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We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. 
Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic 
attractors with their corresponding basins of attraction. We show that the properties of the basins 
depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation 
increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the 
trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport 
depends on the dissipation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In low-beta magnetically confined plasmas with density gradi-
ents, drift waves are electrostatic fluctuations in density, floating 
potential, and temperature [1,2]. They have relatively long wave-
length (compared with the ion Larmor radius), what makes them 
good candidates for explaining anomalous diffusion across mag-
netic fields [3]. Nearly coherent drift waves are usually seen in 
linear machines and drift wave turbulence in toroidal plasmas [4].

Drift waves play a relevant role in transport of particles in mag-
netically confined plasmas. In fact, the presence of steep density 
gradients in plasma edge gives rise to turbulence, that can clear 
up anomalous transport rates observed experimentally. A theoret-
ical description of drift waves driven transport was proposed by 
Horton leading to a model using partial differential equations for 
the electrostatic potential [5,6]. Consequently, drift waves appear 
in magnetised plasmas producing the dominant mechanism for 
transport of particles across magnetic field lines. A large amount of 
information obtained from quasi-stationary laboratory experiments 
for plasma confinement shows that drift waves become unstable 
by density gradients and temperature gradients, and trapped par-
ticle effects [3,7].
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Qualitative characteristics of the transport can be approxi-
mated by a low-dimensional dynamical system with island chains 
in phase space due to the superposition of two dominant drift 
waves [8]. We consider here the two-wave Hamiltonian model 
which is the simplest system of waves that can exhibit chaotic 
behaviour used to describe drift waves in magnetic confinement 
devices and space plasmas [5,9]. Therefore, the chaotic transport of 
plasma particles are typically related to anomalous diffusion [10]. 
In addition to the two-wave Hamiltonian model, we have included 
a dissipation term to study the transport and escape time in dissi-
pative drift motion.

The effect of dissipation on Hamiltonian systems has been an 
important topic of research. For instance, studies about chaotic 
scattering in nonlinear physics such as nuclear physics, optical sys-
tems, and particle advection in hydrodynamical flows have been 
described extensively in [11]. Furthermore, the effect of weak dis-
sipation can have relevant consequences on the chaotic scattering 
as shown in [12,13]. In addition, fractal structures in phase space 
[14,15] have been investigated in a dissipative chaotic scattering 
model in [16]. Complementary, it has been verified that the vari-
ation of the fractal dimension as a function of the dissipation pa-
rameter is described by a crossover phenomenon. There have been 
further studies about the basin structure of chaotic scattering prob-
lems in Hamiltonian systems in [17–20]. Another interesting aspect 
concerns the observation that the Wada basin topology remains 
qualitatively unchanged for nonhyperbolic chaotic scattering when 
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a weak dissipation is included in a Hamiltonian system [12]. Dis-
sipation also limits the particle acceleration, excluding the Fermi 
acceleration found in some Hamiltonian systems [21]. It is interest-
ing to note that the dissipation may be associated with collisional 
effects of particles in confined plasmas [22] or even the energy 
loss through emission of radiation (since gyrating charged parti-
cles do so). Another reported effect is the relationship between 
mixing length and strong turbulence on the transport due to drift 
turbulence, investigated by taking into account the collisional vis-
cosity in a two-dimensional nonlinear model of the collisional drift 
instability [23].

The presence of multiple coexisting attractors, or multistability, 
is also expected in Hamiltonian systems with weak dissipation. In 
this case, numerical and rigorous analyses point out that there is 
a large number of coexisting periodic attractors [24]. For instance, 
center fixed points of the conservative system (neutrally stable) be-
come, with a small amount of dissipation, stable foci. If such points 
belong to a chain of m periodic islands, they become period-m
foci [25]. As a general rule, the number of attractors tends to infin-
ity as the dissipation vanishes [26]. For small yet nonzero damping, 
we expect only a finite number of coexisting attractors. This occurs 
because many periodic orbits (particularly those with high periods) 
lose their stability in a very rapid way as damping grows up [27].

