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Bifurcation Transition and
Nonlinear Response in a
Fractional-Order System
We extend a typical system that possesses a transcritical bifurcation to a fractional-order
version. The bifurcation and the resonance phenomenon in the considered system are
investigated by both analytical and numerical methods. In the absence of external excita-
tions or simply considering only one low-frequency excitation, the system parameter
induces a continuous transcritical bifurcation. When both low- and high-frequency forces
are acting, the high-frequency force has a biasing effect and it makes the continuous tran-
scritical bifurcation transit to a discontinuous saddle-node bifurcation. For this case, the
system parameter, the high-frequency force, and the fractional-order have effects on the
saddle-node bifurcation. The system parameter induces twice a saddle-node bifurcation.
The amplitude of the high-frequency force and the fractional-order induce only once a
saddle-node bifurcation in the subcritical and the supercritical case, respectively. The
system presents a nonlinear response to the low-frequency force. The system parameter
and the low-frequency can induce a resonance-like behavior, though the high-frequency
force and the fractional-order cannot induce it. We believe that the results of this paper
might contribute to a better understanding of the bifurcation and resonance in the excited
fractional-order system. [DOI: 10.1115/1.4029512]

Keywords: fractional-order calculus, transcritical bifurcation, saddle-node bifurcation,
resonance

1 Introduction

Bifurcation analysis is important in the engineering and scien-
tific fields. Bifurcations may make the system to lose stability and
results in disasters in some cases. Recently, the bifurcation in
fractional-order systems has attracted more and more attention.
This is because the fractional-order calculus is a powerful tool for
modeling properties of some special materials, such as Newtonian
fluids [1], viscoplasticity [2], viscoelasticity [3,4], rheology [5,6],
etc. There are lots of publications concerning bifurcations in
fractional-order systems. For example, in discrete fractional maps,
the bifurcation will occur and usually leads to chaos [7–9]. In a
single force excited Duffing oscillator, the period doubling bifur-
cation appears [10,11]. In the double forces excited, fractional-
order Duffing oscillator [12] and quintic oscillator [13], the pitch-
fork bifurcation can be induced by the high-frequency excitation.
In the fractional-order nonautonomous system [14], the delay
fractional-order system [15], and the fractional-order modified
hybrid optical system [16], the Hopf bifurcation happens. In a
simplified Lorenz system, the period doubling bifurcation, the flip
bifurcation, the tangent bifurcation, and the interior crisis bifurca-
tion are observed [17], just to mention a few examples.

The normal form of a transcritical bifurcation is given by

dx

dt
¼ lx� x2 (1)

where l is a real parameter [18–20]. When the parameter l
changes from negative to positive, the transcritical bifurcation
occurs. The potential function of Eq. (1) is UðxÞ ¼
�ð1=2Þlx2 þ ð1=3Þx3. This potential function can model the
potential energy of some supporting structures in engineering. As

described in the first paragraph, if the structure frame is comprised
by some special materials, it might be much more reasonable to
model the structure by the fractional calculus. Given these consid-
erations, we proceed to rewrite Eq. (1) in a general fractional-
order version, i.e.,

dax

dta
¼ lx� x2 (2)

Further, in many engineering backgrounds, the structure is usually
excited by a harmonic force or the combination of both a low- and
a high-frequency force [19,21,22]. Taking into account all these
factors, we finally consider the fractional-order system excited by
both a low- and a high-frequency force

dax

dta
¼ lx� x2 þ f cosðxtÞ þ F cosðXtÞ (3)

Here, a denotes the order of the fractional derivative. In general,
0< a< 2. There are three definitions often used in describing the
fractional-order derivative, i.e., the Riemann–Liouville definition,
the Caputo definition and the Gr€unwald–Letnikov definition [23].
Herein, we adopt the Gr€unwald–Letnikov definition for its widely
used and simplicity in the numerical discretization. The Gr€unwal-
d–Letnikov definition is defined as

daxðtÞ
dta

t¼khj ¼ lim
h!0

1

ha

Xk

j¼0

ð�1Þj a
j

� �
xðkh� jhÞ (4)

where the binominal coefficients are

a
0

� �
¼ 1;

a
j

� �
¼ aða� 1Þ � � � ða� jþ 1Þ

j!
; for j � 1 (5)

