their features. The
galaxy is modelled as a self-gravitating system containing stars, gas
particles and dark matter, all of them modelled as point-like masses.
The self-consistency of these models captures very well the neces-
sary details of the galactic dynamics, however, the available com-
putational resources impose a limit to the number of particles to
be taken into account. This usually implies an artificial smooth-
ing of the potential and a proper handling of the required scaling
parameters.

As an alternative, another approach that might be taken, is the use
of simulations based in a single mean field potential. As there are
no collisions among particles, the dynamics of a galaxy can be con-
sidered to be formed by independent trajectories within the global
potential where the motion of each star is just driven by a continu-
ous smooth potential. A dynamical model usually mathematically
describes the potential as a function of the distance from the centre
of the galaxy. Some potentials are derived at specific snapshots of
the N-body simulations and some others are selected to physically
represent desired characteristics of the galaxies.

� E-mail: juan.carlos.vallejo@esa.int

Although these simulations are driven by fully deterministic
equations, some of these systems exhibit a strong sensitivity on
the initial conditions, which manifests itself in the form of chaotic
behaviour. Many works have characterized the presence of chaos
through the computation of the standard asymptotic Lyapunov ex-
ponents. These are indicators on the globally averaged chaoticity
of the system during an infinite integration time, but due to the
sometimes slow convergence towards the asymptotic value, many
other numerical indexes and fast averaged indicators have been
developed aiming to distinguish between regular and chaotic or-
bits. We can cite, among others, the rotation index (Voglis, Con-
topoulos & Efthymiopoulos 1999), the smaller alignment index
(Skokos 2001), its generalization, the generalized alignment k-
index (Skokos, Bountis & Antonopoulos 2007), the mean expo-
nential growth factor of nearby orbits (Cincotta & Simó 2000),
the fast Lyapunov indicator (Froeschlé & Lega 2000), the relative
Lyapunov indicator (Sandor et al. 2004) or the finite-time rotation
number (Szezech et al. 2013).

As a general result, regular orbits, such as box and tube orbits,
are responsible for a major part of the shape of the galaxy, forming
the skeleton of the observed mass density distributions, but still a
high fraction of the orbits are chaotic. These chaotic orbits populate
areas that are not accessible to the regular orbits, and may explain
some observed structures like bars and bulges. They can also pro-
duce flows of matter which may locally enhance the star formation
rate: see e.g. Olle & Pfenigger (1998), Pichardo, Martos & Moreno
(2004), Contopoulos & Harsoula (2013) and Carpintero, Muzzio &
Navone (2014).

Regarding the role of the dark haloes, the variety of these haloes
shapes indicates their structure plays an important role in the dy-
namics of the galaxies. One of the predictions of the cold dark matter
models is that galaxy-scale dark matter haloes are described by tri-
axial density ellipsoids. Dark triaxial haloes introduce a non-linear
coupling that increases the degree of chaoticity and may affect the
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goodness of the computed orbits. Depending on the degree of tri-
axiality, the phase space of a logarithmic potential can be occupied
to a large extent by chaotic orbits (Papaphilippou & Laskar 1998;
Caranicolas & Zotos 2010; Zotos & Caranicolas 2013; Zotos 2014).

Our work aims to analyse the predictability of the underlying
models used to run the simulations. The predictability of a system
indicates how long a computed orbit is close to an actual orbit,
and this concept is related to, but independent of, its stability or
its chaotic nature. A system is said to be chaotic when it exhibits
strong sensitivity to the initial conditions. This means that the exact
solution and a numerical solution starting very close to it may
diverge exponentially one from each other. The predictability aims
to characterize if this numerically computed orbit may be sometimes
sufficiently close to another true solution, so it may be still reflecting
real properties of the model, leading to correct predictions. The real
orbit is called a shadow, and the noisy solution can be considered
an experimental observation of one exact trajectory. The distance to
the shadow is then an observational error, and within this error, the
observed dynamics can be considered reliable (Sauer, Grebogi &
Yorke 1997).

The shadowing property characterizes the validity of long com-
puter simulations, and how they may be globally sensitive to small
errors. The shadows can exist, but it may happen that, after a while,
they may go far away from the true orbit. Consequently, a proper
estimation of the shadowing times is a key issue in any simulation
and provides an indication about its predictability. This shadowing
time is directly linked to the hyperbolic or non-hyperbolic nature of
the orbits. Hyperbolic systems are structurally stable in the sense
that the shadowing is present during long times and numerical tra-
jectories stay close to the true ones. In the case of non-hyperbolicity,
an orbit may be shadowed, but only for a very short time, and the
computed orbit behaviour may be completely different from the true
orbit after this period.

The calculation of the shadowing times was already applied to
the field of N-body simulations in Hayes (2003), where an iterative
refinement method was applied to simulate noisy trajectories and to
estimate the shadowing times. Less attention has been paid to the
shadowing computation in the field of simulations of self-consistent
models based in a single mean potential. The main goal of this
work is to study the predictability of orbits of massless particles in
galactic-type Hamiltonian systems. This predictability is computed
through the use of finite-time Lyapunov exponents distributions
following similar techniques to those described in Vallejo & Sanjuan
(2013).

Our motivation, when selecting finite-time Lyapunov exponents
techniques, is that they can be used in systems where asymptotic
global results are of no interest, are not physically meaningful or
may not even exist. We could also be interested in the analysis of
transients periods, which just exist for a while before the system
reaches a final stationary state. Or it may happen that because of
the physics of the system, the time-scales for obtaining the global
properties are too long to be realistic, since the galactic potential
(or even the whole Universe) may have evolved for such a period.

The structure of the paper is the following. Section 2 reviews how
the finite-time Lyapunov exponents distributions are built and how
the predictability can be computed from them. Section 3 presents
the selected numerical methods for calculating these distributions
in conservative systems. Section 4 applies these techniques to rep-
resentative orbits in simple meridional potentials. Section 5 applies
these techniques to a more realistic Milky Way-type potential, in-
cluding a triaxial dark halo. Finally, Section 6 summarizes the results
and makes some concluding remarks.

2 PR E D I C TA B I L I T Y T H RO U G H F I N I T E - T I M E
LYA P U N OV E X P O N E N T S

This section presents how the predictability of the system can be
derived from the computation of finite-time Lyapunov exponents
distributions, as these distributions reflect the hyperbolic or non-
hyperbolic nature of the dynamics.

2.1 Finite-time Lyapunov exponents distributions

The ordinary, or asymptotic Lyapunov exponent, describes the evo-
lution in time of the distance between two nearly initial conditions,
by averaging the exponential rate of divergence of the trajectories.
It can be defined as

λ(x, v) = lim
t→∞

1

t
ln ‖Dφ(x, t)v‖, (1)

provided this limit exists (Ott & Yorke 2008). Here, φ(x, t) de-
notes the solution of the flow equation, such that φ(x0, 0) = x0,
and D is the spatial derivative in the direction of an infinitesimal
displacement v.

The finite-time Lyapunov exponents definition is derived from the
standard asymptotic Lyapunov exponent for finite averaging times,
as follows:

χ (x, v, t) = 1

t
ln ‖Dφ(x, t)v‖, (2)

with the implicit dependence on the point x and the deviation vec-
tor v. These finite-time Lyapunov exponents are sometimes named
effective Lyapunov exponents when the intervals used to com-
pute them are large enough, and the distributions can be analysed
from the cumulant generating function (Grassberger, Badii & Politi
1988).

If we make a partition of the whole integration time along one
orbit into a series of time intervals of size �t, then it is possible to
compute the finite-time Lyapunov exponent χ (�t) for every interval
and to plot its distribution. Obviously, λ = χ (�t → ∞). These
distributions depend on the choice of the finite interval length, the
initial directions of perturbation vectors and the total integration
time used to compute the distribution.

By plotting the distribution of values obtained starting from a
given initial condition, we can study the presence of the shadowing
property. Our method relies in the fact of making a partition of the
whole integration time along one selected initial condition into a
series of time intervals of size �t, instead of building the distribu-
tion from an ensemble of initial conditions belonging to the same
dynamical domain (Vallejo, Aguirre & Sanjuan 2003).

