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Using a hybrid cellular automaton, we investigate
the transient and asymptotic dynamics of the cell-
mediated immune response to tumour growth. We
analyse the correspondence between this dynamics
and the three phases of the theory of immunoedition:
elimination, equilibrium and escape. Our results
demonstrate that the immune system can keep a
tumour dormant for long periods of time, but that this
dormancy is based on a frail equilibrium between the
mechanisms that spur the immune response and the
growth of the tumour. Thus, we question the capacity
of the cell-mediated immune response to sustain long
periods of dormancy, as those appearing in recurrent
disease. We suggest that its role might be rather to
synergize with other types of tumour dormancy.

This article is part of the themed issue
‘Mathematical methods in medicine: neuroscience,
cardiology and pathology’.

1. Introduction
Paul Ehrlich suggested in 1909 that the immune system
might protect an organism from the development of
cancer [1]. Around 50 years later, this proposition was
more formally reintroduced by Macfarlane Burnet [2,3]
and, later on, by Lewis Thomas [4]. After suffering
major setbacks [5,6], the immunosurveillance theory
gained renewed impetus close to 20 years ago, thanks
to several experimental studies with genetically altered
mice [7,8]. Currently, the immunosurveillance of tumours
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is more properly referred to as cancer immunoediting. Given the genetic heterogeneity of
tumours, this control system coevolves with them and seems to act as a natural selective force,
editing its phenotype by selecting those cells that are unresponsive to immune detection.

Cancer immunoediting can be described by three phases: elimination, equilibrium and
escape. The first of these three Es [9] corresponds to what has traditionally been termed
immunosurveillance [10], and involves the innate and the adaptive immune responses. During
this phase, the immune system keeps in check a tumour cell population, successfully recognizing
and destroying the majority of its cells. However, some residual tumour cells might remain
unnoticed and asymptomatic for a long period of time, which can range from 5 years to more
than 20 years. This period of time defines a second stage, in which a small cell population is kept
at equilibrium. Finally, the phase of escape is led by some tumour cells that might present a priori,
or have acquired along their evolutionary process, a non-immunogenic phenotype.

The mechanisms through which a tumour can be maintained at low cell numbers (i.e. dormant)
are diverse. In a first approach, cancer dormancy can be generally classified in two categories:
tumour mass dormancy and cellular dormancy [11]. In the former case, the equilibrium of a
tumour is the result of a balance between cell growth and cell death. In the latter, the cells
arrest and survive in a quiescent state until more benevolent conditions are provided by their
environment. The occurrence of tumour mass dormancy is commonly associated with two
different mechanisms [12]. The first is angiogenic dormancy, which occurs when the cells are
unable to induce angiogenesis, and therefore to recruit oxygen and other nutrients to their
location. In this manner, the proliferation rate is counterweighted by elevated rates of apoptosis.
The second mechanism is the immune system response. This response is very complex and
involves many types of cells and molecules [13]. There is evidence that the cell-mediated
immune response collaborates with the humoral immune response to promote the dormancy
of tumours, and that CD8+ lymphocytes and interferon-γ play a transcendental function in its
maintenance [14].

In this work, we use a hybrid cellular automaton (CA) to investigate the dormancy of a
tumour mass, mediated by the cellular immune response. Even though an interesting study
has been previously carried out in this context [15], this study includes new features, which
we believe makes it more realistic, permitting a correlation between the results and the theory
of immunoedition. Mainly, the time scale of the cytotoxic cell action (about an hour) differs
from the time scale of tumour cell proliferation (about a day). Secondly, our CA includes a
new parameter that allows us to represent immunosuppressed environments. The exploration
of different immunological scenarios enables the discussion of a possible dynamical origin of
tumour dormancy and the sneaking through of tumours, as originally proposed by Kuznetsov
et al. [16].

