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Abstract Discrete dynamical systems where one or
several of their parameters vary randomly every itera-
tion are usually referred to as random maps in the lit-
erature. However, very few methodologies have been
proposed to control these kinds of systems when chaos
is present. Here, we propose an extension of the partial
control method, that we call parametric partial con-
trol, that can be naturally applied to random maps. We
show that using this control method it is possible to
avoid escapes from a region of the phase space with a
transient chaotic behavior. The main advantage of this
method is that it allows to control the system even if the
corrections applied to the parameter are smaller than the
disturbances affecting it. To illustrate how the method
works, we have applied it to three paradigmatic mod-
els in nonlinear dynamics, the logistic map, the Hénon
map and the Duffing oscillator.
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1 Introduction

A conventional way to think about chaos in engineer-
ing and control theory is to view it as an undesirable
behavior that should be suppressed. For this reason,
the main goal of controlling a system with a chaotic
behavior has typically been to lock its dynamics into a
periodic and predictable one [1,2]. But recently, there
have appeared different scenarios where the mainte-
nance of the chaotic behavior in systems with external
disturbances cannot only be desirable but essential. In
mechanics, for example, it is possible to avoid undesir-
able resonances with a chaotic dynamics [3]. In engi-
neering, the thermal pulse combustor is more efficient
in the chaotic regime [4]. In living organisms, chaotic
dynamics is essential for some vital functions [5]. In
biology, it has been suggested that the disappearance
of chaos may be due in many cases to a pathological
behavior [6]. However, there are systems where chaos
is only a transient behavior, and the dynamics, after a
chaotic motion in a certain region of the phase space,
escapes to another state that could be highly undesir-
able. This is the case found in Ref. [7], where after
a chaotic transient behavior, one of the species gets
extinct, or in the cancer model described in Ref. [8],
where the dynamics evolves toward an undesirable
tumor growth.

With the motivation of sustaining the transient
chaotic behavior indefinitely, different control meth-
ods have been suggested in the literature, which were
mainly designed to be applied in deterministic sys-
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tems. However, real systems are usually affected by
some amount of noise, like unpredictable fluctuations
of the system or external perturbations. Other sources
of uncertainty can arise from the finite precision in the
physical measurement of the state of the system and
the finite precision in the applications of the control. In
addition, the mathematical models are just an approach
to the real dynamics and are normal to find some dis-
crepancy. If we also consider that the computational
simulations have a finite precision and therefore some
deviations in the results, we can conclude that the pres-
ence of uncertainty is an unavoidable component in a
control process.

One of the main features of a nonlinear chaotic
dynamics is that little differences in the initial condi-
tions of the system grow exponentially with time, and
therefore, the presence of some uncertainty in these
systems can play a critical role. To take advantage of
this feature, a controlmethod called partial controlwas
proposed inRefs. [9,10]. Thismethod includes a distur-
bance term in the scheme, which collects all the uncer-
tainty present in the model. The main achievement of
this method is that is able to keep the transient chaotic
behavior forever, by using an amount of control smaller
than the amount of disturbances affecting the system,
which is a very counterintuitive result. The partial con-
trol method has been successfully applied to several
paradigmatic systems like the Hénon map or the Duff-
ing oscillator [9], as well as other models in the context
of ecology or cancer dynamics [7,8].

In the classical partial control method, the distur-
bances and the control were applied directly on the
phase space variables of the system, that is, qn+1 =
f (qn, p) + ξn + un . In this last equation, p represents
the parameters of the system (which are supposed to
be constant over time), ξn represents an additive distur-
bance term that varies randomly at each iteration of the
map, and un represents the applied control. However,
until now it has not been considered that the distur-
bances may affect some parameter p of the map. Here,
we study a completely new control problem where the
disturbances and the control terms are affecting directly
some parameter of the system (instead of the phase
space variables), that is, qn+1 = f (qn, p + ξn + un).
For that reason, we call it parametric partial control.
This study is motivated by the fact that the parameters
usually fluctuate from one iteration to another in most
real physical systems. These kinds of maps are called
random maps in the literature. To study the fractal