2.2 Shadowing

The shadowing time τ measures how long a numerical trajectory
remains valid by staying close to a true orbit. The shadowing dis-
tance is the local phase-space distance between both of them. This
distance can be described as a diffusion equation of a particle, which
may find different escape routes along its trajectory. The larger shad-
owing times become improbable due to the diffusion processes. The
model described in Sauer (2002) assumes an exponential distribu-
tion of log shadowing distances to follow a biased random walk with
drift towards a reflecting barrier. The expected shadowing time have
power-law dependencies on the size of the one-step error made in a
computer simulation, linked to the computer precision δ.

A sign of bad shadowing is the fluctuating behaviour around
zero of the closest to zero finite-time Lyapunov exponent. Plotting
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the finite-time distribution and assuming both the mean m and the
standard deviation σ to be very small, the shadowing time τ is given
by

τ ∼ δ−h, h = 2‖m‖
σ 2

. (3)

The exponent h is the hyperbolicity index, or predictability index.
We will use it as an indicator of the predictability of the orbits. The
lowest predictability occurs when h is very small and there is no
improvement in τ , even for large values of δ. Conversely, the larger
the h index, the better the shadowing.

This scaling law is closely related to intermittency, and can be
considered ‘intermittency in miniature’. The exponential distribu-
tion is the result of small excursions that periodically move the
computed trajectory away from the true trajectory, and then re-
turn towards it. The assumption is that the motion follows a biased
random walk, with a drift towards a reflecting barrier. The flow
sometimes goes in one direction, far away from the true solution,
and sometimes moves towards it. The reflecting barrier is caused
by the single-step error δ, since new errors are created at each step,
so the computed trajectory can never be expected to be closer than
δ to the true trajectory.

A dynamical system is hyperbolic if the phase space can be
spanned locally by a fixed number of independent stable and un-
stable directions, which are consistent under the operation of the
dynamics and the angle between the stable and unstable manifolds
is away from zero (Viana & Grebogi 2000; Kantz et al. 2002).
In hyperbolic regions, the shadowing theory guarantees the exis-
tence of a nearby true trajectory. The exponents oscillate around
zero because the shadowing distance swaps from exponential in-
creases to exponential decreases, mimicking a random walk. In a
non-hyperbolic region, a normally expanding direction converts it-
self into a contracting direction, causing an excursion away from
the reflecting barrier. The finite exponent values go far away from
zero and a breakdown in the shadowing occurs. The times between
these breakdowns (or glitches) are analogous to first passage times
of the shadowing distance to approach the order of the invariant
distribution length in phase space. The invariant distribution can be
an attractor in the case of chaotic non-conservative systems.

3 M E T H O D O L O G Y

Here we discuss some issues that affect the computation of the
finite-time Lyapunov exponents and their distributions, and in con-
sequence, the computation of the predictability index. The pre-
dictability index depends on the calculated distributions, which in
turn depend on the initial orientation of the deviation vectors, the
choice of the finite-time interval sizes and the total integration time
during which the finite-intervals are accumulated.

The finite-time Lyapunov exponents reflect the growth rate of
the orthogonal semiaxes (equivalent to the initial deviation vectors)
of one ellipse centred at the initial position. These axes change
their orientation and length as the orbit is integrated during a given
finite-time �t, following equation (2). Each initial orientation will
lead to different exponents (Ziehmann, Smith & Kurths 2000). One
option is to have the axes pointing to the local expanding/contracting
directions, given by the eigenvectors. Then, at local time-scales, the
eigenvalues will provide insight on the stability of the point. Another
option is to start with the axes pointing to the direction which may
have grown the most under the linearized dynamics. Yet another
choice is pointing them to the globally fastest growth direction. In
this work, we have preferred, as initial axes of the ellipse, a set of

orthogonal vectors randomly oriented, following Vallejo, Viana &
Sanjuan (2008). We have made this choice because, as there is no
initial preferred orientation, the evolution of the deviation vectors
is a direct consequence of the flow time-scales.

The key factor to build the finite-time distributions is finding
the most adequate �t, to be large enough to ensure a satisfactory
reduction of the fluctuations, but small enough to reveal slow trends.
This length is different for every orbit. So, in principle, one needs
to calculate the distributions for a variety of finite intervals lengths
and observe the progressive evolution of the distribution shapes.
If one uses the smallest intervals, the deviation vectors will trace
the very local flow dynamics. As one selects larger intervals, the
local regime of the flow is replaced by the global dynamics regime,
and the vectors are oriented depending on the global properties of
the flow, including any transient behaviour. Finally, with the largest
interval lengths, the vectors are oriented towards the final asymptotic
directions of the flow, when the dynamics reaches the final invariant
state.

In addition to the choice of the finite interval length and the initial
directions of the axes, the total integration time used to compute the
distribution is also of importance (Vallejo et al. 2003). Because the
integration time for gathering the finite-time exponents is also finite,
the distributions may just reflect any transient state of the system
during such integration period, instead of reflecting the global or
final stationary state. For instance, a common phenomenon found
in conservative systems is the existence of stickiness or trapped
motions. A chaotic orbit may be confined to a torus for a while, but
after a very long time, it leaves the confinement and again shows
the chaotic behaviour.

Another factor to take into account is the fact that we anal-
yse Hamiltonian conservative systems. The random walker model
described above was derived for dissipative system, using orbits
located in the basin of attraction and selecting the interval lengths
leading to Gaussian distributions (Sauer et al. 1997). There are no
attractors in Hamiltonian systems, and we aim to check the ap-
plicability of this model to conservative systems. To do this, we
will sample different finite-time intervals lengths �t searching for
changes in the shape of the distributions, as an estimator of reaching
the proper time-scale.

Our previous results (Vallejo et al. 2008) show that when using
the very smallest interval lengths, similar to the integration step,
the distributions show many peaks, because the randomly oriented
deviation vectors are not able to evolve during such very small inter-
vals. When the finite-time intervals are slightly larger, the resulting
finite-time exponent distributions begin to be similar to flat uniform
distributions. The finite-time exponents cannot be regarded at these
time-scales as similar to random variables leading to Gaussian dis-
tributions, as the deviation vectors have been allowed to evolve from
the initially randomly selected deviation directions, but they had not
enough time to tend to the finally fastest growing directions. These
distributions are then characterized by large negative kurtosis. Fi-
nally, when the finite intervals are larger, the deviation vectors are
oriented to the globally fastest growth direction, that may, or may
not be, the final asymptotic behaviour. This asymptotic direction is
only reached at very long (infinite) intervals.

This work focuses on detecting the finite-time interval lengths
when the change from the local to the global regime occurs. The
Poincaré crossing time with the surface of section is a good estimator
of these time-scales, but unless the orbit is periodic, this crossing
time depends on the selection of the surface of section. Indeed,
it is not constant in the phase space once the surface has been
selected.
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Another good estimator for detecting this behaviour change is the
kurtosis values of the finite-time distributions. These values evolve
from zero to positive values, as a consequence of the shape changes
when the finite-time exponents leave the local flow dynamics and
tend towards the global regime. The larger the positive kurtosis
values, the more peaked the distributions will be.

Finally, one observes the asymptotic regime of the flow at the
time-scales when the mean of the distributions begins to be centred
around the final asymptotic value (Vallejo et al. 2003). As mentioned
before, the flow may experience several transient periods before
reaching this final asymptotic state.

The scaling formula equation (3) is an asymptotic formula, true
when δ → 0 and to the extent that one finite-time exponent is closer
to zero than all the others. When two or more finite-time exponents
are equally distant to zero, the applicability of this scaling formula
is not established (Sauer 2002). In this work we analyse if the biased
random walker model, from which this equation derives, is valid
even when there are two or more exponents close to zero, as happens
in Hamiltonian flows. In a general dynamical system, there is at
least one asymptotic Lyapunov exponent tending to zero, as there
is always one neutral direction in the flow. But in N-dimensional
Hamiltonians, because of their conservative nature, two exponents
are at least close to zero, because the Lyapunov exponents follow the
pairing property λi = −λN − i for (i = 1, 2, . . . , N − 1). Moreover,
if we deal with quasi-periodic orbits or irregular, yet not chaotic,
orbits, additional exponents will be zero.