2. The model
We consider a model of limited nutrient growth of an immunogenic tumour, consisting of a
hybrid CA. The model is very similar to another model presented by Mallet & De Pillis [15].
For a schematic representation of the model, see figure 1. These models are an extension of a
previous CA model designed to study the effects of competition for nutrients and growth factors
in avascular tumours [17]. They are hybrid because the tissue cells are treated discretely, allowing
them to occupy diverse grid points in a particular two-dimensional spatial domain Ω , and evolve
according to probabilistic and direct rules. On the other hand, the diffusion of nutrients required
for growth and survival (such as glucose, oxygen or other types of nutrients) from the vessels,
which are placed on the boundary of the spatial domain ∂Ω , is represented through linear
reaction–diffusion equations, which are continuous and deterministic.

We utilize a quadrilateral spatial domain Ω = [0, L] × [0, L], which is partitioned into a regular
grid with a resolution of n × n pixels, n being equal to 300 in all our simulations. Each of the grid
points �x is occupied by one or more cells, that can execute several actions. This work includes four
types of cells: healthy cells H(�x), tumour cells T(�x), immune effector cells E(�x) and dead (necrotic
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Figure 1. The cellular automaton. A grid representing the cellular automaton during the growth of a tumour in the presence
of immune effector cells. The tumour cells are shown in red and the immune cells appear in blue. The remaining spots are
occupied by healthy or dead cells. The vertical black stripes in the boundary of the square domain represent the vessels from
which nutrients diffuse. Periodic boundary conditions are considered in the remaining part of the boundary. Some immune cells
are scattered in the region, and some other form clusters that advance reducing the tumour. (Online version in colour.)

and apoptotic) cells D(�x). Unlike previous studies, we do not make a distinction between the
innate and the adaptive immune responses. For simplicity, we gather the natural killer cells and
the T-cells in the same compartment, and simply refer to them as cytotoxic cells.

The role of the healthy cells is reduced to passive competitors for nutrients that allow the
tumour cells to freely divide or migrate. The dead cells play no significant role in the model, and
they can be replaced by the tumour and the immune cells, just as if they were phagocytized by
wandering macrophages.

At each CA iteration, the tumour cells can carry out different actions attending to certain
probabilistic rules. These rules depend on the nutrient concentration per tumour cell at a grid
point and some specific parameters. Each of these parameters θa represents the intrinsic capacity
of the tumour cells to carry out a particular action a. The tumour cells can divide θdiv, move θmig or
die θnec. Attending to morphology, diverse types of tumours can be generated, depending on the
nutrient competition parameters among tumour cells α, λN . Here, we consider parameter values
that, in the absence of an immune response, generate rather spherical tumours [18].

Concerning the immune cells, we assume a constant input of cytotoxic cells into the region.
When these cells are in contact with at least one tumour cell, they attempt to lyse it. The fate of this
tumour cell depends on the intrinsic cytotoxic ability of the immune cells, which is represented
by the parameter θlys. We outline the importance of this parameter, which allows us to represent
immunosuppressed tumour microenvironments. Following previous studies [16,19], we assume
that when a cytotoxic cell interacts with a tumour cell, several cytokines are secreted by the
immune cells, which induce the recruitment of other immune cells to the domain. We note that
the constant input of immune cells can, to some extent, also be regarded as a mechanism of
recruitment. Commonly, cytokines are secreted by other types of immune cells, as for example
T-helper cells, which are not explicitly modelled here. When immune cells are not in direct contact
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with a tumour cell, they can either move or become inactivated θinc. As in previous studies, we
assume that a single immune cell cannot lyse more than three times, leaving the region of interest
when this occurs [15]. The precise probabilistic laws are described in the following.

(a) Diffusion of nutrients
Two types of nutrients are utilized in this model, making a distinction between those which
are specific for cell division N(x, y, t) and others M(x, y, t) required for cell survival. The partial
differential equations for the diffusion of nutrients are