properties of these maps, the ideas of snapshot attrac-
tors [11] and pullback attractors [12] have been pro-
posed. In the context of transient chaos, random maps
are widely used to model systems where two different
timescales dynamics coexist: one slow an predictable,
and another with a small and fast fluctuating compo-
nent. For example, this is the case in advective fluid
dynamics [13], where the velocity field can be written
as an average periodic field, plus a fluctuating compo-
nent, or in some scattering processes [14–16] where
the force field varies in time in a complex manner.
As far as we know, the control scheme that we intro-
duce here (parametric partial control) is the first that is
able to sustain a transient chaotic dynamics in random
maps.

The structure of the paper is as follows. In Sect. 2,we
describe the partial control method for random maps,
that is, we describe the parametric partial control. In
Sect. 3, we apply the method to the logistic map, the
Hénon map and the Duffing oscillator, as paradigmatic
models in nonlinear dynamics. Finally, some conclu-
sions are drawn.

2 The parametric partial control method

In this section, we present the parametric version of the
partial control method that we call parametric partial
control. This approach is based on the philosophy of
the partial control method [10] with the difference that
the disturbances are introduced in a parameter of the
map instead of the variables. To apply it, first of all we
have to identify the region Q0 of the phase space where
we want to keep the trajectories. The dynamics in this
region will be

qn+1 = f (qn, p + ξn + un), (1)

where f is a function with a chaotic transient in Q0,
q is a point of Q0, p is the central value of the para-
meter, ξn is a bounded disturbance ξn ≤ ξ0 and un is
a bounded control, so that, un ≤ u0 < ξ0. We say
that un ≤ u0 is an admissible control and ξ < ξ0 is
an admissible disturbance. The trajectories satisfying
these conditions with u0 < ξ0 will be called admis-
sible trajectories. However, not all points of Q0 can
be controlled under these conditions, so it is necessary
to implement an algorithm analogous to the Sculpting
Algorithm [9], which removes the “bad” points.We say
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Fig. 1 Scheme of the parametric partial control. The red arrow
shows themapping of a pointq, under the application of a random
map in which a parameter p is affected by a bounded disturbance
|ξn | < ξ0. The green arrow shows the mapping of a point q, once
the control un was applied to the parameter to keep the point in
the blue region. Given the upper values of the disturbance ξ0
and the control u0 < ξ0, the partial control method removes the
points of the blue region that need a control |un | > u0 for some
possible |ξn | < ξ0. For every point, we have to evaluate all pos-
sible disturbances |ξn | < ξ0. Once the “bad” points are removed,
a new region Q1 ⊂ Q0 is obtained. Iterating this process until it
converges, we get a final region Qk ⊂ · · · ⊂ Q1 ⊂ Q0. We call
this region, the parametric safe set

that a point q in Q is bad if for some admissible ξ , we
have that f (q, p + ξ + u) is not in Q. This allows us
to define the parametric safe set operator as follows

�(Q) := {good points ∈ Q} . (2)

This operator will remove the bad points of Q. But
notice that not all the points that are good for Q will
also be good for �(Q). For this reason, we need to
apply this operator recursively to find a set where all
the points are good, that is,

Q0 := Q; Qn+1 := �(Qn) ⊂ Qn;
Q∞ := ∩∞

n=1Qn . (3)

As a result, a set of good points Q∞ is obtained. We
call this set, the parametric safe set. In Fig. 1, we show
graphically the procedure to check whether a point of
the phase space is safe or not.

We have developed an algorithm to implement the
parametric safe set operator on an arbitrary set Q of the
phase space that has the following steps:

1. Select the region in phase space in which f has a
chaotic transient. We notate the set of points of this
region as the initial set Q0. Then, we estimate the
upper bound of the disturbance ξ0, and we choose

the upper bound of the control u0 < ξ0. Note that
if the chosen u0 is too small, the parametric safe
set may be the empty set, and a bigger value of u0
must be chosen.