We will identify the closest to zero exponent by calculating the
finite-time exponents distributions for all available exponents, and
selecting as closest to zero the exponent corresponding to the dis-
tribution whose mean is closest to zero. This technique has been
successfully applied to dissipative systems in Vallejo & Sanjuan
(2013). The results show that the closer to zero the mean of the dis-
tribution is, the stronger the detection of fluctuations around zero.
These fluctuations are in turn a good indicator of the non-hyperbolic
nature, low predictability, of the orbit. The strength of the fluctu-
ations can be derived from the computation of the probability of
positivity P+ of the distributions.

The time-scales, when the changes from the local to global be-
haviour are detected, can be shorter than the time-scales when the
asymptotic behaviour is reached and the mean of the distribution
tends to the asymptotic infinite zero value. This implies that when
the finite-intervals are not large enough to reach the asymptotic
regime, we may still detect changes due to entering in the global
regime and get insight into the predictability of the orbit. This may
happen even when the mean will still not be close to zero, and the
fluctuations around zero will be hardly detected.

Massless particles subject to the selected gravitational potentials
are integrated using a standard variational method to compute the
finite-time Lyapunov exponents. We solve at the same time the
flow equations and the fundamental equations or evolution of the
distortion tensor, associated with the initial set of deviation vec-
tors used for the exponents computation. Here we raise a final note
concerning the selection of the integrator. Standard integrators may
be thought as quantitatively accurate, but not qualitatively, since
small errors may not conserve the energy, contrary to a symplec-
tic scheme. However, selecting a given symplectic scheme is not
as straightforward as one might think. Energy conservation is not
always the invariant that must be preserved (it may be the angular
moment first integral), and integrable Hamiltonians approximated
by symplectic schemes may manifest apparent chaos (Newman &
Lee 2005). Indeed, the only integrator which preserves all invari-
ants has been proved to be the true solution itself (Stuchi 2002).

As a consequence, we have used as integrator the well known and
robust Dop853 algorithm described in Hairer, Norsett & Wanner
(1993). We have checked the Lyapunov exponents to follow the
pairing property and the energy value to be constant throughout the
computation, typically being within a percentual error of 10−11 for
meridional potentials and 10−8 for the Milky Way potentials.

4 PR E D I C TA B I L I T Y IN M E R I D I O NA L
POTENTI ALS

In this section we compute the predictability index as derived from
equation (3) in simple two degrees-of-freedom (d.o.f.) potentials.
We will check if the subjacent diffusion model origin is valid in
these conservative systems, where several asymptotic exponents
are zero.

Meridional plane potentials are those of the form V(x, y) = V(R,
z), being R and z the cylindrical coordinates, corresponding to an
axisymmetric galaxy (Binney & Tremaine 1987). These are rela-
tively simple potentials that can show complex behaviours, which
are found in more realistic galactic-type potentials.

The motion in the meridional plane can be described by an effec-
tive potential:

Veff (R, z) = V (R, z) + Lz
2

2R2
, (4)

where R and z are the cylindrical coordinates. For each orbit, the
energy E = E(x, y, vx, vy) is an integral of motion. Once E is fixed,
only three of the four coordinates are independent and define the
initial condition for the integrator.

If the energy E and the z-component of the angular momentum
Lz are the only two isolating integrals, an orbit would visit all points
within the zero-velocity curve, defined as E = Veff. Sometimes,
there are limiting surfaces that forbid the orbit to fill this volume,
implying the existence of a third integral of motion, whose form
cannot be explicitly written. In this case, the particle is confined
to a 3 torus. Alternatively, there are some axisymmetric potentials
where the orbits can indeed fill the meridional plane. These are
irregular (or ergodic) orbits which are only limited by two integrals
of motion.

4.1 Hénon–Heiles system

The Hénon–Heiles system was one of the first models used to show
how a very simple system possesses highly complicated dynam-
ics (Hénon & Heiles 1964). It contains two, properly weighted,
coupling terms, x2y and y3, leading to a Hamiltonian with a 2π/3
rotation symmetry and three exits in the potential well for energy
values above the critical energy:

H = 1

2

(
p2

x + p2
y

) + 1

2

(
x2 + y2 + 2x2y + 2

3
y3

)
. (5)

We have selected four initial conditions leading to four prototyp-
ical behaviours in this system. These orbits can be seen in Fig. 1,
and their corresponding initial conditions are listed in Table 1. The
first analysed case is the orbit labelled as H1. The Poincaré section
is depicted in Fig. 2 (left). This orbit is a weakly chaotic orbit with
λ = 0.015. When considering the crosses of the x = 0 plane with
vx > 0, the averaged Poincaré section crossing time is Tcross = 13.0,
with a minimum value of 10.1. When considering the crosses of
the y = 0 plane with vy > 0, the averaged Poincaré section cross-
ing time is Tcross = 16.5, with a minimum value of 12.4. These
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Figure 1. Four orbits selected for calculating their predictability in the Hénon–Heiles system. The corresponding initial conditions are listed in Table 1. Upper
left: H1, a weakly orbit with asymptotic Lyapunov exponent λ = 0.015. Upper right: H2, a sticky, chaotic asymptotically, orbit with asymptotic Lyapunov
exponent λ = 0.046. The points with a regular-like transient period t < 4000 are plotted in darker colour. Bottom left: H3, a regular orbit, linked to a period 1
orbit, with asymptotic Lyapunov exponent λ = 0.0. Bottom right: H4, a regular orbit, linked to a period 5 orbit, with asymptotic Lyapunov exponent λ = 0.0.

Table 1. Selected orbits for two 2 d.o.f. meridional potentials systems, Hénon–Heiles and Contopoulos, and for one
3 d.o.f. Milky Way system.

System Orbit d.o.f. Initial condition Control parameter

Hénon–Heiles H1 2 x = 0.000000, y = −0.119400, vx = 0.388937, E = 1/12 –
Hénon–Heiles H2 2 x = 0.000000, y = 0.095000, vx = 0.396503, E = 1/8 –
Hénon–Heiles H3 2 x = 0.000000, y = 0.137500, vx = 0.386627, E = 1/12 –
Hénon–Heiles H4 2 x = 0.000000, y = −0.031900, vx = 0.307044, E = 1/8 –

Contopoulos C1 2 x = 0.03744, y = 0.0, vx = 0.0480, E = 0.00765 ε = 4.4
Contopoulos C2 2 x = 0.03744, y = 0.0, vx = 0.0480, E = 0.00765 ε = 4.5

Milky Way M1 3 x = 10.0, y = 0.0, z = 0.0, vx = 0.0, vy = 200.0, vz = 0.0 φhalo = 0.0
Milky Way M2 3 x = 10.0, y = 0.0, z = 10.0, vx = 0.0, vy = 45.0, vz = 0.0 φhalo = 0.0
Milky Way M3 3 x = 10.0, y = 0.0, z = 10.0, vx = 0.0, vy = 200.0, vz = 0.0 φhalo = 90.0
Milky Way M4 3 x = 5.0, y = 0.0, z = 0.5, vx = 0.0, vy = 100.0, vz = 0.0 φhalo = 0.0

Figure 2. Hénon–Heiles weakly chaotic orbit H1. Left: Poincaré section y–vy with plane x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability
index h of the finite-time exponents distributions as the finite-time length is increased. Inset: finite-time exponents distribution for �t = 25.1. The predictability
index is h = 54.0.

time-scales roughly indicate the change of behaviour of the finite-
time distributions as the finite-time intervals grow.

