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A key goal of the Event Horizon Telescope is to observe the shadow cast by a black hole. Recent
simulations have shown that binary black holes, the progenitors of gravitational waves, present shadows
with fractal structure. Here we study the binary shadow structure using techniques from nonlinear
dynamics, recognizing shadows as exit basins of open Hamiltonian dynamical systems. We apply a
recently developed numerical algorithm to demonstrate that parts of the Majumdar-Papapetrou binary black
hole shadow exhibit the Wada property: any point of the boundary of one basin is also on the boundary of at
least two additional basins. We show that the algorithm successfully distinguishes between the fractal and
regular (i.e., nonfractal) parts of the binary shadow.
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I. INTRODUCTION

Einstein’s general theory of relativity and chaos
theory/nonlinear dynamics are two of the deepest concep-
tual advances of twentieth-century science. The former
changed our perception of space, time and gravity, and the
latter showed how deterministic rules give rise to chaotic
behavior if nonlinearities are involved. General relativity—
itself a nonlinear field theory—naturally leads to
deterministic chaos. For example, the fate of a photon
approaching a pair of black holes (BHs) can be essentially
indeterminate (we shall show), even though it is governed
by a deterministic set of equations. In this article we explore
a topic of interest to astronomers, relativists, and nonlinear
dynamicists alike: the intricate structure of the shadow cast
by the event horizons of a pair of BHs.
An exciting era for gravitational astronomy is underway.

In 2015, the first direct observation of gravitational waves
(GWs) [1], by the LIGO/Virgo collaboration, confirmed
that binary BHs exist in Nature. In 2017, a GW signal
from a binary neutron star inspiral was accompanied,
∼1.7 s later, by a gamma-ray burst [2]. The Event
Horizon Telescope (EHT)—a world-scale telescopic
array employing millimeter-wavelength very long baseline

interferometry (VLBI) [3]—has begun observing nearby
galactic centers. The goal of the EHT is to image the
environment of astrophysical BH candidates, such as
Sagittarius A*. A key target of the EHT is to resolve the
shadow cast by the event horizon of a supermassive BH
itself [4]. High-resolution images from the EHTwill enable
the first tests of the no-hair conjecture [4], which asserts
that BHs are characterized by just three quantities: mass,
angular momentum, and charge (with the latter thought to
be negligible).
A feature ofEinstein’s theory is thegravitational lensing of

light [5]. Massive bodies, such as stars or BHs, generate
spacetime curvature, leading to the deviation in the trajecto-
ries of photons as they trace out null geodesics (“rays”) on the
curved geometry. A BH shadow is a region in the observer’s
sky which cannot be illuminated by distant light sources,
due to the blockage of the BH. Equivalently, the shadow is
associated with the set of all photons which, when traced
backwards in time from the observer, asymptote towards the
event horizon of the BH. For a recent review of BH shadows
and strong-field gravitational lensing, see Ref. [6].
In the language of nonlinear dynamics, a BH shadow is

an exit basin [7,8] in an open Hamiltonian dynamical
system. The exit basin is defined on an initial-data surface
for null geodesics; typically this is taken to be the image
plane of a distant observer. The BH shadow is the set of
initial conditions that leads to a particular region of phase
space, namely, the event horizon of the BH.
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Motivated by the GW detections from merging binary
BHs, and the future prospects of the EHT, a strand of recent
work has focused on what the shadow of a pair of BHs
would look like, both for realistic dynamical binaries [9] and
imitative models [10–13]. In the former case, the lensing
phenomena and BH shadows are studied using full nonlinear
numerical simulations of the field equations; this a computa-
tionally expensive and technically demanding exercise.
To build a qualitative understanding of binary shadows,
one may instead study exact solutions with additional
symmetries (e.g., stationary or axisymmetric), such as the
Majumdar-Papapetrou binary BH in which two extremally
charged BHs are in static equilibrium. Imitative models have
been shown to capture some of the lensing phenomena
associated with dynamical binary BHs (see e.g., [13]).
The presence of a pair of BHs reduces the symmetry