2. For every point q ∈ Qi (i = 0 for the initial set),
we need to check whether it is safe and can be part
of an admissible trajectory or not. To do that, we
compute qn+1 = f (qn, p + ξn + un) where the
control un is applied with the knowledge of p+ ξn ,
to place the trajectories back in Qi , if it escapes,
otherwise un = 0. For every point qn , we have
to check all possible disturbances ξn . If for all of
them the absolute value of the applied control |un | is
smaller than u0, then the point q is safe; otherwise,
it is removed from Qi .

3. After having removed all the points that do not sat-
isfy the control condition, a new set Qn+1 ⊂ Qn

is obtained. Then, we repeat again the step 2 with
the new set Qn+1. The process is repeated until it
converges, in which case Qn+1 = Qn , and this will
be the parametric safe set.

Some practical considerations have to be done. In
order to compute the parametric safe set, a finite grid
covering Q0 has to be used, since it is not possible
to compute the infinite number of points in Q0. For
an analogous reason, only a finite sample of distur-
bances ξn can be checked for every point q. We will
call the grid resolution as the distance between two
adjacent points q, and the parameter resolution as the
distance between two adjacent values of the parame-
ter affected by different disturbances. Higher resolu-
tions give a more accurate parametric safe set. In this
sense, we have found that beyond a critical resolution
of the grid of Q and ξ , the safe set remains unchanged.
For that reason and from a practical point of view,
we recommend to compute the safe set with the algo-
rithm proposed with increasing resolutions until find-
ing the critical value for which the shape of the safe
set found remains unchanged. That one will be a very
good approximation of the real safe set.

The parametric safe set obtained using the algorithm
just described is a positively invariant set [17]. That is,
if the controlled system’s state is at some time inside
the parametric safe set, then it will also be contained
again in this set in the future. However, the system is
not invariant since the same property does not apply
when going backwards in time.
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3 Application of the parametric partial control
method

In order to show how the method works, we have con-
sidered three paradigmaticmodels in nonlinear dynam-
ics, the 1D logistic map, the 2D Hénon map and the
Duffing oscillator, all of them for a choice of para-
meters where transient chaos is present. In all cases,
we consider that the parameter is affected by a distur-
bancewith a uniform probability distribution |ξn | ≤ ξ0.
But any other distribution is possible, provided that
it is bounded. The condition to apply the control is
|un| ≤ u0, and therefore, many choices are possible.
In the following, we have taken the minimum allowed
control to stay in the parametric safe set, but other cri-
teria are possible.

3.1 The logistic map

The logistic map is a very well known 1D map and is
defined as follows:

xn+1 = r xn(1 − xn). (4)

For a parameter value r ∈ [0, 4], the interval x ∈ [0, 1]
maps to itself. However for r > 4, the orbits starting
in this interval escape toward infinity after a chaotic
motion (see Fig. 2). With the aim of keeping the trajec-
tories in Q0 = [0, 1] and assuming that the parameter

Fig. 2 Uncontrolled orbit in the logistic randommap. The para-
meter r = 5 is affected by disturbances with upper bound
ξ0 = 0.6. The black wide curve is obtained for all possible values
of the parameter, r ∈ [5 − ξ0, 5 + ξ0], of the logistic map. In
red, we show an example of an uncontrolled trajectory that after
a chaotic motion in Q0 escapes to minus infinity