In Fig. 2 (right) we have plotted the hyperbolicity index de-
rived from the closest to zero exponent distributions and the

corresponding kurtosis values, against a variety of increasing finite
interval lengths �t. The total integration time used to build the dis-
tributions is T = 105 when �t < 50.0 and T = 106 for larger intervals
sizes.
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Figure 3. Hénon–Heiles sticky, chaotic asymptotically orbit H2. Left: Poincaré section y–vy with plane x = 0 and vx > 0. A regular-like transient period
t < 4000 is overplot with darker colour. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time
length is increased. Inset: finite-time exponents distribution for �t = 11.0. The predictability index is h = 20.9.

There is a clear trend of increasing h values as the interval size is
larger. The kurtosis shows a similar evolution from the most nega-
tive values towards the positive ones. The kurtosis curve crosses the
zero value at �t = 25.1. The corresponding finite-time Lyapunov
exponents distribution of the closest to zero exponent for this in-
terval size is seen in the inset of the figure. It is characterized by a
mean m = 0.03 and a probability of positivity F+ = 0.8. The �t
is large enough to allow the deviation vectors to enter in the global
regime of the flow, but is not large enough to reach the asymptotic
zero value. Regardless of the above, some oscillations around zero
are already detected and these oscillations can be considered a good
indicator of the non-hyperbolicity of the flow. The predictability
index derived from this distribution is h = 54.4. We note here that
because of the small slope of the kurtosis and predictability curves,
small changes of the estimation of the interval size do not lead to
large variations in the predictability estimation.

The second analysed case is the orbit labelled as H2 in Fig. 1
and Table 1. The corresponding Poincaré section is depicted in
Fig. 3 (left). This is a chaotic orbit with λ = 0.046. Considering
the crosses of the x = 0 plane with vx > 0, the averaged Poincaré
section crossing time is Tcross = 13.4, with a minimum value of
8.9. When considering the crosses of the y = 0 plane with vy > 0,
the averaged Poincaré section crossing time is Tcross = 14.5, with a
minimum value of 7.5.

In Fig. 3 (right) we observe the trend of increasing kurtosis with
�t. The kurtosis zero-cross is found at �t = 11.0. The correspond-
ing closest to zero exponent finite-time distribution is seen in the
inset of the figure. It is characterized by a mean m = 0.04 and a
probability of positivity F+ = 0.7. The derived predictability index
is h = 20.9. This is a worse predictability value than the previous
case, yet similar in order of magnitude. We may conclude that the

shadowing time-scales are similar in both cases. As both orbits have
positive λ values, they are chaotic, yet predictable.

We have seen that orbit H1 has a relatively small Lyapunov ex-
ponent, so a relatively long Lyapunov time. This is a prototypical
behaviour for a particle being chaotic, but confined to a certain
region of the available phase space. But there are chaotic orbits
with positive Lyapunov exponent values that show regular-like ap-
pearance during certain transient periods. These orbits stick during
these transients close to islands of stability before entering in the
big chaotic sea. These periods can sometimes be very short, some-
times very long. These orbits are called sticky orbits, or confined
orbits (Athanassoula et al. 2010), because they generate confined
structures in the configuration space.

The sticky, chaotic asymptotically, orbit H2 presents one regular-
like transient during the first 4000 time units. The Poincaré section
corresponding to this period is seen in Fig. 4 (left). Considering
the crosses of the x = 0 plane with vx > 0, the averaged Poincaré
section crossing time is Tcross = 14.6, with a minimum value of
13.8. When considering the crosses of the y = 0 plane with vy > 0,
the averaged Poincaré section crossing time is also Tcross = 14.6,
with a minimum value of 13.2.

In Fig. 4 (right) we observe the trend of increasing kurtosis with
�t. The kurtosis zero-cross is found at �t = 19.1. The correspond-
ing closest to zero exponent finite-time distribution is seen in the
inset of the figure. It is characterized by a mean m = −0.01 and a
probability of positivity F+ = 0.28. The derived predictability index
is h = 31.7. This means a higher predictability during the regular-
like transient when compared with the predictability value resulting
from integrating beyond the transient lifetime. However, this value
is lower than the value of the chaotic orbit H1. This is sourced to the
selection of one of the lowest values of the available ones during

Figure 4. Regular-like period of the Hénon–Heiles chaotic orbit H2. The figure shows the points under the regular-like transient period t < 4000. Left: Poincaré
section y–vy with plane x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time
length is increased. Inset: finite-time exponents distribution for �t = 19.1. The predictability index is h = 31.7.
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Figure 5. Hénon–Heiles regular orbit H3. Left: Poincaré section y–vy with plane x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability index h
of the finite-time exponents distributions as the finite-time length is increased. Inset: finite-time exponents distribution for �t = 48.3. The predictability index
is h = 105.5.

Figure 6. Hénon–Heiles regular orbit H4. Left: Poincaré section y–vy with plane x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability index h
of the finite-time exponents distributions as the finite-time length is increased. Inset: finite-time exponents distribution for �t = 32.1. The predictability index
is h = 69.2.

the distribution shape transition, where the h-index values suffer
several oscillations, as seen in Fig. 4 (right). But it is also sourced
to the nature of the transient, that, being regular in appearance, it is
not a truly regular motion.

The third analysed case is the orbit labelled as H3 in Fig. 1 and
Table 1. We have chosen this orbit because we want to analyse the
applicability of the power law to orbits with zero Lyapunov expo-
nents in addition to the obvious two central trivially zero exponents.
This is a regular orbit with λ = 0.0, where all exponents are zero
because the Hénon–Heiles system is a 2 d.o.f. Hamiltonian system.

The corresponding Poincaré section is depicted in Fig. 5 (left).
Considering the crosses of the x = 0 plane with vx > 0, the averaged
Poincaré section crossing time is Tcross = 12.4, with a minimum
value of 11.6. When considering the crosses of the y = 0 plane with
vy > 0, the averaged Poincaré section crossing time is Tcross = 12.4,
with a minimum value of 11.7.

The evolution of the predictability index h with the interval size
is shown in Fig. 5 (right). The kurtosis shows the previous trend
from the most negative values towards the positive ones. The zero
crossing is found at �t = 48.3. The corresponding distribution of
the closest to zero exponent is plotted in the inset of the figure. It
is characterized by a mean m = 0.01 and a probability of positivity
F+ = 0.8. The derived h predictability index value is higher than
the previous cases, h = 105.5.

When one compares the predictability of this orbit with the pre-
vious cases, the obtained predictability index h is one order of
magnitude larger. The biased random walk seems to be applica-
ble to the final invariant state, even when the finite-time exponents
distributions of regular orbits do not follow a normal distribution
shape. This means that the test particle sometimes approaches the
real orbit, having the machine precision as bias, in the contracting

directions, and sometimes moves farther away from the real orbit
in the expanding directions.

The fourth analysed case in the Hénon–Heiles system is the orbit
labelled as H4 in Fig. 1 and Table 1. This is a regular orbit with
λ = 0.0, associated with a fifth-periodic orbit. The corresponding
Poincaré section is depicted in Fig. 6 (left). Considering the crosses
of the x = 0 plane with vx > 0, the averaged Poincaré section cross-
ing time is Tcross = 12.9, with a minimum value of 12.3. When
considering the crosses of the y = 0 plane with vy > 0, the averaged
Poincaré section crossing time is Tcross = 12.9, with a minimum
value of 9.7.

The evolution of the predictability index h with the interval size is
shown in Fig. 6 (right). The previous evolution of the kurtosis from
negative to positive values is observed. The kurtosis zero-cross is
observed at �t = 32.1.1 The corresponding closest to zero exponent
distribution is plotted in the inset of the figure. It is characterized by a
mean m = −0.02 and a probability of positivity F+ = 0.2. Because
of the Hamiltonian exponents pairing properties, the results are
equivalent except for the reversed signs to the previously discussed
cases.

The derived predictability index is h = 69.2. The predictability
index is in agreement with the previous cases, with a better pre-
dictability index than the chaotic cases but a worse h index than the
M3, regular orbit case.