The two forces in the excitations are a low- force and a high-
frequency force, respectively, i.e., x � X. The high-frequency
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force in a nonlinear system usually has the effects of stiffening,
biasing, and smoothening [19,24]. In a symmetric bistable system,
the high-frequency force induces a pitchfork bifurcation due to its
stiffening effect on the system [12]. In an asymmetric bistable sys-
tem, the high-frequency force has both the stiffening and the bias-
ing effects. It induces a saddle-node bifurcation [25]. In fact, if the
symmetric or asymmetric bistable system is not excited by the
two-frequency forces, the pitchfork bifurcation or the saddle-node
bifurcation also appears, respectively, by changing the system pa-
rameter. In other words, the system posses the bifurcation inher-
ently. However, the present system is different from a bistable
system. It is monostable with one stable and one unstable equilib-
rium when l 6¼ 0. To the best of our knowledge, the effect of the
high-frequency force in the system of this kind has not been
reported elsewhere. In addition, the various bifurcation behaviors
of this system under different excitations have not been investi-
gated yet. Further, the nonlinear response of the considered sys-
tem is another concern. These problems are the main motivations
of this paper.

The outline of the present work is organized as follows. In
Sec. 2, when the system is excited by the low-frequency force
only, the transcritical bifurcation is briefly studied. In Sec. 3,
when the system is excited by both the low- and the high-
frequency forces, we find that the transcritical bifurcation transits
to the saddle-node bifurcation. Then, the effects of the system pa-
rameter, the high-frequency force and the fractional-order on the
saddle-node bifurcation are discussed by both analytical and nu-
merical methods. In Sec. 4, the nonlinear response of the system
to the low-frequency force is investigated. Finally, the work is
concluded in the last section.

2 Transcritical Bifurcation

The transcritical bifurcation is a typical local codimension-one
bifurcation for flows. At a point of a transcritical bifurcation, two
equilibrium solutions meet and exchange stability. The bifurcation
is continuous because there is a continuous path on the stable
branch through the bifurcation point in the bifurcation diagram.
To investigate the local bifurcation, the equilibrium solutions of
the excitation-free system should be computed. Apparently, the
equilibrium points of Eq. (1) or Eq. (2) are x¼ 0 and x¼ l for any
a. As shown in Fig. 1, if l< 0, the line x¼ 0 is the stable equilib-
rium branch; if l> 0, the line x¼l is the stable equilibrium
branch. The critical value l¼ 0 is the bifurcation point at which
the stability of the equilibriums of the two branches exchanges.
As it has been mentioned above, the bifurcation diagram of this
kind are given in many monographs [18–20].

When the excitation is absent, and under some different initial
conditions, the response of the system may be convergent to the

stable equilibrium with the increase of time. If the system is
excited by the external force, the response of the system may
move around the stable equilibrium. Certainly, if the excitation is
strong enough, the response will diverge to infinity when the por-
traits approach to the unstable manifold. In Fig. 2, the phase tra-
jectories under different parameters are shown. We let F¼ 0 in
this figure. In other words, only the low-frequency force is consid-
ered. If l< 0, the phase trajectories move around the stable equi-
librium x¼ 0, as shown in Figs. 2(a), 2(c), and 2(e). If l< 0, the
phase trajectories move around the stable equilibrium x¼ l, as
shown in Figs. 2(b), 2(d), and 2(f). The phase trajectories are not
divergent and move around the sole stable equilibrium in these
subplots. The value of the fractional-order does not influence the
location of the stable equilibrium. In this figure, the transcritical
bifurcation occurs when the system parameter l varies from �4 to
4. Hence, Figs. 1 and 2 carry the same information on the tran-
scritical bifurcation.

3 Saddle-Node Bifurcation

The saddle-node bifurcation is another typical local
codimension-one bifurcation for flows. At a point of a saddle-node
bifurcation, two equilibrium solutions coalesce and disappear/
appear. The saddle-node bifurcation is said to be a discontinuous
bifurcation because the bifurcation point corresponds to the start-
ing point or the end point of the solution branches. Hence, the
nature of the saddle-node bifurcation is different from the tran-
scritical bifurcation. Further, the saddle-node bifurcation is stable,
but the transcritical bifurcation is unstable to the polynomial per-
turbation [19]. Specifically, a polynomial perturbation will make
the transcritical bifurcation disappear and a new type of bifurca-
tion appear. However, under a polynomial perturbation, the
saddle-node bifurcation is still of a saddle-node type. In the fol-
lowing analysis, we will see that the transcritical bifurcation is
also unstable to the high-frequency force. The high-frequency
force has the effect similar to the polynomial perturbation in
the system and makes a transcritical bifurcation transit to a
saddle-node bifurcation. The effects of the system parameter, the

Fig. 1 The system parameter l induced transcritical bifurca-
tion diagram for system (1) and system (2)

Fig. 2 Phase trajectories of system (3) under the excitation of
the low-frequency force only. For numerical simulation,
y 5 dx=dt, F 5 0, x 5 0.2, and f 5 0.2, 0.5, 1.0, 1.5, and 2.0 from
the inside to the outside in each subplot.
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high-frequency force and the fractional-order on the saddle-node
bifurcation will be studied in detail.