In this work, we investigate the possible effects of introduc-
ing dissipation in the models describing chaotic particle transport 
in tokamaks. For that, we consider a simple model that has been 
used in tokamaks (for large aspect ratio, negligible Larmor radius, 
and other approximations) to new qualitative analyses as, for ex-
ample, the onset of Lagrangian chaos at the plasma edge. Namely, 
we analyse the dynamical consequences of introducing dissipation 
in plasmas by using the two-wave model and where dissipation 
can cause the destruction of the KAM tori and the chaotic region. 
As a result, attractors appear in phase space and with their corre-
sponding basins of attraction. We have observed that the pattern 
of the basin of attraction has a dependence on the damping. On 
the other hand, Hamiltonian systems present basins similar to dis-
sipative systems, known as basins of escape [29]. We also analyse 
the particle escape time, and our results show that the time which 
a particle stay in a region depends on the magnitude of dissipation. 
We show also that the space-averaged escape time as a function of 
the damping is represented as a power-law decay. Finally, we have 
verified the existence of transient chaotic transport.

This paper is organised as follows: in Section 2 we introduce 
the drift waves model. Section 3 exhibits our results about basins 
of attractions. In the same phase space we observe that the peri-
odic orbits become attractors. In Section 4, we present the results 
on the escape time and the transient chaotic transport. To ver-
ify the transient chaotic transport, we compute the finite time 
Lyapunov exponents. Finally, in the last section, we draw the con-
clusions.

2. Drift waves model

We introduce here the two-wave Hamiltonian particle transport 
induced by electrostatic waves propagating in the poloidal direc-
tion in a magnetised plasma with a constant toroidal magnetic 
field �B = B0êz . The drift velocity of the guiding centers is given 
by �v = (�E × �B)/B2, and we assume particles moving at this ve-
locity. The electric field is given by the gradient of the potential 
in the plasma edge �E = −∇φ(x, y, t), where φ is an electrostatic 
potential given by

φ(x, y, t) = φ0(x) +
N∑

i=1

Ai sin(kxi x) cos(kyi y − ωit). (1)

This function is composed of a background equilibrium electro-
static potential, given by φ0(x) = ax, with the superposition of a 
collection of N drift waves propagating in the poloidal direction y. 
Consequently, the equations of motion are

ẋ = − 1

B0

∂φ

∂ y
,

ẏ = 1

B0

∂φ

∂x
. (2)

Defining H(x, y, t) = φ/B0, and identifying x as the canonical 
momentum and y as its conjugate coordinate, we can see that 
equation (2) is a Hamiltonian system. For large aspect ratio toka-
maks, we use the Cartesian coordinates and identify x and y as the 
radial and poloidal coordinates, respectively.

Introducing the variables

x′ = x

r0
, y′ = y

r0
,a′ = a

E0
, t′ = t

t0
,

ω′ = ωit0, u′ = u

v0
, A′

i = Ai

E0r0
,k′

i = ω′

u′ = kir0, (3)

we can find the dimensionless Hamiltonian [5]

H(x, y, t) = ax +
N∑

i=1

Ai sin(kxi x) cos(kyi y − ωit). (4)

For N = 1 the system is integrable and presents stable orbits, 
whereas for N > 1 the integrability depends on the phase of each 
wave velocity. The system is integrable when the phase velocities 
are the same. However, the system is not integrable and can ex-
hibit chaotic behaviour, if at least one phase velocity is different.

Here, we consider the trajectories driven by a resonant wave 
whose phase velocity u1 = ω1/ky1 = a, where a is a constant. 
Trajectories are trapped in phase space in cells separated by a 
separatrix. The addition of a perturbing second wave breaks the 
separatrix and the remaining cells become immersed in a chaotic 
sea. With these considerations in mind, the equations of motion 
can be derived from the Hamiltonian

H(x, y, t) = A1 sin(kx1x) cos(ky1 y) +
A2 sin(kx2x) cos(ky2(y − ut)), (5)

where u = |ω2/ky2 − ω1/ky1| is the difference of phase velocity 
between the two waves. We add damping terms to the equations 
of motion derived from (5) obtaining

dx

dt
= A1ky1 sin(kx1x) sin(ky1 y) +

A2ky2 sin(kx2x) sin[ky2(y − ut)] − μxx, (6)

dy

dt
= A1kx1 cos(kx1x) cos(ky1 y) +

A2kx2 cos(kx2x) cos[ky2(y − ut)] − μy y, (7)

where μx and μy are the damping parameters, and we consider 
μx = μy = μ in this work.