1 We see another zero crossing at around �t = 9.0. This value is slightly
below the Tcross range of values. But as �t increases, the distribution returns
to a flat shape again. As a consequence, the peaks are sourced to still be in
the local regime.
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4.2 Contopoulos system

We will apply our method to analyse orbits that behave in appear-
ance like regular orbits, but that are λ > 0 chaotic. These orbits are
found in the following system:

H = 1

2

(
p2

x + p2
y

) + 1

2
(Ax2 + By2) − εxy2. (6)

This model was originally studied by Contopoulos (1970) and it
provides a rich dynamical behaviour despite its simplicity. It can be
seen as a simpler version of the Hénon–Heiles with just one mixed
higher order term, xy2, which introduces the essential non-linearity
of the problem. Conversely to the Hénon–Heiles, this potential has
a y-axis symmetry and only two exits.

The fixed model parameters are the amplitude parameters A = 1.6
and B = 0.9. These values are chosen to be near the resonance√

A/B = 4/3, as in Contopoulos (1970). The initial condition will
be the same in all cases, x = 0.03744, y = 0, vx = 0.0480, and the
energy value is E = 0.00765. The control parameter is the coupling
parameter ε.

The first case that we have considered is when we fix the control
parameter ε = 4.4. This is the orbit labelled as C1 in Fig. 7 and
Table 1. The Poincaré section x–vx with plane y = 0 is seen in Fig. 8
(left). This is a regular in appearance, very thin chaotic strip, with
λ = 0.093. When considering the crosses of the x = 0 plane with
vx > 0, the averaged Poincaré section crossing time is Tcross = 13.8,
with a minimum value of 6.0. When considering the crosses of the
y = 0 plane with vy > 0, the averaged Poincaré section crossing
time is Tcross = 14.2, with a minimum value of 13.9.

The evolution of the predictability index h with the interval size
is shown in Fig. 8 (right), where the evolution of the kurtosis from
negative to positive values can be seen. The kurtosis zero-cross is

found at �t = 13.9. The corresponding closest to zero exponent
distribution is plotted in the inset of the figure. It is characterized
by a mean m = −0.01 and a probability of positivity F+ = 0.3. The
derived predictability index is h = 24.2. The predictability index is
in agreement with the previous cases and this value is very similar to
the predictability of the chaotic cases of the Hénon–Heiles system,
confirming the lower predictability of the ‘regular’ in appearance,
chaotic orbit.

The second case analyses the same initial condition fixing ε = 4.5.
This is the orbit labelled as C2 in Fig. 7 and Table 1. The Poincaré
section x–vx with plane y = 0 is seen in Fig. 9 (left). This is a
weakly chaotic orbit with λ = 0.0125. This orbit is very close to a
periodic orbit, meaning an averaged Poincaré section crossing time
Tcross = 14.5, both for crosses of the x = 0 plane with vx > 0, and
also when considering the crosses of the y = 0 plane with vy > 0.

The evolution of the predictability index h with the interval size
is shown in Fig. 9 (right). The kurtosis zero-cross in the evolution of
the kurtosis from negative to positive values is found at �t = 17.15.
The corresponding closest to zero exponent distribution is plotted
in the inset of the figure. It is characterized by a mean m = −0.003
and a probability of positivity F+ = 0.4. The values of the mean and
F+ reflect that the asymptotic behaviour has already been reached
at these time-scales with contracting and expanding oscillations
around zero of equal likelihood.

The figure shows strong oscillations in the predictability curve h
against �t. These oscillations are linked to the presence of peaks
in the distributions and the non-ergodic nature of the orbit. These
oscillations make the h index have strong variations with �t, but
even with these oscillations, the interval belonging to the kurtosis
zero-cross is seen. The predictability index as computed from the se-
lected �t is then h = 11.9. This predictability index is in agreement

Figure 7. Two orbits selected for calculating their predictability in the Contopoulos system. The initial condition and the values of the control parameter ε are
listed in Table 1. Left: C1, a chaotic orbit with asymptotic Lyapunov exponent λ = 0.093. Right: C2, a weakly chaotic orbit that, in appearance, is a periodic
orbit. It must be zoomed in to reflect its chaotic nature. The asymptotic Lyapunov exponent λ = 0.0125.

Figure 8. Contopoulos chaotic orbit C1. Left: Poincaré sections x–vx with plane y = 0 and vy > 0. Right: evolution of the kurtosis k and predictability index h
of the finite-time exponents distributions as the finite-time length is increased. Inset: finite-time exponents distribution for �t = 13.9. The predictability index
is h = 24.2.
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Figure 9. Contopoulos weakly chaotic orbit C2. Left: Poincaré sections x–vx with plane y = 0 and vy > 0. Right: evolution of the kurtosis k and predictability
index h of the finite-time exponents distributions as the finite-time length is increased. Inset: finite-time exponents distribution for �t = 17.15. The predictability
index is h = 11.9.

with the previous cases. This value means a lower predictability in
this case than previous chaotic cases.

5 PREDICTABILITY IN A MILKY WAY-TYPE
POTENTIAL

In this section we show how the predictability index behaves when
applied to a more realistic galactic potential. There is a considerable
number of realistic galactic models in the literature that capture and
describe several observed features such as bars, spirals or rings.
See, among others, Pfenigger (1984), Skokos, Patsis & Athanas-
soula (2002), Wang et al. (2012) and Contopoulos & Harsoula
(2013). In this paper, we have selected the potential described in
Law, Majewski & Johnston (2009) and references therein. This is a
smooth fixed gravitational time-independent potential that models
the Milky Way, but focus on the parameters controlling the shape
and orientation of a triaxial dark halo. It consists of a Miyamoto–
Nagai disc (Miyamoto & Nagai 1975), a Hernquist spheroid and a
logarithmic halo.

This potential is more realistic than the previously presented
models. It reproduces the flat rotation curve for a Milky-Way-type
galaxy and it can be easily shaped to the axial ratios of the ellipsoidal
isopotential surfaces.

We will analyse the four orbits shown in Fig. 10, labelled as M1,
M2, M3 and M4. The first orbit, M1, is a regular orbit, selected
for comparing the time-scales of this model with the previously
analysed meridional potentials. The following orbits, M2, M3 and
M4, are chaotic orbits. These are confined within some phase-space
domain for a while, but, afterwards, can escape from those domains.
As a consequence of these transients, the distributions shapes vary
depending on the selection of the finite-time lengths.

In systems with 2 or less d.o.f., regular and non-regular orbits
are separated by impenetrable barriers, the Kolmogorov–Arnold–
Moser (KAM)-tori, leading to islands of regularity embedded into
a surrounding chaotic sea. According to the KAM theorem, these
tori will survive under small perturbations if their frequencies are
sufficiently incommensurable (Lichtenberg & Lieberman 1992).
Resonant tori may be strongly deformed even under small pertur-
bations, however, leading to a complicated phase-space structure of
interleaved regular and chaotic regions. Where tori persist, the mo-
tion can still be characterized in terms of N local integrals. Where
tori are destroyed, the motion is chaotic and the orbits move in a
space of higher dimensionality than N.

In systems with more than 2 d.o.f., like the selected potential, the
chaotic sea contains a hidden non-uniformity because the motion
can diffuse through invariant tori, reaching arbitrarily far regions.

Within the chaotic sea there are cantori, leaking or fractured KAM-
tori, associated with the breakdown of integrability. These cantori
are just partial barriers, which over short times, divide the chaotic
orbits into two types: confined and non-confined. The confined ones
are chaotic orbits which are trapped near the regular islands and, for
a while, exhibit regular-like behaviour. Conversely, the unconfined
orbits travel unmixed through the whole allowed sea. Furthermore,
the cantori are partial barriers, allowing one orbit to change from
one class to the other, via the intrinsic diffusion or Arnold diffusion.
This is a very slow phenomenon, with typical time-scales longer
than the age of the Universe. In six-dimensional phase-space sys-
tems, the sticky transients are not present, cantori appears, and the
Arnold diffusion produces the ultimate merging of all orbits. But
this diffusion seems to be very small. Strong local instability does
not mean diffusion in phase space. And some chaotic trajectories
may require very long time-scales to reveal its asymptotic nature.
These trajectories can have very short Lyapunov times but they can-
not show the expected significant orbital changes but at long times
(Tsiganis, Varvoglis & Hadjidemetriou 2002; Cincotta & Giordano
2008; Cachucho, Cincotta & Ferraz-Mello 2010). In these cases, the
dynamics can be considered as regular motion from an astronomical
point of view during the applicable time-scales.