Fig. 3 Partially controlled orbit for the logistic random map.
We apply the partial control method to the logistic map, with
ξ0 = 0.6 andu0 = 0.5 and agrid resolutionof 0.001, to obtain the
parametric safe set which is shown with the wide blue segments
to help the visualization. The orbits starting in this set remain
there after applying a control un ≤ 0.5 every iteration. In red,
we show an example of a partially controlled trajectory. We are
plotting only 50 iterations

is affected by some disturbances |ξn| ≤ ξ0, the para-
metric partially controlled dynamics for this map can
be written as

xn+1 = (r + ξn + un)xn(1 − xn), (5)

where |un| ≤ u0 < ξ0 is the control applied. To show
an example of how the method works, we have taken
the values r = 5, ξ0 = 0.6 and u0 = 0.5. After the
computation of the algorithm described in the previous
section,we have obtained the parametric safe set shown
in Fig. 3. The blue wide segments represent the safe
points of x . In this figure, it has also been displayed a
partially controlled trajectory (in red), which as can be
seen remains chaotic and within Q0 indefinitely.

The appearance of the safe sets follows a very char-
acteristic pattern when the disturbance constrain is var-
ied. In Fig. 4, we explore this feature computing differ-
ent safe sets for different disturbances ξ0 and putting
all together. The upper parametric safe set corresponds
to a large value of the disturbance, and we gradually
reduce it. The control value u0 selected in each case
is close to the minimum value for which the paramet-
ric safe set exists (smaller values give the empty set).
The Cantor set structure of the different safe sets is
related to the fractal structure of the chaotic saddle of
themap. This feature reveals that the control problem is
approximately self-similar in the sense that each value
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Fig. 4 Different safe sets computed for different amounts of the
disturbance constraint ξ0 affecting the parameter r . Each safe
set was computed with the corresponding value of disturbance
and control shown on the left side of the picture. The grid and
parameter resolution used is 0.001. We can see the Cantor struc-
ture of the parametric safe set, as the disturbance decreases. In all
cases, the upper control bound selected u0 is close to the smallest
possible. Under these values, no parametric safe set exists

of disturbance is linked with a convenient scale where
the parametric safe set is located. Due to this property,
the control method is robust and efficient.

3.2 The Hénon map

The Hénon map is a 2D map defined by

xn+1 = a − byn − x2n
yn+1 = xn . (6)

This map shows transient chaos for a wide range of the
parameters a and b. We have chosen here the parame-
ter values a = 2.16 and b = 0.3. For these parame-
ters, the trajectories with initial conditions in the square
[−4, 4] × [−4, 4] have a very short chaotic transient,
before finally escaping of this region toward infinity.
An example of this behavior is shown in Fig. 5 for a
given initial condition. We consider now, a situation
where the parameter b is affected by some disturbance
|ξn| ≤ ξ0. To keep the orbits in Q0 = [−4, 4]×[−4, 4],
we apply a control |un| ≤ u0 < ξ0, so that the con-
trolled dynamics can be described as:

xn+1 = a − (b + ξn + un)yn − x2n
yn+1 = xn . (7)

Fig. 5 An uncontrolled trajectory in the Hénon random map
with a = 2.16 and b = 0.3. The parameter b is affected by
disturbances with upper bound ξ0 = 0.20. The blue square
[−4, 4] × [−4, 4] is the region Q0. In the absence of an external
control, the trajectories in Q0 escape outside the square after a
very short chaotic transient. An example of an uncontrolled tra-
jectory is displayed with the red points connected by the green
lines to help to see the evolution

In order to show how the method works in the Hénon
map,we have taken ξ0 = 0.20 and u0 = 0.15 as the dis-
turbance and control constrains, respectively. Next, we
have applied the algorithm to find the parametric safe
set with these values. After 8 iterations of the algo-
rithm, the process converges and the parametric safe
set is obtained. In Fig. 6, the blue points are the safe
points, while the blank points are the points that have
been removed, since they do not satisfy the control con-
ditions. It is also shown a partially controlled orbit (red
points), which remains chaotic in the square forever.