Without damping, a single particle motion in one drift wave is 
described by an integrable Hamiltonian system and consequently it 
can be solved analytically. For a resonant wave, a two-dimensional 
lattice of counter rotating rolls separated by a separatrix is created 
in the resonant region. The particles cannot cross the separatrix 
so that they are confined to motion within a single roll. The sec-
ond wave, with an amplitude smaller than that of the first wave, 
is treated as a perturbation. The Hamiltonian is no longer time-
independent so that a particle is no longer confined to a single 
roll [3]. Then, qualitative features of the transport can be approxi-
mated by a low-dimensional dynamical system with island chains 
in phase space due to the superposition of two dominant drift 
waves.
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Fig. 1. Poincaré section of the phase space plot for A1 = 1, A2 = 0.1, kx1 = 1, 
kx2 = √

3, ky1 = 1, ky2 = 0.5, u = 1.5, and μ = 0.

Fig. 1 shows a Poincaré cross-section, where we consider 
A1 = 1, A2 = 0.1, kx1 = 1, kx2 = √

3, ky1 = 1, ky2 = 0.5, u = 1.5, 
and μ = 0. The Poincaré cross-section is obtained by means of the 
values of the motion sampled at each time period given by 2π/u. 
We can see periodic orbits as well chaotic behaviour which can 
be found around them. The phase space of a Hamiltonian system 
generally consists of islands of invariant tori immersed in a chaotic 
sea connecting the main islands. Consequently, in the considered 
phase space the chaotic particles are not confined.

3. Basins of attraction

A basin of attraction is a region of phase space defined by the 
set of points that taken as initial conditions are driven by the dy-
namics of a dissipative dynamical system to a particular attractor. 
In other words, in dynamical systems, an attractor is a set towards 
that a system tends to evolve, regardless of the starting conditions 
inside its basin of attraction [30]. Property values that get close 
enough to the attractor values remain close even if slightly dis-
turbed.

Fig. 2 exhibits, in black points, the appearance of periodic, 
quasi-periodic, and chaotic orbits for the dissipation free case 
μ = 0 (conservative). This structure does not persist if a small 
amount of dissipation is introduced, since the periodic orbits be-
come attractors. We can see some attractors that are identified by 
coloured symbols, where we consider a small amount of dissipa-
tion, μ = 10−3. There are two period-1 attractors, one represented 
by a black cross and another by a black triangle. The brown crosses 
correspond to a period-2 attractor. The green crosses represent a 
period-9 attractor. The attractors with period 10 and with period 
40 are identified by blue and red crosses, respectively.

We can see basins of attraction in Fig. 3 for the cases (a) μ =
10−3, (b) μ = 10−2, and (c) μ = 10−1. The procedure used to ob-
tain the basin of attraction consists of iterating a grid of initial con-
ditions in phase space and observing their asymptotic behaviour. 
The black regions represent the initial conditions that go to one 
period-1 attractor, and the red regions correspond to the other 
period-1 attractor. The yellow regions represent the initial condi-
tions that escape outside this phase space region. It is possible to 
see small white regions that are attractors of period greater than 
one. For a weak damping the system presents a high number of 
coexisting attractors, and their corresponding basins have a com-
plex structure. By increasing the value of the damping it is possible 
to verify a decrease in the number of attractors. Due to the dissi-
pation, the chaotic area is reduced in phase space.
Fig. 2. Poincaré section of the phase space plot for A1 = 1, A2 = 0.1, kx1 = 1, 
kx2 = √

3, ky1 = 1, ky2 = 0.5, and u = 1.5. The black points correspond to the dissi-
pation free case, μ = 0, and the coloured symbols to the case with a small amount 
of dissipation μ = 10−3. (Colour online.)

Chaotic behaviour begins with the presence of the second wave 
for the dissipative free case. The phase space in Fig. 2 is composed 
of chaotic and regular orbits, and the system displays anomalous 
transport [5]. A closer real system imply loss of particles and en-
ergy trough the plasma edge. The �E × �B drift motion is a simple 
model to study fusion and confinement in plasma as well as trans-
port properties. Attractors and their corresponding basins of attrac-
tion have never been considered in the two-wave plasma model. 
In the dissipative case of Fig. 2 there are several attractors repre-
sented with coloured symbols, however not all initial conditions 
in the grid go to these attractors. This is shown in Fig. 3(a) with 
dissipation μ = 10−3, where the yellow colour represents initial 
conditions that escape out of the bounded region. To investigate 
the particle escape, we set a reference limit on the system. Parti-
cles that do not escape are attracted to periodic attractors in the 
considered grid.