(formally, by eliminating the Killing tensor associated with
the Carter constant). As a result, the null geodesic equations,
which describe the propagation of photons, are nonintegr-
able, and chaotic scattering of photons emerges naturally.
One of the hallmarks of chaos is the presence of fractal
structures in phase space [14]. For a discussion of fractal
structures in the MP binary BH system, see [12,15–22].
In a binary BH system, a photon meets one of three

possible fates: it falls into the first BH or the second BH, or
it escapes to infinity. Thus it is natural to define three exit
basins. As we shall show, across the phase space the shadow
may exhibit both a regular (i.e., nonfractal) and a fractal
structure. Furthermore, in certain parts of the phase space,
the three basins have the more restrictive property of Wada,
with all three basins sharing a common fractal boundary.
Just over 100 years ago, the lakes of Wadawere proposed

by Yoneyama [23] as a curious example of three open sets in
the plane which all share the same fractal boundary. In 1991,
Kennedy and Yorke [24] showed that open sets with this
intriguing property are not only a topological curiosity, but
they also occur in dynamical systems. Since then, the Wada
property has been found in the basins of a range of chaotic
dynamical systems, including the Gaspard-Rice three-disc
system, the Hénon-Heiles Hamiltonian and the Duffing
oscillator (see e.g., [14]).
One of the main consequences of the existence of Wada

basins in phase space is the difficulty which arises when
predicting the final state of a particle. If there are small
uncertainties in fixing initial conditions close to a Wada
boundary, one encounters a high level of indeterminacy and
an extreme sensitive dependence on initial conditions,
despite the system being fully deterministic. For the binary
BH system, this means that a photon which starts close to a
Wada boundary in phase space could end up in one of three
final states: the photon could fall into either of the BHs or
escape to spatial infinity.
Here we apply a recently developed numerical method

[25] to test for the Wada property, based on merging basins
together in a pairwise fashion. In Ref. [25], the merging

method was applied to three canonical dynamical systems:
the forced damped pendulum; the Newton fractal; and the
Hénon-Heiles Hamiltonian [8]. The “merging method”
requires as its input only the exit basin diagrams at a finite
resolution, in other words, an image of the BH shadows.
The method itself is agnostic to the underlying physics or
dynamics. A practical advantage of the method is that, once
one has a picture of the shadows, the merging method will
determine whether the shadow has the Wada property up to
a certain resolution.
The paper is organized as follows. In Sec. II we introduce

the Majumdar-Papapetrou solution which describes a
pair of extremally charged BHs in static equilibrium. We
explore its similarities with the well-known Hénon-Heiles
Hamiltonian and describe the exit basins in phase space.
We also explain the construction of the shadows in terms of
one-dimensional (1D) exit basins and describe the role
played by the so-called fundamental photon orbits. In
Sec. III, the merging method to test the Wada property
is briefly reviewed. The results are presented in Sec. IV,
where we apply the merging method both to the basins in
phase space and to the shadows of the binary BH system.
Finally, the main points of the work are summarized and
discussed in Sec. V.
Conventions: The 4D spacetime metric gμν has

Lorentzian signature ð−;þ;þ;þÞ. The Einstein summa-
tion convention for repeated indices is assumed throughout.
Indices are lowered (raised) with the metric (inverse
metric), i.e., uμ ¼ gμνuν (uμ ¼ gμνuν). We employ units
in which the speed of light c and the gravitational constant
G are equal to unity. Greek letters μ; ν;… denote spacetime
indices from 0 (the temporal component) to 3; Latin letters
i; j;… denote spatial indices from 1 to 3.

II. THE MODEL: MAJUMDAR-PAPAPETROU
BINARY BLACK HOLE

A. Hamiltonian formalism

The Majumdar-Papapetrou (MP) binary BH, or dihole, is
a static axisymmetric solution to the Einstein-Maxwell
equations of gravity and electromagnetism. The solution
describes the exterior spacetime of a pair of extremally
charged Reissner-Nordström BHs (each with its mass
parameter equal to its charge parameter: GM=c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G=ð4πε0c4Þ
p

Q), in static equilibrium due to the balance
between their mutual gravitational attraction and electro-
static repulsion. For an overview of the MP binary BH, see
e.g., [12,15,26–29].
The MP spacetime for a pair of equal-mass BHs is

described in cylindrical coordinates qμ ¼ ft; ρ; z;ϕg by the
line element,

ds2 ¼ gμνdqμdqν ¼ −
dt2

U2
þ U2ðdρ2 þ dz2 þ ρ2dϕ2Þ; ð1Þ
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with electromagnetic one-form potentialAμ ¼ ½1=U; 0; 0; 0�,
where

Uðρ; zÞ ¼ 1þ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − d=2Þ2
p þ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ d=2Þ2
p :