3.1 Theoretical Framework. To investigate the effects of the
high-frequency force and the fractional-order on the local behavior
in Eq. (3), we should eliminate the high-frequency force in the sys-
tem at first. The method of direct separation of slow and fast
motions is a useful tool in studying the system which is excited by
both the low-frequency and the high-frequency forces. This method
has been successfully used in different systems, such as in a friction
system [26], a delayed system [27,28], a fractional-order system
[29], a noisy system [30], a pendulum [31,32], beams [33], rotating
disks [34], fluid pipes [21,35], etc. This method is much simpler
than some other approximate methods in the linear response scope.

Due to the fact that x� X in Eq. (3), the method of separation
of slow and fast motions can be used. Based on this method, we
let x ¼ X þW. Here, X and W are the slow and fast motions with
period 2p=x and 2p=X, respectively. Substituting x ¼ X þW into
Eq. (3), we obtain

daX

dta
þ daW

dta
¼ lX þ lW� X2 � 2XW�W2 þ f cosðxtÞ

þ F cosðXtÞ (6)

Searching an approximate solution of W in the linear equation

daW
dta
¼ lWþ F cosðXtÞ (7)

And solving Eq. (5), it is easy to obtain the solution of W

W ¼ F

b
cosðXt� hÞ (8)

where

b2 ¼ Xa cos
ap
2
� l

� �2

þ Xa sin
ap
2

� �2

h ¼ tan�1
Xa sin

ap
2

Xa cos
ap
2
� l

8>>>>><
>>>>>:

(9)

Substituting Eq. (8) into Eq. (6) and averaging all terms in the
interval ½0; 2p=X�, we have the equation for the slow motion

daX

dta
¼ lX � X2 � F2

2b2
þ f cosðxtÞ (10)

Hereto, the fast motion disappears and only the slow motion is
retained. Equation (10) apparently shows that �F2=2b2 is a con-
stant term and has the biasing effect on the equivalent system.
This term is a perturbation and will make the transcritical bifurca-
tion transit to the saddle-node bifurcation. Hence, the high-
frequency force has a biasing effect. It is a key factor in order to
make the new type of bifurcation to appear. In addition, the effect
of the high-frequency excitation on the system is different from
that in the symmetric bistable system in which the stiffening effect
is observed [12,36,37]. According to Eq. (10), the bifurcation can
be investigated analytically. The equilibrium points of Eq. (10)
are obtained by solving the equation

lX � X2 � F2

2b2
¼ 0 (11)

If l2 � ð2F2=2b2Þ � 0, Eq. (10) has two equilibria

X�1;2 ¼
l6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 2F2=b2

q
2

(12)

Or else, Eq. (10) has no real root. One equilibrium point in Eq.
(12) is stable. The other equilibrium point in Eq. (12) is unstable.
The saddle-node bifurcation occurs when l2 ¼ 2F2=2b2.

In most cases, the response of the system to the low-frequency
excitation deserves a particular concern. This is because the low-

Fig. 3 Analytical prediction of the saddle-node bifurcation that
induced by the system parameter l for X 5 10. The continuous
thick lines are the stable branches and the dashed thin lines are
the unstable branches.

Fig. 4 Phase trajectories of system (3) under the excitation of
the two harmonic forces. For numerical simulation, y 5 dx=dt,
f 5 0.1, x 5 1, X 5 10, and F 5 1, 5, 8, and 12 from the inside to
the outside in each subplot.
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frequency excitation may induce a catastrophe, even though it is
very weak. To obtain the response at the low-frequency, we need
to take away the constant component at first. Letting Y ¼ X � X�,
where X* is the stable equilibrium, then we obtain

daY

dta
¼ xrY � Y2 þ f cosðxtÞ (13)

where xr ¼ l� 2X�. When t! þ1, the response of the system
at the low-frequency x can be obtained from the following linear
equation

daY

dta
¼ xrY þ f cosðxtÞ (14)

Solving Eq. (14), we obtain Y ¼ ðf=cÞ cosðxt� uÞ with

c2 ¼ xa cos
ap
2
� xr

� �2

þ xa sin
ap
2

� �2

u ¼ tan�1
xa sin

ap
2

xa cos
ap
2
� xr

8>>>>><
>>>>>:

(15)

The enhancement of the low-frequency force can be quantified by
the response amplitude Q, which is defined by

Fig. 5 Numerical prediction of the transcritical and saddle-
node bifurcations that induced by the system parameter l. The
simulation parameters are f 5 0.01, x 5 1, and X 5 10.