Chaotic orbits in Fig. 2 are in the same region where in Fig. 3(a) 
black, red and yellow points are mixed. Chaotic orbits observed in 
the dissipative free case are, in the dissipative case, in the basins of 
attraction of different attractors. Even so, we recognise a predom-
inant yellow basin. On the other hand, it is possible to determine 
another two basins of attraction composed of black and red points. 
The orbits in these two basins of attraction were quasi-periodic or-
bits in the conservative case. This way, with the small dissipation, 
neighbouring orbits in the chaotic sea may go an attractor or es-
cape through the chosen reference limit (representing the plasma 
edge). In Fig. 3(b) damping is increased and the limit of the black 
and red basins start to blend. At the same time the yellow region 
start to stay more defined. We can see regions where there are not 
mixed points, in addition yellow homogeneous regions are formed.

The scenery changes with dissipation μ = 10−1. The period-1
attractor of the red basin disappears. We have now a basin of at-
traction composed of black and yellow points. In Fig. 3(c) the basin 
of attraction represented by the yellow colour does not share the 
same regions of the others points which go to an attractor, in-
stead there is a basin of attraction defined for the particles that go 
out the bounded region. This way, we have a basin of attraction 
of particles which can escape the delimited area. Even with dissi-
pation, it is possible to observe a trapped effect, because particles 
are attracted for regions in the plasma, and other particles escape 
towards the plasma edge. Thereby, we observe that transport prop-
erties change with dissipation in the �E × �B motion.
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Fig. 3. Basin of attraction for (a) μ = 10−3, (b) μ = 10−2, and (c) μ = 10−1. The black and red colours correspond to the basins of period-1 attractors and the yellow colour 
corresponds to the initial conditions that escape outside this phase space region. (Colour online.)

Fig. 4. Escape time in colour scale as a function of the initial conditions for (a) μ = 10−5 and (b) μ = 10−3. (c) and (d) are the distributions of the escape time corresponding 
to (a) and (b), respectively. (Colour online.)
4. Escape time and transient chaotic transport

Our goal here is to study the dependence of the escape time on 
the damping parameter. We consider that a trajectory has escaped 
when it has crossed the boundary of the phase space region. In 
order to obtain the passage time for the escape we consider the 
phase space region 0 < x ≤ π and 0.7 < y ≤ 2.5.

Fig. 4 presents the escape time for A1 = 1, A2 = 0.1, kx1 = 1, 
kx2 = √

3, kx1 = 1, ky2 = 0.5, and u = 1.5. In Fig. 4(a) and (b) 
we show the escape time (τ ) in colour scale from a grid of ini-
tial conditions under the drift waves model with dissipation equal 
to μ = 10−5 and μ = 10−3, respectively. The white region are 
the initial conditions which do not escape from the phase space 
region, namely there are initial conditions which go to an attrac-
tor there. We compute the distribution f (τ ), shown in Fig. 4(c) 
(μ = 10−5) and (d) (μ = 10−3), by means of the escape times τ of 
initial conditions outside the basin of attraction. In this case, the 
distributions are skewed right, due to the fact that a high quan-
tity of initial conditions have an escape time larger than 104 for 
μ = 10−5, and larger than 102 for μ = 10−3.

In order to verify the behaviour of the escape time with the 
damping, we calculate the space-averaged escape time

< τ >= 1

M

M∑
m=1

τm, (8)

where M is the number of initial conditions that escape from the 
phase space region. The dependence of the space-averaged escape 
time upon the damping is depicted in Fig. 5, where the mean value 
is calculated by means of 2.5 × 105 initial conditions. The least-
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Fig. 5. Space-averaged escape time as a function of the damping constant. The solid 
line is a power-law fit.

squares fit in Fig. 5 shows a power-law dependence on the form 
< τ >= 1.04μ−0.53. This way, the space-averaged decreases when 
the damping increases. The decay of the transient trajectories can 
be associated to the homoclinic tangle present in the chaotic sea, 
as reported for chaotic field lines escape in tokamaks [31].