As a consequence, the fact that two regions in phase space are
connected, does not mean that all the areas in that volume will be
accessed on comparable time-scales. This long lifetime transient,
unconfined orbit, is sometimes called near-invariant distribution, as
it uniformly populates the filling region. It is remarkable that even
when the true equilibrium corresponds to a uniform distribution
through both cavities, at physically meaningful time-scales, the
quasi-equilibrium may have one cavity uniformly populated while
the other one is, essentially, empty.

The dynamical system to solve is a particle (star) subject to a
potential built upon three components: V = �disc + �sphere + �halo.
The respective contribution of every component to the gravitational
potential is given by

�disc = −α
GMdisc√

R2 + (a + √
z2 + b2)2

, (7)

�sphere = −α
GMsphere

r + c
, (8)

�halo = v2
halo ln

(
C1x

2 + C2y
2 + C3xy + (z/qz)

2 + r2
halo

)
, (9)

where the various constants C1, C2 and C3 are given by

C1 =
(

cos2 φ

q2
1

+ sin2 φ

q2
2

)
, (10)
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Figure 10. Four orbits selected for calculating the predictability in a Milky-Way-type potential. The initial conditions and halo orientation values are listed
in Table 1. Upper left: M1, a regular orbit confined to the disc, with asymptotic Lyapunov exponent λ = 0.0. Upper right: M2, a chaotic orbit out of the disc
plane, with asymptotic Lyapunov exponent λ = 0.14. Bottom left: M3, a chaotic orbit out of the disc plane, with asymptotic Lyapunov exponent λ = 0.099.
Bottom right: M4, a strongly chaotic orbit, inner and close to the disc plane, with asymptotic Lyapunov exponent λ = 5.86.

C2 =
(

cos2 φ

q2
2

+ sin2 φ

q2
1

)
, (11)

C3 = 2 sin φ cos φ

(
1

q2
1

− 1

q2
2

)
. (12)

It must be noted that there is no symmetry in the po-
tential and V(φ)! = V(−φ) because of the sign dependency
in the xy coupling factor C3. When φ = 0, q1 is aligned
with the Galactic X-axis and equation (9) reduces to �halo =
v2

halo ln ((x/q1)2 + (y/q2)2 + (z/qz)2 + r2
halo). The results with φ = 0

are then comparable with non-triaxial, purely logarithmic potentials.
When φ = 90, q1 is aligned with the Galactic Y-axis and it takes the
role of q2. The parameter α could range from 0.25 up to 1.0, and fol-
lowing Law et al. (2009) and Johnston, Spergel & Hernquist (1995),
is fixed to 1.0. We also adopt Mdisc = 1.0 × 1011 M�, Msphere = 3.4
× 1010 M�, α = 1.0, a = 6.5 kpc, b = 0.26 kpc, c = 0.7 kpc and
rhalo = 12 kpc. We have also fixed vhalo = 128 km s−1 (leading to
a local standard of rest, LSR, of 220 km s−1). The time units are in
Gyr with these parameters values.

The control parameters of this model are the orientation of the
major axis of the triaxial halo φ and its flattening. This flattening
is introduced along the three axes by the parameters q1, q2 and qz.
The qz represents the flattening perpendicular to the Galactic plane,
while q1 and q2 are free to rotate in the Galactic plane at an angle φ

to a right-handed Galactocentric X, Y coordinate system. We follow
the parameters settings of Law et al. (2009) and, without loss of
generality, q2 = 1.0, q1 = 1.4 and qz = 1.25.

Regarding the particle initial conditions, we use stars with ve-
locities within the halo kinematics range (Casertano, Ratnatunga &
Bahcalli 1990; Chiba & Beers 2001). These initial conditions, and
the values of the control parameter φ, corresponding to the four
analysed orbits, are listed in Table 1. The initial velocity vector in
all cases is contained into the z = 0 plane, meaning vz = 0.0, and
is normal to the x-axis, meaning vx = 0.0. We just select in every
initial condition the velocity modulus, |v| = vy.

The first analysed case is a regular orbit, characterized by λ = 0.0,
and confined into the disc plane z = 0 for the whole integration. This
is the orbit labelled as M1 in Fig. 10. We have selected it in order to
compare the predictability time-scales in this model with respect to
the meridional potentials seen before. This is of interest because a
single-step error δt may have different consequences in every model,
and the shadowing times for regular orbits in different models are
not necessarily similar. The corresponding Poincaré section y–vy

with plane x = 0 is seen in Fig. 11 (left). When considering the
crosses of the x = 0 plane with vx > 0, the averaged Poincaré section
crossing time is Tcross = 0.50, with a minimum value of 0.44. When
considering the crosses of the y = 0 plane with vy > 0, the averaged
Poincaré section crossing time is Tcross = 0.50, with a minimum
value of 0.46.

The evolution of the kurtosis and predictability index with the
interval size is shown in Fig. 11 (right). Conversely to the regular
orbits seen in the meridional potentials cases, the kurtosis does
not show a simple trend as the interval length grows, and there is
a set of different zero crossings starting around �t = 0.06. These
oscillations at small intervals lengths below the Tcross range of values
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Figure 11. Milky Way regular orbit M1, confined into the disc plane, with asymptotic Lyapunov exponent λ = 0.0. Left: Poincaré sections y–vy with plane
x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time length is increased.
Inset: finite-time exponents distribution for �t = 0.6. The predictability index is h = 5.03.

are sourced to the fluctuations of the shapes of the distributions when
the intervals are very small (Vallejo et al. 2008). The Tcross indicates
when the global regime is reached, and the kurtosis zero-cross
corresponding to these scales is seen at �t = 0.6. The corresponding
closest to zero exponent distribution is plotted in the inset of Fig. 11.
It is characterized by a mean m = 6.53 and a probability of positivity
F+ = 0.99. The mean and the probability of positivity indicate that
we have detected the global regime, but we are still far away from
the asymptotic regime.

The predictability index is h = 5.03. Note that this is a very low
predictability when one compares it with the values seen in the
meridional potentials, both for regular and chaotic orbits. This indi-
cates one must handle with care long integrations in this potential.
The shadowing time of a regular orbit can be large or small depend-
ing on the analysed potential, because of the different dynamical
times. And when the shadowing times are very low, one should use
higher precision schemes, even when the gain in shadowing time
may be small in the extreme cases.

The next analysed initial condition corresponds to the star labelled
as M2 in Fig. 10 and Table 1. The Poincaré section y–vy with plane
x = 0 corresponding to this orbit is seen in Fig. 12 (left). This is
a chaotic orbit characterized by λ = 0.14. We have selected this
orbit because it is a chaotic orbit that initially remains in a limited
domain of the phase space, but then fills up a larger domain of the
available phase space, as seen in Fig. 12 (left). When considering
the crosses of the x = 0 plane with vx > 0, the averaged Poincaré
section crossing time is Tcross = 0.61, with a minimum value of
0.32. When considering the crosses of the y = 0 plane with vy > 0,
the averaged Poincaré section crossing time is Tcross = 0.53, with a
minimum value of 0.34. When considering the crosses of the z = 0

plane with vz > 0, the averaged Poincaré section crossing time is
Tcross = 0.41, with a minimum value of 0.04.

The evolution of the kurtosis and predictability index h with the
interval size is shown in Fig. 12 (right). Conversely to previous
models, there is not a simple increasing trend of kurtosis with �t.
Instead, there is a set of different zero crossings. We observe a
zero crossing in the kurtosis curve at around �t = 0.035, but this
value is well below the Tcross range of values. There is also a zero
crossing at a very large interval size (not shown in the figure),
when the asymptotic regime is reached. The kurtosis zero cross
corresponding to the time-scales when the global regime of the
flow is reached is seen at �t = 0.6. The corresponding closest to
zero exponent distribution is plotted in the inset of the figure. It is
characterized by a mean m = −2.8 and a probability of positivity
F+ = 0.08. The mean and probability of positivity indicate that we
have detected the global regime, but we are still very far away from
the asymptotic regime.