∂N
∂t

= DN∇2N − k1TN − k2HN − k3EN (2.1)

and
∂M
∂t

= DM∇2M − k4TM − k5HM − k6EM, (2.2)

where T(x, y, t), H(x, y, t) and E(x, y, t) are functions representing the number of tumour, healthy
and immune cells at time t and position (x, y). For simplicity, we assume that both types of
nutrients have the same diffusion coefficient DN = DM = D. Following [15], we consider that the
competition parameters are equal k2 = k3 = k5 = k6 = k, except for the tumour cells, which compete
more aggressively. We set k1 = λNk and k4 = λMk, with λM and λN greater than one. We exploit the
difference in time scales for nutrient diffusion (minutes) and cell division (days), assuming that
the solutions are stationary. On the vertical sides of the domain, where the vessels are placed,
Dirichlet boundary value conditions are imposed. Therefore, we assign N(0, y) = N(L, y) = N0 and
M(0, y) = M(L, y) = M0. For simplicity, the horizontal upper and lower bounds of the domain obey
periodic boundary conditions. Therefore, we impose N(x, 0) = N(x, L) and M(x, 0) = M(x, L).

The reaction–diffusion equations can be non-dimensionalized [17] by redefining the nutrients
and the spatial and temporal coordinates in the form

t̃ = Dnt
L2 ,

(
x̃, ỹ

)=
(nx

L
,

ny
L

)

and Ñ = N
N0

, M̃ = M
M0

.

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

Dropping the tildes and considering that the solutions are stationary, we obtain the equations

∇2N − α2(H + I + λNT)N = 0 (2.4)

and
∇2M − α2(H + I + λMT)M = 0, (2.5)

where α2 = kL2/Dn2 is the dimensionless rate of consumption of nutrients by host and immune
cells, while λNα2 is the rate of consumption of the nutrient N by the tumour cells. The boundary
conditions now read N(0, y) = N(L, y) = 1 and M(0, y) = M(L, y) = 1. From a physical point of
view, these elliptic partial differential equations represent the ‘scattering’ of nutrients from the
boundary of a tissue and their diffusion in it. The role of the cells at a particular point in space is
to act as a ‘potential barrier’, consuming nutrients and, therefore, attenuating their concentration
at such position. The size of such ‘barrier’ varies in space, depending on the number of cells at
each position and the rate at which they consume nutrients. As λN ≥ 1 and λM ≥ 1, tumour cells
compete equally or more aggressively for nutrients than healthy cells.

(b) Cellular automata rules
Now we describe the CA rules for the tumour and the cytotoxic cells. They are very similar to
those used in [15], and are also described in [18]. Any difference will be explicitly remarked. In
what follows, T(�x) and E(�x) are the tumour and the immune cells at position �x, while N(�x) and
M(�x) are the concentration of nutrients in non-dimensional variables at position �x. We recall that
the parameters θa represent the intrinsic capacity of a cell to carry out a particular action a.
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(i) Tumour cell rules

Every 24 CA iterations the tumour cells are randomly selected one by one, and a die is rolled to
choose whether each of these cell divides (action 1), migrates (action 2) or dies (action 3). When
one of these three actions is selected, it might occur or not, depending on a probability distribution
which depends on the nutrient concentration. The probability rule for each of these three actions is
as follows.

(a1) A tumour cell divides with probability

Pdiv = 1 − exp

(
− (N/T)2

θ2
div

)
. (2.6)

This probability is compared with the probability of a randomly generated number using
a normal distribution and the same standard deviation. If the former is greater than the
latter, division takes place. The higher the value of θdiv, the more metabolic requirements
for a cell to proliferate. When a cell at position �x = (x, y) divides, if there are neighbouring
CA elements that are not currently occupied by tumour cells, we randomly select one �x′ =
(x′, y′) and place there the newborn cell, thus making T( �x′) = 1 and H( �x′) = 0 or D( �x′) = 0,
where D(�x) is the function representing the necrotic cells at position �x. However, if all the
neighbouring elements are occupied, we let the cells pile up, making T(�x) → T(�x) + 1.