Transport phenomena is relevant for many applications such as 
fluid mixing, particle accelerators, and particle transport in fusion 
plasmas [32]. The focus of such studies on magnetic fusion have 
been on the transport processes in magnetically confined plasma 
[33,34]. Marcus and collaborators [28] studied chaotic transport 
in reversed shear plasma profiles, where they investigated effects 
from electric and magnetic reversed shear fields on plasma con-
finement. Chaotic transport occurs when the particle trajectories 
present chaotic behaviour. In Fig. 1, due to the chaotic sea, it is 
possible to observe the chaotic transport. Nevertheless, the chaotic 
sea disappears when the damping is introduced.

Lyapunov exponents are a good diagnostic tool for analysing 
chaotic motion [35,36]. Finite Lyapunov exponents allow the un-
derstanding of local and global properties of a dynamical flow, as 
well as nonhyperbolic behaviour. This way, we analyse the parti-
cle trajectories by means of the Lyapunov exponents in dissipative 
drift motion.

The ith Lyapunov exponent is defined in terms of the growth 
rate of the ith principal axis of the ellipsoid pi(t) monitored of an 
infinitesimal n-sphere of initial conditions,

λi = lim
t→∞

1

t
log

pi(t)

pi(0)
. (9)

The system is chaotic when it has one or more positive Lyapunov 
exponents. In our simulations, the Lyapunov exponents are ob-
tained according to the algorithm proposed by Wolf et al. [37]. 
Next, to analyse transient chaos we calculate Lyapunov expo-
nent for finite time intervals [38]. The ith (i = 1, 2) time-T Lya-
punov exponent associated with the point (x(0), y(0)) is given 
by

λi(x(0), y(0), T ) = 1

T
ln

(
||MT (x(0), y(0))UT ||

)
, (10)

where MT (x(0), y(0)) denotes the Jacobian matrix of the time 
interval T evaluated at the point (x(0), y(0)), and UT is the 
eigenvector. The finite time Lyapunov exponents depend on the 
initial condition (x(0), y(0)), while their infinite time counter-
parts
Fig. 6. Finite time Lyapunov exponents in colour scale as a function of the initial 
conditions for T = 100, A1 = 1, A2 = 0.1, kx1 = 1, kx2 = √

3, ky1 = 1, ky2 = 0.5, 
u = 1.5, and μ = 0.001. (Colour online.)

λi = lim
T →∞λi(x(0), y(0), T ), (11)

present the same value for almost every point (x(0), y(0)) [39].
Attractors appear when we introduce damping in the drift mo-

tion, consequently there are no islands neither chaotic sea in the 
phase space. Having this in mind, we used the finite time Lya-
punov exponents [38] to verify the existence of transient chaotic 
transport. We consider that this form of transport occurs before 
the particle trajectories go to the periodic attractors. Fig. 6 shows 
the finite time Lyapunov exponents in colour scale as a function of 
the initial conditions. The dark blue regions correspond to the par-
ticle trajectories that do not escape to attractors outside the region 
0 ≤ x ≤ π and 0.5 ≤ y ≤ 2.5. The regions with colours different of 
dark blue represent the trajectories that not only escape from this 
region, but also have positive finite time Lyapunov exponents. As 
a result, in these regions the trajectories present transient chaotic 
transports.

5. Conclusions

We have analysed the two-wave Hamiltonian model to de-
scribe a chaotic transport of particles in plasma confinement. Thus, 
the chaotic transport of plasma particles are typically related to 
anomalous diffusion.

We have included a dissipative term in the two-wave model. 
With the dissipation we were able to observe the destruction of 
KAM tori, as well as the disappearance of the chaotic region. Due 
to the damping, the system possesses basins of attraction. Fur-
thermore, we verified that the pattern of the basin of attraction 
depends on the damping parameter.

For the damped two-wave model, we have investigated the 
escape time dependence on the damping parameter. We have ob-
served that the quantity of initial conditions with high escape time 
decreases when the damping parameter increases. Moreover, our 
numerical results show that the space-averaged escape time obeys 
a power-law scaling with the increasing of the damping. We have 
also studied the transport and we have identified transient chaotic 
transport.

Although the model used in this work is a simple one, com-
monly introduced to discuss new qualitative transport analyses, 
our results indicate how the dissipative effect could modify the 
particle chaotic transport in tokamaks. Thus, the presented predic-
tions suggest that further analyses should be introduced to more 
realistic models to predictions that could be validate in tokamak 
experiments.
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