In order to show how the parametric safe set changes
for a different value of ξ0, we display in Fig. 7 the
parametric safe set obtained when ξ0 = 0.050 and
u0 = 0.036. Again a partially controlled trajectory is
shown in red. This system is affected by smaller dis-
turbances, and as a consequence, the parametric safe
set is more complex. The tendency as the disturbance
decreases is that the parametric safe set becomes more
and more complex due to the fractal structure of the
chaotic saddle underlaying the dynamics. For this rea-
son, more and more resolution is necessary to solve
these kinds of safe sets. However, we always have a
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Fig. 6 Controlled trajectory in the Hénon random map with
ξ0 = 0.20. Same situation as shown in Fig. 5. The partial control
method has been applied to keep trajectories in Q0 forever. The
upper bound of control is u0 = 0.15. The grid resolution taken
is 0.01, and the parameter resolution is 0.005. As a result, the
parametric safe set (in blue) is obtained. All the orbits of the map
starting in the blue set remain there after the application of con-
trols smaller than u0 = 0.15. The red points display a partially
controlled trajectory, where 20,000 iterations of the trajectory
have been plotted

finite resolution in the computation, so the value of the
disturbance can never be zero.

3.3 The Duffing oscillator

The partial control method can also be applied to maps
built from continuous dynamical systems. We have
considered, as an example, the Duffing oscillator for
a choice of parameters in which transient chaotic tra-
jectories are present.

ẍ + 0.15ẋ − x + x3 = 0.245sin(t). (8)

Due to the periodic forcing, it is possible to built a
stroboscopic map, the time-2π map, where the flow is
cut every �t = 2π . The transient chaotic dynamics is
captured in the square [−2, 2]×[−2, 2] shown inFig. 8.
Without external control, almost all initial conditions
in this region, after a chaotic behavior, fall in one of the
three attractors present in the phase space. The system
has two period-1 attractors and one period-3 attractor,
as shown in the figure.

Fig. 7 Controlled trajectory in theHénon randommapwith ξ0 =
0.050. For this case, the upper value of control is u0 = 0.036,
the grid resolution used is 0.001, and the parameter resolution is
0.0005. In we compare it with the previous figure, we see that
the appearance of the parametric safe set is more complex, due to
fact that the disturbance value is smaller. It has been also plotted
(in red) 20,000 iterations of a partially controlled trajectory

With the aim of keeping the trajectories far from
these attractors, we have applied the partial control
method further considering that the forcing amplitude
is affected by some bounded disturbance |ξn| ≤ ξ0.
Applying the control |un| ≤ u0 in the same parameter
as well, the amplitude of the forcing varies according
to 0.245 + ξn + un every iteration.

As an example, we have computed the safe set for
the upper bound value of the disturbance ξ0 = 0.020
and the upper bound of control u0 = 0.014. We have
used a grid of 1000 × 1000 in the square [−2, 2] ×
[−2, 2], where the balls centered in each attractor has
been removed to prevent the periodic behavior. Taking
this initial region as Q0, the Sculpting Algorithm was
applied. The safe set obtained is shown in Fig. 9, where
a controlled trajectory (30,000 iterations in red) also
appears. Notice that the partially controlled trajectory
is chaotic and never fall in the attractors.

3.4 More dimensions, more parameters

We have computed safe sets for the logistic map, the
Henón map and the Duffing oscillator, but no theoreti-
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Fig. 8 Escapes in the Duffing oscillator. The blue square
[−2, 2] × [−2, 2] represents a stroboscopic section of the Duff-
ing oscillator for a choice of parameters where transient chaos is
present. In this situation, almost all trajectories eventually fall
in some of the attractors (white holes) showed in the figure.
For this case, there are two period-1 attractors and one period-
3 attractor. The red dots in the figure represent an uncontrolled
trajectory where the forcing amplitude is affected by the distur-
bance ξ0 = 0.020.After a few iterations, the trajectory eventually
reaches one of the attractors

Fig. 9 Controlled trajectory in the Duffing oscillator with ξ0 =
0.020 and u0 = 0.014. After removing the holes, corresponding
to the attractors, the safe set (in blue) was computed with a grid
of 1000 × 1000, (grid resolution 0.004, parameter resolution
0.0002). The red dots represent a controlled trajectory made up
of 30,000 iterations in the Stroboscopic map

cal restrictions exist for the application of the paramet-
ric partial control method in other maps with higher
dimensions. The principal drawback is the extra time
of computation, since the points that have to be ana-
lyzed grow exponentially with the dimension.