Fig. 6 Analytical prediction of the saddle-node bifurcation that induced by the force amplitude F for X 5 10.
The continuous thick lines are the stable branches and the dashed thin lines are the unstable branches.

Fig. 7 Phase trajectories of system (3) under the excitation of
the two harmonic forces. For numerical simulation, y 5 dx=dt,
f 5 0.1, x 5 1, X 5 10, and F 5 3, 10, 20, and 40 from the inside to
the outside in each subplot. The phase trajectories are diver-
gent when F 5 20 and 40 in (a), F 5 10, 20 and 40 in (b), F 5 40 in
(c) and (d).
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Q ¼ 1

c
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xa cos
ap
2
� xr

� �2

þ xa sin
ap
2

� �2
r (16)

The response amplitude of the system to the low-frequency excita-
tion can be predicted, according to Eq. (16), by using the magni-
tude Q. Here, we must emphasize that the precondition for Eq.
(16) is the existence of X*. If X* does not existence, the expression
of Q in Eq. (16) is invalidity. The response will diverge to infinity
for this case.

3.2 The System Parameter Induced Saddle-Node Bifurcation.
When the high-frequency term is not included in the excitation, the
system parameter l induces a transcritical bifurcation, as shown in
Fig. 1. However, when the system is excited by the two-frequency
forces, the equivalent equilibria do not always exist according to
Eq. (12). The equilibrium disappears when there are no real solu-
tions for the Eq. (12). Hence, the transcritical bifurcation transits to
the saddle-node bifurcation when the solution branches disappear.
In Fig. 3, the system parameter l induced saddle-node bifurcation
is given according to the analytical prediction. There are two points
of the saddle-node bifurcation in each subplot. The bifurcation
point in the leftward is the end point of the two equilibrium
branches. At this point, the stable branch and the unstable branch
coalesce and disappear. The bifurcation point in the rightward is
the beginning point of the two equilibrium branches. The stable
branch and the unstable branch start at this point. There is a discon-
tinuous interval between the two bifurcation points. It indicates that
the response is divergent when l lies in this interval. Further, from
these subplots, we know that the space interval looks much wider
when the value of a is small. The bifurcation diagram in Fig. 3 is
naturally different from that in Fig. 1. The curve in Fig. 1 is the
continuous transcritical bifurcation diagram. However, the curve in
Fig. 3 is the discontinuous saddle-node bifurcation diagram. In a
word, the high-frequency force causes a qualitative change to the
bifurcation diagram in the considered system.

Under different simulation parameters, the phase trajectories
are plotted in Fig. 4. In this figure, no matter the parameter l is
negative or positive, the phase trajectories move around the sole
stable equilibrium. With the increase of the value of the
fractional-order, the amplitude of the phase cycle turns smaller.
As to the parameter F, it makes the response amplitude of the
phase cycle turns larger with the increase of F. Under these simu-
lation parameters, the stable equilibria are always existing accord-
ing to Eq. (12) and Fig. 3. Hence, the phase trajectories are always
existing too.

Besides the analytical prediction of the bifurcation in Fig. 3, the
bifurcation diagram can also be obtained by numerical methods.
We choose an initial condition to calculate the time series. If the
stable equilibrium exists, the response will try to approach the

Fig. 8 Numerical prediction of the saddle-node bifurcation
that induced by the force amplitude F. The simulation parame-
ters are f 5 0.01, x 5 1, and X 5 10.