ð2Þ

Here, gμν are the covariant components of the metric tensor,
M is the mass of the individual BHs, and d is the distance
between theBHs in the background coordinates.Wehereafter
employ units in which M ¼ 1. An artifact of the chosen
coordinate system is that BH event horizons appear as single
points, located on the z-axis at z ¼ �d=2. These “points” are
actually null surfaces with topology S2 ×R.
The geodesics qμðλÞ are solutions of Hamilton’s equa-

tions, with Hamiltonian Hðq; pÞ ¼ 1
2
gμνðqÞpμpν, where

pμ ¼ gμν _qν are the canonical momenta, gμν are the contra-
variant components of the metric tensor, and an overdot
denotes differentiation with respect to the affine parameter λ.
Along geodesics, the Hamiltonian H is conserved. In

addition, the time independence and axial symmetry of the
Hamiltonian mean that t and ϕ are ignorable coordinates,
and pt and pϕ are constants of motion. For null geodesics
(light rays), we have H ¼ 0, and we may set pt ¼ −1
without loss of generality, as this is equivalent to rescaling
the affine parameter λ.
Null geodesics are invariant under a conformal trans-

formation of the metric of the form gμν ↦ Ω2ðqÞgμν, where
ΩðqÞ is a function of the spacetime coordinates. Performing
a conformal transformation with Ω ¼ U−1 allows us to
express the Hamiltonian in canonical form as

H ¼ 1

2
ðp2

ρ þ p2
zÞ þ V ¼ 0; ð3Þ

Vðρ; zÞ ¼ −
1

2ρ2
ðh − pϕÞðhþ pϕÞ; ð4Þ

where, in order to factorize the potential Vðρ; zÞ, we have
introduced the height function (or effective potential),

hðρ; zÞ ¼ ρU2: ð5Þ

The so-called null conditionH ¼ 0 and the positivity of the
kinetic term in the Hamiltonian together imply that V ≤ 0.
This inequality defines the allowed regions in configura-
tion space; the solutions of h ¼ �pϕ (which are equivalent
to V ¼ 0) define the boundary of the allowed regions.
The full phase space is 8D, spanned by the four

spacetime coordinates and their conjugate momenta
fqμ; pμg. However, the conserved quantities allow us to
focus on a reduced 4D phase space with two pairs of
conjugate variables, fρ; z; pρ; pzg, and one constraint
H ¼ 0. The null constraint H ¼ 0 allows us to express

one coordinate, e.g., pz, in terms of the other three
coordinates.
The MP dihole system, in the reduced phase space, has

features in common [12,22] with the Hénon-Heiles (HH)
Hamiltonian system [30], which has become a paradigm
for 2D time-independent Hamiltonian scattering. The HH
model, first introduced to study galactic dynamics, has the
Hamiltonian,

HHH ¼ 1

2
ðp2

x þ p2
yÞ þ VHH ¼ E; ð6Þ

VHHðx; yÞ ¼
1

2
ðx2 þ y2Þ þ x2y −

1

3
y3; ð7Þ

where E is the total energy of the system. The MP dihole
system in its reduced phase space and the HH system above
are both examples of 2D time-independent Hamiltonian
systems with a single free parameter for rays: pϕ in the
former case andE in the latter. Figure 1 shows equipotential
curves for (a) the HH Hamiltonian and (b) the equal-mass
MP dynamical system with d ¼ 1. In both cases, there is a
“critical contour” connecting three saddle points, which
encloses an unstable fixed point.
The HH Hamiltonian is invariant under 2π=3 rotations.

It has four fixed points, where ∇VHH ¼ ð0; 0Þ: a minimum
at ðx; yÞ ¼ ð0; 0Þ and three saddle points at ðx; yÞ ¼ ð0; 1Þ
and ðx; yÞ ¼ ð� ffiffiffi

3
p

=2;−1=2Þ. The three saddle points are
connected by a single equipotential curve, with critical
energy E� ¼ 1=6. The contour VHH ¼ E� encloses the
minimum, at which E ¼ 0. For energies below the critical
value (E ≤ E�), the HH system is closed. However, for
energies above the critical value (E > E�), the HH system
is open, with three escapes connecting the scattering region
to infinity. The HH system is investigated in the context of
chaotic scattering, where orbits can escape from the
scattering region, in [8]. For a comprehensive review of
fractal structures in the exit basins of open Hamiltonian
systems, see [14].
For the particular case of equal-mass BHs separated by

coordinate distance d ¼ 1, the MP dihole shares key
qualitative features with the HH system [12,22] (see
Fig. 1). There are three saddle points, one of which is in
the equatorial plane (z ¼ 0) at ðρ; zÞ ¼ ð1