On the other hand, situations where more than one
parameter is affected by randomdisturbances are possi-
ble. The scheme of themethod is easily expandable; for
example, in the case of m parameters p1, p2, . . . , pm ,
the partially controlled dynamics would be described
as

qn+1 = f
(
qn,

(
p1 + ξ1n + u1n

)
,
(
p2 + ξ2n + u2n

)
,

. . . ,
(
pm + ξmn + umn

))
, (9)

with the conditions

√(
ξ1n

)2 + (
ξ2n

)2 + · · · + (
ξmn

)2 ≤ ξ0

and
√(

u1n
)2 + (

u2n
)2 + · · · + (

umn
)2 ≤ u0 < ξ0.

(10)

Again, the extra parameters increase considerably
the computational time to obtain a parametric safe set.
One way to accelerate the computations would be to
parallelize the algorithm, but is not trivial because a
point is safe or not depending on the rest of the safe
points in Q0. Another possibility would be to built an
adaptive grid which increases the resolution in the parts
where the parametric safe set has a complex boundary.
There is another way to reduce the computational time,
consisting in finding the parametric safe set only in the
region where the system had a long transient dynamics.
Todo that, a big amount of initial conditionswould have
to be taken, and after removing the first iterations, we
would have only the points that stay several iterations
in the region of interest. Taking a grid that covers this
region, it is possible to economize the computation,
with the counterpart of losing information about the
final parametric safe set.

Once the parametric safe set is obtained, the com-
putation of the partially controlled trajectory is very
fast, in part because the control condition |un| ≤ u0 is
not too restrictive. In the previous examples, we have
taken theminimum control criterion, but in fact, we can
explore randomly the points qn+1 of the parametric safe
set which satisfy this condition and select the first one
that we find. This strategy also reduces the computa-
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tional time while increases the entropy of the partially
controlled trajectory, which can be a desirable feature
in problems that pursue to increment the diffusion or
mixing rates.

4 Conclusions

In this work, we have presented a new control method
that we call parametric partial control of chaotic sys-
tems, which is an extension of the partial control
method. This method is designed to be applied on sys-
tems that exhibit a chaotic transient behavior in certain
region Q0 and affected by disturbances. Taking advan-
tage of the structure of the chaotic saddle present in the
phase space, it is possible to find certain subsets of Q0

which are advantageous in a control sense. Roughly
speaking, trajectories starting in this set need a smaller
control to remain in this set (even smaller than the dis-
turbances). We call this set, the parametric safe set.

The parametric partial control is applied on maps
where some parameter is affected by a bounded distur-
bance ξ0. The goal of themethod is to keep the transient
chaotic motion forever in Q0, by the application of a
bounded control u0 in the parameter. With the appli-
cation of the algorithm described, we show that it is
possible to obtain safe sets, for values u0 < ξ0, which
is the most relevant result.

We have successfully applied the parametric partial
control to the 1D logistic random map, the 2D Hénon
random map and the Duffing oscillator with some dis-
turbance affecting the forcing amplitude. In all the sys-
tems considered, we have taken a choice of parameters
where transient chaos is present. We have computed
the parametric safe sets for different values of the dis-
turbance, showing how the parametric safe set changes
with it. This feature gives the method a high versatility
and robustness under changing circumstances. Finally,
we have analyzed the hypothetical problems of extra
dimensions and extra parameters in the maps. No the-
oretical restrictions exist for these cases, and the only
limitation is the computational resources.
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