The predictability index is h = 1.31. Note that this is a very low
predictability when compared with previous cases, indicating that
some care must be taken when performing long integrations using
this potential. Indeed, taking into account the kurtosis oscillations,
we may consider that we have taken an upper limit for the value of
the predictability, and within certain transients, the predictability of
the orbit may be even worse.

The following initial condition is the orbit labelled as M3 in
Fig. 10 and Table 1. The Poincaré section of this orbit is seen
in Fig. 13 (left). This orbit is characterized by λ = 0.099. The
movement is then chaotic, with some transient periods spent in the
external lobes of the section. When considering the crosses of the
x = 0 plane with vx > 0, the averaged Poincaré section crossing time

Figure 12. Milky Way chaotic orbit M2, out of the disc plane, with asymptotic Lyapunov exponent λ = 0.14. Left: Poincaré sections y–vy with plane x = 0
and vx > 0. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time length is increased. Inset:
finite-time exponents distribution for �t = 0.6. The predictability index is h = 1.31.
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Figure 13. Milky Way chaotic orbit out of the disc plane, M3, with asymptotic Lyapunov exponent λ = 0.099. Left: Poincaré sections y–vy with plane x = 0
and vx > 0. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time length is increased. Inset:
finite-time exponents distribution for �t = 1.01. The predictability index is h = 2.06.

is Tcross = 0.87, with a minimum value of 0.71. When considering
the crosses of the y = 0 plane with vy > 0, the averaged Poincaré
section crossing time is Tcross = 0.90, with a minimum value of
0.76. When considering the crosses of the z = 0 plane with vz > 0,
the averaged Poincaré section crossing time is Tcross = 0.86, with a
minimum value of 0.62.

The evolution of the predictability index h with the interval size
is shown in Fig. 13 (right). The zero crossing of the kurtosis within
the range of values indicated by the Poincaré crossing time Tcross

is found at �t = 1.01. The corresponding finite-time distribution
is plotted in the inset of the figure. It is characterized by a mean
m = 0.83 and a probability of positivity F+ = 0.8. The derived
predictability index is h = 2.06. Similar to the previous case, we
can consider this value as an upper limit to the predictability of
the orbit, since the orbit may suffer transient periods with an even
worse predictability.

The fourth analysed condition is the orbit labelled as M4 in Fig. 10
and Table 1. This is a star close to the disc plane, in an inner region
that the previous orbits. The Poincaré section of this orbit is seen in
Fig. 14 (left). This orbit is characterized by λ = 5.86. The movement
is then strongly chaotic. When considering the crosses of the x = 0
plane with vx > 0, the averaged Poincaré section crossing time is
Tcross = 0.18, with a minimum value of 0.12. When considering the
crosses of the y = 0 plane with vy > 0, the averaged Poincaré section
crossing time is Tcross = 0.19, with a minimum value of 0.16. When
considering the crosses of the z = 0 plane with vz > 0, the averaged
Poincaré section crossing time is Tcross = 0.095, with a minimum
value of 0.06.

The evolution of the predictability index h with the interval size
is shown in Fig. 14 (right). The zero crossing of the kurtosis within

the range of values indicated by the Poincaré crossing time Tcross

is found at �t = 0.07. The corresponding finite-time distribution
is plotted in the inset of the figure. It is characterized by a mean
m =−33.55 and a probability of positivity F+ = 0.043. We are again
far away from the time-scales when the asymptotic dynamics is
reached. The derived predictability index is h = 0.18. This is a very
low value when compared with the previous cases, in agreement
with the relatively high Lyapunov asymptotic exponent.

6 C O N C L U S I O N S

Our work deals with the forecast of predictability, and not with the
forecast of chaoticity. Both terms are closely related, but they do not
always follow the same trend. We have estimated the predictability
index for a variety of prototypical orbits in several conservative
galactic potentials. Contrary to other works, that focus on the re-
liability time as the inverse of the asymptotic Lyapunov exponent,
thus in the chaotic, or not, nature of the orbits, we analyse the pre-
dictability of the system, understood as a measure of its shadowing
properties.

We have seen how analysing the changes in the shapes of the
distributions one can derive the predictability index. The finite-time
Lyapunov exponents distributions reflect the underlying dynamics
(Vallejo et al. 2003), and by using arbitrarily oriented deviation
axes, one can detect varying the finite-time interval lengths, when
there is a change from the local to the global, not yet asymptotic
regime (Vallejo et al. 2008).

A sign of bad shadowing is the fluctuating behaviour of the
closest to zero of the available Lyapunov exponents. In a general
case, there can be several exponents tending to zero. Following the

Figure 14. Milky Way strongly chaotic orbit out of the disc plane, M4, with asymptotic Lyapunov exponent λ = 5.86. Left: Poincaré sections y–vy with plane
x = 0 and vx > 0. Right: evolution of the kurtosis k and predictability index h of the finite-time exponents distributions as the finite-time length is increased.
Inset: finite-time exponents distribution for �t = 0.07. The predictability index is h = 0.18.
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Table 2. Predictability related parameters for the 2 d.o.f. Hénon–Heiles and Contopoulos systems, and for the
3 d.o.f. Milky Way system.

System Orbit Orbit type λ 〈Tcross〉 Tmin �t h(�t)

Hénon–Heiles H1 Weakly chaotic 0.015 14.8 10.1 25.1 54.4
Hénon–Heiles H2 Sticky, chaotic asymptotically 0.046 13.9 7.5 11.0 20.9
Hénon–Heiles H2(t < 4000) Regular-like transient n/a 14.6 13.2 19.1 31.7
Hénon–Heiles H3 Regular (close to period 1) 0.0 12.4 11.6 48.3 105.5
Hénon–Heiles H4 Regular (close to period 5) 0.0 12.9 9.7 32.1 69.2

Contopoulos C1 Chaotic 0.093 14.0 13.8 13.9 24.2
Contopoulos C2 Weakly chaotic 0.012 14.5 14.5 17.2 11.9

Milky Way M1 Regular 0.0 0.5 0.44 0.6 5.03
Milky Way M2 Chaotic 0.14 0.51 0.04 0.6 1.31
Milky Way M3 Chaotic 0.099 0.87 0.62 1.01 2.06
Milky Way M4 Strongly chaotic 5.86 0.23 0.06 0.07 0.18

Note. λ is the asymptotic standard Lyapunov exponent. The notion weak or strongis associated with the relatively
smaller or larger value of λ. 〈Tcross〉 is the averaged Poincaré section crossing time, and Tmin is its minimum
value. �t is the finite-time interval length corresponding to a kurtosis zero crossing, and h(�t) is the corresponding
predictability index.

methods presented in Vallejo & Sanjuan (2013) for a dissipative sys-
tem, one should increase the finite-time interval length and select
the closest to zero for deriving the predictability index. In dissipative
systems the finite interval size where there is a change from local to
global is the same, because all close enough orbits end in the same
attractor, evolving towards similar time-scales. But in conservative
systems, there are no attractors, and the finite-time lengths are spe-
cific to every orbit. In this paper, we have calculated these lengths
by computing the Poincaré crossing times and detecting changes in
the sign of the kurtosis of the finite-time distributions.