2
51=4φ3=2; 0Þ, and

the other two are out of the plane, at ðρ; zÞ ¼ ð1
2
51=4φ−1=2;

�ð2φÞ−1Þ, where φ ¼ 1
2
ð1þ ffiffiffi

5
p Þ denotes the golden

ratio. The three saddle points are connected by a single
critical contour, h ¼ p�

ϕ ¼ 1
2
55=4φ3=2. The critical contour

encloses a local maximum of h at ðρ; zÞ ¼ ð ffiffiffi

3
p

=2; 0Þ
with pϕ ¼ 9

ffiffiffi

3
p

=2.
For pϕ above the threshold value (pϕ ≥ p�

ϕ), equipo-
tential lines form closed curves on a subregion of ðρ; zÞ-
space, and a second disconnected component of the contour
extends to spatial infinity. Thus, there are two disconnected
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regions in the phase space. Conversely, for pϕ below the
threshold (pϕ < p�

ϕ), the MP system is open, with two
escapes leading to each of the BHs and the other connecting
the scattering region to spatial infinity. (Note here that, due
to the fact h possesses a maximum rather than a minimum,
the inequalities describing the open/closed system are
reversed when compared with those of the HH system.)
In Ref. [22], the authors elucidate the similarities

between the closed HH and MP systems, analyzing the
transition from regularity to chaos through the use of
Poincaré sections. In this article, we discuss the MP dihole

as a novel example of a 2D time-independent Hamiltonian
system with three escapes.

B. Exit basins in phase space

In open Hamiltonian systems with multiple escapes,
one can define exit basins in a similar way to the basins of
attraction in a dissipative system. An exit basin is defined
as the set of initial conditions which lead to a certain
escape in the future. This is realized by numerically
integrating the equations of motion for a fine grid of
initial conditions. Each trajectory is integrated until it
leaves the scattering region through one of the exits. The
initial conditions are then divided into basins according to
the asymptotic state.
The exit basins for the HH system were introduced and

studied extensively in Ref. [8]. The authors applied
computational methods to verify that the basins of the
HH system possess the Wada property; that is, each point
on a basin boundary is on the boundary of all three basins.
Below we shall consider rays in the MP spacetime whose
initial conditions are defined in close analogy with the HH
study [8].
The first choice of initial conditions is to fix the

coordinates ρ and z and choose the initial three momentum
to be tangential (in the counterclockwise sense) to the
circle of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ − ρmaxÞ2 þ ðz − zmaxÞ2
p

, centered on
the maximum of h, which is located at ðρmax; zmaxÞ ¼
ð ffiffiffi

3
p

=2; 0Þ. The exit basins are then plotted in the ðρ; zÞ-
plane. See Fig. 2(a) for the setup and Fig. 3(a)–3(c) for the
corresponding exit basin diagrams.
Our second choice of the initial conditions is to fix

z ¼ 0 and then vary the values of ρ and pρ. The exit basin
diagrams are plotted in the ðρ; pρÞ-plane. The initial
conditions are shown in Fig. 2(b), and the exit basins
are shown in Fig. 3(d)–3(f).
In order to visualize the exit basins, we color the initial

conditions green if they lead to the attractor at infinity,
blue for the upper BH, and red for the lower BH. The
Kolmogorov-Arnold-Moser (KAM) islands of stability
[18,31] are plotted in black. These KAM tori comprise
the set of initial conditions corresponding to orbits which
never escape the scattering region as λ → �∞, despite the
fact that pϕ < p�

ϕ, i.e., the system is open. Trajectories
inside the KAM islands never escape to infinity nor end up
in either of the BHs; rather, they keep wandering forever
with a quasiperiodic motion. The KAM islands of stability
are organized in a fractal hierarchy, and they have a nonzero
measure, as can be inferred from the black regions depicted
in Fig. 3(a)–3(d). As one increases Δpϕ, all trajectories
escape the scattering region and the KAM islands dis-
appear. A similar effect occurs in the Hénon-Heiles
Hamiltonian as the energy is increased [32]. Examples
of quasiperiodic nonescaping orbits for the equal-mass MP
dihole are shown in Fig. 4 of Ref. [22]. For a general