(a2) A tumour cell migrates with probability

Pmig = 1 − exp

(
− (

√
TM)2

θ2
mig

)
. (2.7)

If Pmig is greater than the probability of a randomly generated number, migration
proceeds, otherwise it does not. The higher the value of θmig, the more metabolic
requirements for a cell to move, unless there are too many tumour cells. When a cell at
position �x moves, if there are neighbouring CA elements that are not currently occupied
by tumour cells, we randomly select one at �x′ and place the cell there. If there is more
than one cell in the original position, the moving cell simply replaces the healthy or the
necrotic cell, thus making the transformation T(�x) → T(�x) − 1, T( �x′) = 1 and H( �x′) = 0 or
D( �x′) = 0. On the other hand, if there is only one tumour cell at �x, then it interchanges
its position with the healthy or necrotic cell at �x′. If all the neighbouring elements are
occupied, we displace the cell to a randomly selected neighbouring element.

(a3) A tumour cell dies with probability

Pnec = exp

(
− (M/T)2

θ2
nec

)
. (2.8)

If Pnec is higher than the probability of a randomly generated number, necrosis proceeds,
otherwise it does not. The higher the value of θnec, the greater the probability for a cell to
die. When a cell at position �x dies, we make T(�x) → T(�x) − 1. If this is the only cell at �x,
then D(�x) = 1.

(ii) Immune cell rules

At each CA iteration, there is a constant input of immune cells. These cells are placed at random
in the domain, at points that are not occupied by tumour cells. Every such grid point is examined
and, if a probabilistic condition holds, the healthy or dead cells that might occupy it are replaced
with an immune cell (action 1). Then, the immune cells are randomly selected one by one. When
the immune cell has one or more tumour cells as first neighbours, it carries out an attempt to
lyse (action 2). If the tumour cell is destroyed by the immune cell, the first neighbouring cells
are flagged for recruitment (action 3). Those effector cells whose immediate neighbourhood is
not occupied by tumour cells either migrate or become inactivated. To decide which of these two
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processes is carried out, a coin is flipped. If the output is migration, it occurs for sure. In the
opposite case, inactivation might result (action 4). The probability rules of these actions are as
follows.

(a1) An immune cell is placed in the background with probability

Pbkg = f − 1
n2

∑
i∈CA

Ei, (2.9)

where f is a number between 0 and 1, that represents the intensity of the input of immune
cells into the tissue. If Pbkg is greater than a randomly generated number between zero
and one, then an immune cell appears in the corresponding grid point.

(a2) An immune cell lyses a tumour cell with probability

Plys = 1 − exp

⎛
⎜⎝− 1

θ2
lys

⎛
⎝∑

i∈η1

Ei

⎞
⎠

2
⎞
⎟⎠ , (2.10)

where ηn indicates summation up to the nth nearest neighbours. If Plys is higher
than the probability of a randomly generated number, then the selected tumour cell
dies. Therefore, T( �x′) = 0, D( �x′) = 1 and the immune cell counter decreases by a unit.
If the counter (starting with a value of three) reaches a value of zero, the immune cell
is inactivated and replaced by a healthy cell. The smaller the value of θlys, the greater
the probability for an effector cell to lyse a tumour cell. This parameter was not present
in [15] and is introduced here to model the intrinsic cytotoxicity of T cells.

(a3) When an immune cell destroys a tumour cell, each CA element around it without tumour
cells is explored, and a new immune cell is recruited with probability

Prec = exp

⎛
⎜⎝− 1

θ2
rec

⎛
⎝∑

i∈η1

Ti

⎞
⎠

−2
⎞
⎟⎠ . (2.11)

If Prec is higher than the probability of a randomly generated number, recruitment
proceeds. The higher the value of θrec, the fewer the surrounding tumour cells that are
required for T cell recruitment to succeed. When a cell is recruited at position �x′, we make
D( �x′) = 0 or H( �x′) = 0, and E( �x′) = 1.

(a4) The inactivation of an immune cell occurs with probability

Pinc = 1 − exp

⎛
⎜⎝− 1

θ2
inc

⎛
⎝∑

i∈η3

Ti

⎞
⎠

−2
⎞
⎟⎠ . (2.12)

If Pinc is higher than the probability of a randomly generated number, inactivation
proceeds. The smaller the value of θinc, the fewer the surrounding tumour cells that are
required for a T cell to become inactivated. When a cell disappears from position �x, we
simply make H(�x) = 1 and E(�x) = 0.