The results presented here are of general interest in describing
how the predictability index computed using equation (3) provides
information on the system dynamics. These results are summarized
in Table 2. This table shows that, when calculating predictability
indexes, one must take into account the time-scales of the analysed
system for better interpretation of the range of values correspond-
ing to a given model. Regarding regular orbits, we see in this table
that the shadowing times can be very different when comparing
regular orbits belonging to different models. This is because the
consequences of a single-step error δt are different depending on
the model. Regarding chaotic orbits, we see in Table 2 that the pre-
dictability indexes of chaotic orbits can be also different when they
belong to different models. Two orbits can be chaotic, yet one may
have a larger index than the other. The predictability index is linked
to the hyperbolic nature of the orbit, and in turn, to its energy and
stiffness of the system. The existence of two or more time-scales in
different directions, one quickly growing, one slowly growing, can
lead to stiffness, and the finite-time exponents reflect these expand-
ing/contracting behaviours. In addition, the predictability indexes
depend on the time-scales when there is a change on these be-
haviours, and the global regime is reached. Different energy values
lead to different dynamical times, so to different time-scales.

The involvement of chaotic orbits in galactic models raises the
question of the persistence of these models over the required times
(Schwarzschild 1993). It is known that the mass in chaotic motion
has a different distribution than the mass in regular motion, and
the Lyapunov reliability times of the major part of chaotic orbits
are usually large when compared with the mean dynamical time
of galaxies (Voglis, Stavropoulos & Kalapotharakos 2006). This
means that the changes in the modelled structures caused by these
orbits are small during Hubble time-scales, and the persistence of

the models seems to be assured. Typical computer precision values
may be set as δ ∼ 10−16, and following equation (3), the returned
predictability times assure the goodness of the computations for
very long times, in agreement with the above. Regardless of this
result, it must be taken into account that because the exponential
dependency of equation (3), there may be transients with lower
predictability indexes, and values of h ∼ 0.1 lead to extremely short
predictability times.

Finite-time Lyapunov exponents techniques are indeed useful
for studying those transient periods that the dynamics may suffer
before ending in a final invariant state. The distributions can be
built using shorter total integration times than those required for
reaching the asymptotic behaviour. There is a limitation, however,
when reducing the total integration time, that is the number of finite
intervals needed for having good statistics values derived from the
distribution. As �t increases, the number of intervals needed for
building a well sampled distribution and a reliable mean, deviation
or kurtosis calculation also increases.

We have used integration times as long as 105 Gyr. To integrate
over such long times is a matter of discussion. Using a Hubble con-
stant H0 ∼ 71 km s−1 Mpc−1 we have a Hubble time tH ∼ 13.8 Gyr.
One can argue about the physical meaning of using integration
times some orders of magnitude larger than tH. Simple simulations
which consider static potentials should be constrained to times about
5 Gyr, as we do not know the evolution of the galaxies beyond than
that (Martinez-Valpuesta & Shlosman 2004), and long integration
lasting several times the age of the Universe should take into con-
sideration that the galaxies may have evolved and disappeared at
those time-scales. But one may argue that those long integrations
can be read as the sum of individual integrations, each one sized
�t. Considering that the initial conditions are reset every �t, the
galaxy model can be considered valid. Indeed, we have seen in the
Milky Way case that the intervals can be very small in the cases
with lower predictabilities. For these small lengths, we can use even
shorter total integrations times and still get similar results.

Regarding the selection of the finite-time intervals sizes, we have
observed that, conversely to the dissipative case, the time-scales
when the deviation vectors leave the local regime of the flow and
begin to evolve under the global dynamics can be different and
smaller than the time-scales where the asymptotic regime starts.
When �t is large enough, the distributions tend to shrink and
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centre around the asymptotic value. In early works of Contopoulos,
Grousousakou & Voglis (1995), the interval length (characteristic
time) for the effective exponents was tH. We have seen that it is
possible to use intervals smaller than tH for gaining insight into the
properties of the flow.

The method presented in this paper indicates the most adequate
interval length for estimating the predictability of a given orbit,
independent of their regular or irregular nature. When there are
several dynamical transients, reflected in changes in the shapes
of the finite-time distributions, and consequently, different zero-
crossings in the kurtosis curves, this method returns upper limits to
the orbit predictability.

The dynamical times are different depending on the studied or-
bit and model. The predictability indexes values can be used for
comparing the predictability of different orbits. They reflect how
the shadowing time increases as the precision in the computations
increases. Low predictability indexes lead to short shadowing times.
Selecting an integration scheme and assuring the energy is kept con-
stant in time (within some small error) does not imply the calculated
orbit is shadowed by a real one beyond certain limits.

The predictability index estimates this shadowing time duration.
A given numerical scheme with certain precision can be enough
when the shadowing times are large. But this may be not the case
when the shadowing times are shorter. A high predictability index
may indicate that high-precision time-consuming schemes are not
necessary, even for chaotic orbits. Indeed, Runge–Kutta order 4
(RK4) integrators provide good results even for the strongest chaotic
orbits seen in the presented meridional potentials. Conversely, a low
predictability index points to the use of more powerful schemes, as
required in the Milky Way model. In a general case, when these
indexes are really small, large increases in precision does not mean
large increases in shadowing times, and one should consider the
cost of implementing more complex and time-consuming schemes.

The percentages of regular and chaotic orbits in the phase space
are not only a function of its spatial location but also a function
of the total energy and main parameters of the model (Manos &
Athanassoula 2011), and the amount of chaotic and regular motions
in a given ensemble of initial conditions is related to the forecast
of its predictability. Chaos detection methods based on saturation
or averaging return different values as the saturation times vary
because of the possible evolving presence of different regions of
chaos, moderate or strong (Maffione et al. 2013). We have estimated
the finite-time lengths to use in the calculation of the h-index, from
the analysis of changes in the shapes of the distributions. When
several zero crossings are present, we have selected the zero based
on the Poincaré section crossing time-scales (see Table 2). This
method has been applied to regular and chaotic orbits, and the
results point to the validity of the shadowing times returned by
equation (3) even when the ergodic diffusion model may not be
fully applicable in the regular cases.

Our work has focused on the predictability index as estimator
of the accuracy of an orbit in some time-independent potentials.
The time independence of such potentials allows the trajectories
to be either periodic, regular or chaotic (strong or weak). But the
only unusual transitions found are those when a chaotic trajectory
behaves like a regular orbit and requires long time-scales to reveal
its true chaotic nature. In time-dependant potentials, one can find
migrations from chaotic to regular (Manos & Machado 2014). Our
method is applicable both when there are changes from regular
to chaotic motions, or changes from chaotic to regular motions,
as in the time-dependant cases. This is because the predictability
index presented in this paper derives from solving the variational

equations and detecting changes in the shapes of the finite-time
Lyapunov exponents as the finite-time intervals are increased. The
calculation of the predictability indexes for a set of initial conditions
on a given model, and the analysis of the results as its control param-
eters vary and these percentages evolve, is an interesting research
topic to extend our results.

We have analysed the predictability of several orbits, weakly
or strongly chaotic, with the notion weak or strong associated with
have a relatively smaller or larger value of the asymptotic Lyapunov
exponent λ. A final point to discuss is the possible applicability of
these techniques for the analysis of irregular, yet not chaotic or-
bits. Notice that the term weak chaos is not universal, and these
dynamical systems showing irregular dynamics where the separa-
tion of nearby trajectories grows weaker than exponential, implying
zero Lyapunov exponents, are sometimes referred as weakly chaotic
systems (Klages 2013).2

In these systems, there is no equivalence between time and en-
semble averages. This weak ergodicity breaking means that a ran-
dom sampling of the invariant distribution should not have the same
content statistically as a single orbit integrated for extremely long
times. We note here that studies analysing whether the Lyapunov
exponents are zero or not can be useful for distinguishing between
chaotic or not chaotic orbits, but not for distinguishing irregular
non-chaotic orbits. An irregular motion is chaotic if it is bounded,
the ω-limit set does not merely consist in connecting arcs and there
is at least one asymptotic positive Lyapunov exponent (Alligood,
Sauer & Yorke 1996). Conversely, a regular orbit has vanishing Lya-
punov exponents. However, it is not clear whether an irregular orbit
will necessarily have at least a non-zero real exponent. Although it
is generally assumed that irregular orbits and chaotic orbits are the
same in Hamiltonian systems, this has not been proven in general
(Carpintero & Aguilar 1998). We note here our work relies on the
characterization of the predictability of a given orbit, independent
of its chaotic, regular or irregular nature.
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