FIG. 1. Equipotential curves for the (a) HH potential in the
ðx; yÞ-plane and (b) MP height function (effective potential) in the
ðρ; zÞ-plane for d ¼ M ¼ 1. In both cases, the critical contour
which connects three saddle points is shown in blue. The critical
contour encloses a (a) minimum at (0,0) and (b) maximum at
ð ffiffiffi

3
p

=2; 0Þ. Both the HH and MP systems can either be open with
three escapes or closed. See the text for details.
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discussion of the limit of small escapes in open
Hamiltonian systems we refer the reader to [33].
Increasing the value of Δpϕ ≡ p�

ϕ − pϕ increases the
width of the three escapes. In Fig. 3, we plot the MP basins
for a selection of values of Δpϕ. As the value of Δpϕ

increases, the KAM islands disappear, and the basins, both
in the ðρ; zÞ- and the ðρ; pρÞ-subspaces become visibly less
fractalized (this effect could be quantified by using the
fractal dimension or the basin entropy [34]). By inspection
of the basins, one can see striking similarities between the

MP dihole system and those of the HH Hamiltonian, which
are presented in e.g., Figures 4 and 5 of [8].

C. Black hole shadows

A BH shadow is defined with respect to a family of rays
on an initial data surface. Here we consider rays which pass
orthogonally through a planar surface with center ðρ0; z0Þ,
where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ20 þ z20
p ¼ rmax. We typically take rmax ¼ 50,

which is sufficiently far from the system to represent the
perspective of a distant observer. The observer’s “viewing
angle”, θ, is defined via sin θ ¼ ρ0=rmax, cos θ ¼ −z0=rmax.
A schematic diagram of this setup is shown in Fig. 4.
A point (or “pixel”) on the image plane has coordinates

ðX; YÞ, related to the cylindrical coordinates via ρ2 ¼
ðρ0 þ X cos θÞ2 þ Y2, z ¼ z0 − X sin θ. The background
Cartesian coordinates ðx; y; zÞ, with ρ2 ¼ x2 þ y2, and
the image plane coordinates ðX; YÞ are related via x ¼
x0 þ X cos θ, y ¼ Y, z ¼ z0 − X sin θ, where ðx0; 0; z0Þ is
the location of the center of the image plane in Cartesian
coordinates. There is a one-to-one correspondence between
a pixel on the image plane and a null geodesic. The pixel is
part of the BH shadow if and only if the corresponding
geodesic approaches the event horizon of a BH when traced
backwards in time.
In our setup, the image plane defines a set of nearby

observers at each point ðX; YÞ. One can instead define a BH
shadow with respect to a single observer, by tracing rays
from a single point in spacetime, by varying the elevation
and azimuth. The two definitions are essentially equivalent
in the limit rmax → ∞.
Figure 5 shows MP dihole shadows for separations

d ¼ 1 and d ¼ 2 and viewing angles θ ¼ π=2 (see
Ref. [12] for a gallery of MP shadows with a selection
of viewing angles and separations). The initial conditions
on the ðX; YÞ-plane which lead to the upper (lower) BH are
colored blue (red), and those which escape to infinity are
colored green.
The binary BH image (or exit basin diagram) features a

pair of globular shadows corresponding to the individual
BHs. Around these primary shadows, there is a self-similar
hierarchy of eyebrow-like features. The boundary of the
MP binary BH shadow corresponds to the set of initial
conditions which asymptote towards unstable perpetual
orbits. In Ref. [12], it was shown that these perpetual orbits
form a Cantor-like set.
The 2D binary BH shadow can be viewed as a set of 1D

binary BH shadows, each of which corresponds to a fixed
value of the parameter pϕ. Under a change of coordinates
xμ ↦ xμ

0
, the momenta pμ transform according to pμ ↦

pμ0 ¼ ∂xμ
∂xμ0 pμ. The standard definition of cylindrical polar

coordinates therefore gives the relationship pϕ¼xpy−ypx.
A photon with initial three momentum orthogonal to the
image plane has px ¼ 0 and py ¼ −U2; hence, pϕ ¼ YU2.
Moreover, in the far-field limit (rmax → ∞), we have

FIG. 2. Choice of initial conditions used to plot the exit basin
diagrams. (a) Initial conditions in ðρ; zÞ-space. The photon has
initial three-momentum tangent to the circle centered on the
maximum of h. (b) Initial conditions in ðρ; pρÞ-space. The photon
is fired from the ρ-axis (z ¼ 0), and the value of pρ is varied. In
both cases, the blue curve is the contour h ¼ p�

ϕ − Δpϕ, with
Δpϕ ¼ 0.02.
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U → 1. A scattering problem with pϕ ¼ constant therefore
admits a 1D shadow with Y ¼ constant (i.e., a horizontal
slice across a 2D shadow image).