Fig. 9 Analytical prediction of the saddle-node bifurcation that induced by the fractional-order a. The continu-
ous thick lines are the stable branches and the dashed thin lines are the unstable branches. The simulation
parameters are X 5 10 and F 5 10, 20, 40, 60 from the left curve to the right curve in each subplot.
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stable manifold. Due to the existence of the excitation, the phase
trajectory moves around the stable equilibrium. The response is not
divergent. If the stable equilibrium does not exist, the response will
be rapidly divergent to infinity. Based on this idea, we labeled the
location of x at a time point, which is long enough from the begin-
ning. According to the existence of the labeled point, we estimate
the existence of the stable equilibrium. Adopting this method, the
bifurcation diagram is numerically computed in Fig. 5. If F¼ 0, the
bifurcation diagram is continuous and of the transcritical type.
Under different fractional-order a, this fact is verified in Fig. 5.
Hence, the numerical simulation of the transcritical bifurcation in
Fig. 5 coincides with its analytical prediction in Fig. 1. If F 6¼ 0, the
bifurcation diagram is of the saddle-node type. The numerical
results of the saddle-node bifurcation points approximately agree
with the analytical results. Due to the existence of the high-
frequency excitation, the response is always trying to deviate from
the region of the stable manifold. As a consequence, it results that
the numerical result is a little smaller than the analytical one. In a
word, when the system parameter changes from negative to posi-
tive, the saddle-node bifurcation occurs twice. This fact can be veri-
fied by both analytical and numerical methods.

3.3 The High-Frequency Force Induced Saddle-Node
Bifurcation. The saddle-node bifurcation diagram induced by the
force amplitude F is shown in Fig. 6. With the increase of F, there
is only once saddle-node bifurcation for a certain value of the
fractional-order. It is different from the parameter l induced
saddle-node bifurcation in which there are two saddle-node bifur-
cations appearing when l increases from negative to positive.
Also in Fig. 6, we can see that the bifurcation point turns right
gradually with the increase of the fractional-order a. When the pa-
rameter F passes through the bifurcation point, there is no equilib-
rium point any longer and the system will be rapidly divergent
under the excitation.

Some phase trajectories under different simulation parameters
are given in Fig. 7. To obtain each subplot, we let F¼ 3, 10, 20,
and 40, respectively. The phase trajectories for F¼ 3 and F¼ 10
are shown in Fig. 7(a). However, for the case F¼ 20 and F¼ 40,

Fig. 10 Numerical prediction of the saddle-node bifurcation that induced by the
fractional-order a. The simulation parameters are f 5 0.01, x 5 1, and X 5 10.

Fig. 11 The response amplitude Q versus the system parame-
ter l presents the resonance-like behavior. The continuous
lines are the analytical predictions and the discrete points are
the numerical results. The simulation parameters are f 5 0.1,
x 5 1, F 5 1, and X 5 10.
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the phase trajectories do not appear in Fig. 7(a). It is because there
is no stable equilibrium when a¼ 0.5, F¼ 20, and F¼ 40, as
shown in Fig. 6(a). Hence, there is no stable manifold existing for
the two cases. It makes the response to increase rapidly to infinity
under these simulation parameters. Due to the same reason, for the
case F¼ 10, 20, and 40 in Fig. 7(b), for the case F¼ 40 in
Figs. 7(c) and 7(d), the response is divergent and there is no phase
trajectory. In Figs. 7(e) and 7(f), the phase trajectories exist for
F¼ 3, 10, 20, and 40. It is because the stable equilibria always exist
for these simulation values, as shown in Fig. 6. The phase trajectory
is an assistant tool to judge the existence of the stable equilibrium.

In Fig. 8, the numerical prediction of the bifurcation point is
clearly shown. When F passes through the bifurcation point, the
response is divergent. The numerical results in this figure corre-
spond with the analytical predictions in Fig. 6 approximately. In
Fig. 8, the discontinuous property of the diagram is verified again.
Both from Figs. 6 and 8, we find that the bifurcation point appears
at a larger value of F for a larger value of the fractional-order a.

3.4 The Fractional-Order Induced Saddle-Node Bifurca-
tion. In Figs. 9 and 10, the effect of the fractional-order a on the
saddle-node bifurcation is shown analytically and numerically,
respectively. With the increase of the fractional-order a, the stable
branch of the equilibrium appears at the bifurcation point. Both from
Figs. 9 and 10, the critical value of a corresponding to the bifurcation
point turns larger with the increase of F. Hence, the fractional-order a
is a key factor to induce the saddle-node bifurcation in Eq. (3). When
other parameters are fixed, the equilibrium point is much more likely
to exist for a large value of a. The fractional-order induced saddle-
node bifurcation is in the supercritical case.