(c) The algorithm
The algorithm starts with a domain full of healthy cells, except for a single tumour cell placed
at the centre of the domain. Firstly, we let the tumour grow until it is detected by the immune
system, when it has reached some specific size Tdet. During this period of growth, each CA
step corresponds to one day. Each iteration begins with the integration of the reaction–diffusion
equations, using a finite-difference scheme and a successive overrelaxation method. Then, all
the tumour cells are randomly selected with equal probability, and the CA rules are applied.
As in previous studies [17], every time an action takes place, the reaction–diffusion equations
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Figure 2. Transient bifurcation diagrams. Two transient bifurcation diagrams for the reference scenario. The size of the tumour
T for the last 100 hours of a trajectory comprising 1000 days is plotted against the parameter thatmodels the immunogenicity of
the tumour θlys. The size of the tumour has been ‘normalized’, dividing it by the number of total grid points n2. Tumours having
escaped the region are assigned a value of T = 2.2, which is over the maximum obtained in all our simulations. (a) A transient
bifurcation diagram for a constant input of tumour cells into the domain given by f = 0.1. (b) A transient bifurcation diagram
for a constant input of tumour cells into the domain given by f = 0.05. Three different regimes are clearly discerned. The first
(1) corresponds to the elimination of the tumours, the second (2) to abiding small tumours kept in equilibrium by the immune
cells and the third (3) to fast growing tumours that escape the domain. (Online version in colour.)

are locally solved in a neighbourhood with size 20 × 20 grid points. When the time of detection
is reached, the immune cells start to evolve. Now the CA step corresponds to 1 h, and during
the next 23 steps, only the immune cells are computed. First, the background source of immune
cells is executed. Then, the reaction–diffusion equations are solved and all the immune cells are
randomly selected. For each immune cell, after applying the CA rules, the nutrients are computed
in a local region, in exactly the same manner as before. Every 23 iterations, the tumour cells are
checked and the tumour cell rules applied as previously described, before immune detection.
The algorithm stops when a maximum number of steps after the elapse of the immune response
has been reached, or when a tumour cell is at a distance of two grid points from its boundary.

3. Simulations and results
We study the evolution of the tumour and the immune system for three different scenarios.
The first scenario is used as a reference, and it is characterized by high levels of immune cell
recruitment and negligible necrosis due to the scarcity of nutrients in the core of the tumour
masses. In the second scenario, the recruitment levels are reduced, while the necrosis of tumour
cells is enhanced in the third. Unless specified, the remaining parameters are all the same
in every case. Beginning with one tumour cell, the tumours grow up to Tdet = 5 × 103 cells,
and at this moment the immune response triggers. In order to elucidate the effects of tumour
immunogenicity, we devise what shall be called a transient bifurcation diagram. Given a dynamical
system, a bifurcation diagram is a plot of the asymptotic values of a particular variable against
a set of values of some relevant parameter. However, in many situations there might exist very
long transients before the asymptotic state is established. These transients are of great importance
in our context, because tumours may exhibit long periods of latency before the development
of recurrence. Therefore, we compute the number of tumour cells for the last 100 iterations
of a trajectory comprising 24 000 iterations of the CA from immune detection. Then, these 100
points are represented on the vertical axis for different values of the parameter θlys, which
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Figure 3. Asymptotic dynamics and tumour escape. Three time series of the tumour size for the reference scenario are plotted.
The constant input of immune cells to the domain is f = 0.1. The size of the tumours is registered until they escape the domain
through the vessels. The corresponding tumours at escape are shown below. The colour bar represents the number of tumour
cells at a grid point. For clearness, the immune cells at a grid point are simply coloured indark blue. Thedead cells are represented
in light blue. (a) A long-lived tumour is kept at equilibrium for θlys = 90. This is an example of immune-mediated tumourmass
dormancy. (b) The corresponding small tumour at escape. (c) A less immunogenic tumour θlys = 106 is kept at equilibrium, but
for a considerably shorter time. (d) The corresponding tumour at escape, which is notably bigger compared with the previous
case. (e) A tumour that is barely immunogenic forθlys = 140. Now the tumour escapes very rapidly and exhibits the largest size,
although the immune system delays its growth. (f ) The corresponding tumour at escape. (Online version in colour.)

lies on the horizontal axis. If we assign to each of these iterations a time of one hour, we are
registering the size of the tumour for approximately the last 4 days of a period of 33 months from
immune detection. We recall that the parameter θlys codes the intrinsic ability of the immune
cells to recognize and lyse their adversaries. Higher values of this parameter correspond to more
immunodeficient environments.

(a) Reference scenario
The set of parameters for this scenario is chosen similar to previous studies, in which it has
been demonstrated that they generate reasonable tumour dynamics [17,18]. The specific values
are θdiv = 0.3, θnec = 0.05, θmig = ∞, θrec = 1.0, θinc = 0.1, λM = 10, λN = 25 and α = 2/n. Regarding
the natural flow of immune cells into the tissue, two situations are inspected for each scenario.
The first corresponds to a high input of immune cells into the tumour area. In this case a value
f = 0.10 is set, which means that approximately 10% of the background is occupied by immune
cells, if there are not too many immune cells piled up. The other has a lower input of 5%, thus
f = 0.05. In the absence of immune response, the tumours display a rather spherical shape. As
we can see from the transition bifurcation diagrams shown in figure 2, three different regions
are clearly distinguished. In the first region, when the immune system is effective, the tumours
are completely eliminated. The second is related to an equilibrium phase, for which tumours
spend very long transients oscillating at low cell numbers. Finally, tumours with increasing size,
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Figure 4. Asymptotic dynamics and tumour escape. Two time series of the tumour size and the corresponding tumours at
escape are plotted for the reference scenario. The constant input of immune cells to the domain is now smaller f = 0.05. (a) A
long-lived tumour is kept at equilibrium forθlys = 67. Now the oscillations of the tumour size during the equilibriumare higher.
(b) The corresponding tumour at escape, which again is small. (c) Another tumour θlys = 89 that is slightly reduced and kept
at a constant size for a year, but that soon after escapes. (d) The corresponding tumour at escape. (Online version in colour.)

eventually leaving the domain through the vessels, appear in the third region. Thus, here we see
how immunogenicity affects the fate of tumours, in accordance with the theory of immunoedition.

To give insight into the second and the third regions, time series have been computed
(figures 3 and 4), until the tumour escapes. Initially, the tumours grow in the absence of immune
response, and then the immune cells start to reduce them or, in the worst case, delay their
growth. Depending on how effective the immune cells are, longer or shorter transients follow
this reduction phase. The asymptotic dynamics is always the same: if the tumours are not totally
eliminated by an efficient immune system, they eventually escape from the region. These two
attractors are reminiscent of those appearing in [16]. As shown in figure 3a, the length of the
transients in the second region, which are of around 12 years, clearly indicate a phase of prolonged
tumour mass dormancy. During the period of dormancy the immune system keeps the tumour
at low cell numbers and randomly displaces its disconnected pieces until one of them reaches the
vessels. In the third region, transients are found again, but they are shorter (less than 4 years) and
the tumours at escape have bigger sizes. As predicted by Kuznetsov et al. [16], the duration of
the transients is stochastic. This randomness is evident from the transient bifurcation diagrams,
since after 33 months of tumour-immune struggle, some tumours have escaped and some others
have not, disregarding how immunogenic they are. When the immune system barely responds
to the tumour, we see very big tumours occupying the domain and escaping rapidly, as depicted
in figure 3e.
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Figure 5. Transient bifurcation diagrams. Two transient bifurcation diagrams for the reference scenario. Now a smaller tumour
size at detection Tdet = 500 has been considered. (a) A transient bifurcation diagram for a constant input of tumour cells into
the domain given by f = 0.1. (b) A transient bifurcation diagram for a constant input of tumour cells into the domain given by
f = 0.05. The effects of tumour size at detection donot introduce significant changes in the dynamics. (Online version in colour.)