4 Nonlinear Response to the Low-Frequency Force

The response of the system to the low-frequency force can be
quantified by the response amplitude Q, which is defined in Eq.
(16). For numerical simulation, Q is computed by

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

sinðxÞ þ Q2
cosðxÞ

q
=f (17)

where QsinðxÞ and QcosðxÞ are the Fourier coefficients

QsinðxÞ ¼
2

rT

ðrT

0

xðtÞ sinðxtÞdt; QcosðxÞ ¼
2

rT

ðrT

0

xðtÞ cosðxtÞdt

(18)

Herein, T ¼ 2p=x, r is a positive integer, which should be large
enough, and x(t) is the time series, which is directly calculated
from the original equation.

If the parameter l is a control parameter, then there is apparently
a resonance-like peak in the Q� l curve, as shown in Fig. 11.
When a¼ 0.5 and a¼ 1.0, as shown in Figs. 11(a) and 11(b), respec-
tively, the single resonance occurs when l approaches to the origin
for the two cases. When a¼ 1.5, in Fig. 11(c), the double resonance
occurs. There is a valley at the origin. The system parameter induced
resonance in this figure is very similar to the vibrational resonance
phenomenon in the fractional-order system [29]. Further, the analyti-
cal predictions agree with the numerical simulations, which justify
the validity of the analysis in this paper. In this figure, we see that
the resonance appears by adjusting the system parameter.

Fig. 12 The response amplitude Q versus the force amplitude F does not present
the resonance-like behavior. The continuous lines are the analytical predictions
and the discrete points are the numerical results. The simulation parameters are
f 5 0.1, x 5 0.5, and X 5 10.
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In Fig. 12, the effect of the force amplitude F on the response
amplitude Q is shown. Apparently, no vibrational resonance phe-
nomenon appears. Specifically, with the increase of F, there is no
resonance-like phenomenon occurring. The response amplitude

will rise up to infinity with the increase of F. It is different from
the dynamics behavior in the bistable systems [25,29,32,36–39].
In this figure, when other parameters are fixed, the response am-
plitude Q diverges at smaller F for smaller a. It is because X*

Fig. 13 The response amplitude Q versus the fractional-order a does not present the resonance-like behav-
ior. The continuous lines are the analytical predictions and the discrete points are the numerical results. The
simulation parameters are f 5 0.1, x 5 0.5, F 5 10, and X 5 10.

Fig. 14 The resonance behavior of Q versus the low-frequency x depends on the fractional-
order a. The continuous lines are the analytical predictions and the discrete points are the
numerical results. The simulation parameters are f 5 0.1, F 5 6, and X 5 20.
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vanishes at smaller F for smaller a, as shown in Fig. 6. This diver-
gent phenomenon can also be seen from Fig. 8. It is difficult to re-
alize the resonance-like behavior by adjusting the amplitude of
the high-frequency force.

The effect of the factional-order a on the response amplitude Q
is shown in Fig. 13. With the increase of a, the response amplitude
Q decreases to a smaller value. To the contrary, at a smaller value
of a, the response diverges. The nonlinear property of the response
amplitude Q versus the fractional-order a is displayed. However,
there is no resonance-like behavior in this figure.

In Fig. 14, the resonance dependence of the response amplitude
Q on the low-frequency x for fixed high-frequency force and
fixed system parameter l is illustrated. For the cases a¼ 0.7 and
a¼ 1.0, there is no resonance behavior. For the case a¼ 1.5, the
resonance appears. Thus, we can control the resonance frequency
by changing the value of the fractional-order.

5 Conclusions

In this work, the bifurcation behaviors and the response dynam-
ics in a fractional-order oscillator is investigated. The bifurcation
can be predicted by analytical and numerical methods. When there
is no external excitation acting on the system, the system parameter
will induce a transcritical bifurcation. If there is only one excitation,
the transcritical bifurcation still exists and the phase trajectories
will move around the stable equilibrium. If the system is excited by
both a low- and a high-frequency force, the system parameter, the
high-frequency, and the fractional-order will also induce bifurca-
tions. However, due to the biasing effect of the high-frequency
force, the transcritical bifurcation disappears, and the saddle-node
bifurcation appears instead. For this case, the system parameter and
the low-frequency will induce twice a saddle-node bifurcation. The
amplitude of the high-frequency force and the fractional-order will
induce once a saddle-node bifurcation only. As to the response am-
plitude to the low-frequency of the excitation, the system parameter
and the low-frequency will induce the resonance-like behavior, but
the high-frequency force and the fractional-order cannot induce the
resonance-like behavior. We believe that the results shown in this
paper might be useful for a better understanding of the bifurcation
and resonance behaviors in the fractional-order systems.
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