Interestingly, the equilibrium region shrinks as the normal input of cells into the tissue reduces
from f = 0.1 to f = 0.05. As is shown in figure 4, the oscillations during the equilibrium phase
are more pronounced. This makes the equilibrium more unstable and suggests that having cells
scattered all over the domain is important for the maintenance of dormancy. Probably, the reason
is that these spread immune cells keep the tumour at a small size, not allowing its overgrowth in
any specific direction.

We have also explored the importance of the tumour size at detection by reducing this size to
5 × 102 cells. The results are depicted in figure 5 and resemble very much those shown in figure 2.
There is no hint of a sneaking through mechanism in our model. According to the definition
given by Gatenby et al. [20], sneaking through is the preferential take of tumours after small size
inocula to a similar degree to that seen with large size inocula, compared with the rejection of
medium sized inocula. More clearly put, small and big tumours escape immune surveillance,
while intermediate ones do not. Such phenomenon has not been observed in the present case for
other values of the tumour size at detection. However, we do not discard it, because motility of
tumour cells has not been included in this first investigation, and might be crucial for these cells
to escape.

Finally, even though the tumours here inspected are genetically homogeneous and no
evolutionary process is really taking place in our model, the transient bifurcation diagrams
insinuate how the sculpting of the phenotype occurs, moving from the first region to the second,
and then to the third. In fact, a similar CA can be used to explore the impact of heterogeneity
and how the process of immunoedition takes place. It suffices to consider that the immune cell
intrinsic cytotoxicity, represented by the parameter θlys, depends on the tumour cell.

(b) Low recruitment scenario
We now evaluate the impact of the recruitment of immune cells to the domain of the tumour.
For this purpose, we reduce the value of θrec from 1 to 0.35. Our interest in this parameter is
due to the fact that, on many occasions, the recruitment of cells to the site of the tumour might
be very complicated. The recruitment of immune cells is a very complex process, at least from a
physical point of view. The extravasation of leucocytes requires an initial contact between these
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Figure 7. Transient bifurcation diagrams. Two transient bifurcation diagrams for the high necrosis scenario θnec = 1.0.
(a) A transient bifurcation diagram for a constant input of tumour cells into the domain given by f = 0.1. (b) A transient
bifurcation diagram for a constant input of tumour cells into the domain given by f = 0.05. The window of equilibrium has
been reduced again, which suggests that long-lived periods of dormancy are based on a delicate equilibrium between the
proliferation rate of the tumour and its lysis by the immune system. (Online version in colour.)

cells and the endothelial cells, which depends on adhesion molecules. After adhesion to the walls
of the vessels, the immune cells traverse them through diapedesis, which again relies on several
cytokines. Finally, chemokines bias their random walks to the tumour location [21]. Thus, we
expect this parameter to exhibit great fluctuations, depending on the tissue location and other
factors, as for instance the degree of inflammation.

The effects of decreasing the recruitment parameter are shown in figure 6. As expected,
the elimination region shrinks, while the escape region widens. A dramatic reduction of the
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Figure 8. Asymptotic dynamics and tumour escape. Two time series of the tumour size for the reference scenario are plotted.
The constant input of immune cells to the domain is now smaller f = 0.05. The size of the tumours is registered until they
escape the domain. The tumours at escape are also shown. Again, the immune cells appear in dark blue, while the tumour cells
range from red to white. The dead cells, which also appear inside the tumour, are now represented in green. (a) A quite long-
lived tumour is kept at equilibrium for θlys = 92. (b) The corresponding tumour at escape. (c) Another tumour θlys = 118 that
is barely reduced and kept at a constant size for less that half a year, and then escapes rapidly. (d) The corresponding tumour at
escape. (Online version in colour.)

dormancy window is observed in both plots. When f = 0.1, the window still exists, but for f = 0.05
it has disappeared. These results suggest that a relatively tight balance between lysis and growth
is required to maintain the dynamical equilibrium of the tumour.

Note that, as previously proposed, the equilibrium of the tumour implies that reduction must
occur in an isotropic manner. If a region of the tumour grows over the immune system capacity,
then a soon overgrowth and a consequent escape would be expected. In this model, this relies on
a positive feedback mechanism between the natural input of immune cells and their recruitment.
The more cells there are spread in the domain, the more chances for an immune cell to lethally hit
a tumour cell. When this occurs, recruitment proceeds, favouring the local aggregation of immune
cells at this site of the tumour and giving rise to satellites [15]. This isotropy can be appreciated
in the equilibrium represented in figures 3b and 4b, as opposed to those situations that lie in the
third region, represented in figures 3d,f and 4d.

(c) High necrosis scenario
Solid tumours exhibit sometimes necrotic cores due to the scarcity of nutrients. Other chemical
species can be represented with the present model (e.g. growth factors) and, if desired, necrosis
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can be regarded as apoptosis, at least to some extent. Therefore, we now inspect the effects
of cell death in the model. To this end, we increase the value of θnec from almost zero to 0.5.
Obviously, the increase of necrosis facilitates the labour of the immune system. As shown in
figure 7, the elimination region enlarges substantially, compared with the reference case. Also in
the equilibrium region, lower tumour cell numbers are seen before the escape of the tumour. More
importantly, the equilibrium window, which has been associated with large periods of tumour
mass latency, is practically imperceptible for f = 1.0 and has completely vanished for f = 0.05.
We have again computed time series, showing that transients occur in the equilibrium region,
sometimes as long as those appearing before in the equilibrium, but generally shorter (figure 8).
In fact, the equilibrium window and the escape zone drawn in figure 7a overlap. It seems that
the equilibrium region appearing in the reference scenario has been swept under the elimination
region. Once more, the results confirm the requisite of a relatively delicate balance between the
mechanisms that maintain the cytotoxic destruction of the immune system and the growth of the
tumour, in order to keep it at low cell numbers for long periods of time.

4. Conclusion
We have studied the transient and asymptotic dynamics of a CA model for tumour–immune
interactions. We have shown that, depending on the immunogenicity of the tumour, the model
furnishes three main types of dynamics, which are in close relationship with the three phases
of the theory of immunoedition. Importantly, we have shown that a dynamical equilibrium
between the tumour can occur for long periods of time, as proposed by Kuznetsov et al. [16].
However, after inspection of the parameter space, our model suggests that this equilibrium is
quite fragile, because it is based on an adjusted balance between the mechanisms that stimulate
the immune response and tumour cell proliferation. It is worth asking if this also occurs in the
model presented by these authors [16]. We must bear in mind that such a model is very sensitive
to a parameter, there called μ, which is related to the rate at which tumour cells are lysed. In
their model, tumour cell lysis is represented by a simple Lotka–Volterra competition term. In
other studies [18,19,22,23], it has been demonstrated that the rate at which a tumour is lysed is
represented better by a more sophisticated function, that depends on the geometrical properties
of the tumour and its immunogenicity. Moreover, their work did not assess the importance of
the parameter that models the recruitment, there represented by the Greek letter ρ. Although
their model is tested against experimental data obtained from a BCL1 lymphoma in chimeric
mice, these tumours develop in the spleen of the mice. The spleen is a secondary lymphoid organ
through which T-cells are permanently trafficking, and the process of recruitment to other types
of tissues might be more arduous. Interestingly, a reduction of the value of the parameter ρ from
1.131 to 0.630, which in their model is related to the rate at which T-cells are recruited, produces
a saddle-node bifurcation through which the dormant state disappears. Just as in this work,
considerable levels of recruitment are required to sustain dormancy. Furthermore, the infiltration
of the immune cells into the tumour mass has been neglected in this work. Presumably, this effect
would make the equilibrium even more delicate. Nevertheless, both models clearly demonstrate
that a state of tumour mass dormancy mediated by the immune system can occur. It is the
length of this dormant period that it is being questioned here. Thus, we conclude that, even
though tumour mass dormancy can result from the cell-mediated immune response to tumour
growth, long periods of dormancy, as commonly found in recurrent metastatic tumours [11,12],
are not likely to arise by this single mechanism. It is therefore pertinent to ask ourselves if
the role of the cell-mediated immune response in the promotion of the dormancy of a tumour
mass is rather to synergize with other types of more efficient mechanisms, as for example
cellular dormancy.
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