D. Photon orbits

In this section we describe the role played by a special
class of photon orbits around the MP binary system: the
fundamental photon orbits. As described in Sec. II A, the
contours of a “height function” hðρ; zÞ [Eq. (5)] demarcate
the regions of phase space that are accessible to a ray with
angular momentum pϕ. For an equal-mass MP dihole, a
fundamental photon orbit is a null geodesic qμðλÞ with the
following properties: (i) it is restricted to a compact subset
of the ðρ; zÞ-plane; (ii) it is periodic, i.e., there is a value
T > 0 such that qμðλÞ ¼ qμðλþ TÞ, for all λ ∈ R; (iii) it is
unstable; (iv) it touches the contour hðρ; zÞ ¼ pϕ in such a
way that, locally, the ray is orthogonal to the contour; and

(v) the radial momentum pρ is zero where the orbit passes
through the equatorial plane, by symmetry.
More general photon orbits are allowed in the MP dihole

system, which satisfy some (but not all) of the above
properties. For example, photon orbits which satisfy
properties (i) and (ii), but which are stable, were explored
in Ref. [22]. A classification scheme for generic funda-
mental photon orbits in stationary axisymmetric space-
times, which need only satisfy properties (i) and (ii) from
the above list, is presented by Cunha et al. in Ref. [35]. The
role of light rings and fundamental photon orbits in the
analysis of strong-field gravitational lensing is discussed
in Ref. [6].
In Fig. 6, we show examples of the three types of

fundamental photon orbit around the MP dihole in the
ðρ; zÞ-plane, labeled as follows: (I) a one-component light
ring; (II) a figure-of-eight orbit; (III) a two-component light
ring. Figure 6(a)–6(d) shows the effect on the fundamental

FIG. 3. Exit basins for the MP dihole for the (a–c) initial conditions in ðρ; zÞ-space, presented in Fig. 2(a), and (d–f) initial conditions
in ðρ; pρÞ-space, presented in Fig. 2(b). In each case, the initial data which lead to infinity are plotted in green, and those which
asymptote to the event horizon of the upper (lower) BH are shown in blue (red). As Δpϕ ≡ p�

ϕ − pϕ decreases, the escape width
decreases and KAM islands of stability (plotted in black) dominate the phase space (see text).
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orbits of changing the value of pϕ, for the case d ¼ 2.
As pϕ increases from zero, the contour hðρ; zÞ ¼ pϕ moves
away from the symmetry axis, and orbits II and III
move closer together. The orbits II and III merge at
pϕ ¼ p̂ϕ ≈ 5.08. Type I orbits persist until the point where
the contour “pinches off” at pϕ ¼ p�

ϕ ≈ 5.92214.

If there exists a ray which passes asymptotically close
to two or more fundamental orbits—i.e., if fundamental
orbits are “dynamically connected”—then we anticipate
that chaotic scattering phenomena will arise naturally
[36,37]. Indeed, it was demonstrated in Ref. [12] that,
for a given value of pϕ < p�

ϕ, the 1D shadow is Cantor-
like if the condition above is met (see e.g., Figures 7, 8 and
18(a) in [12]). However, it was also noted that it is not
sufficient for two separate orbits of Type I to exist because
typically the inner orbits are not dynamically connected in
the absence of the outer (Types II and III) orbits.
The 1D shadows for d ¼ 2 are observed to change in

character as pϕ varies [12]. For pϕ > p�
ϕ, the BHs are

inaccessible, and the 1D shadow is the empty set. For
p̂ϕ < pϕ < p�

ϕ, the outer orbits (Types II and III) do not
exist, the inner orbits (Type I) are not dynamically
connected, and the 1D shadow is regular, i.e., nonfractal.
For pϕ < p̂ϕ, the inner orbits are dynamically connected
with the outer orbits, and the 1D shadow has a Cantor-like
fractal structure. In short, the appearance of fractal
structure is directly linked to the existence of outer
Type II/III orbits.
The 2D BH shadow is the union of 1D shadows.

Thus, for d ¼ 2, the 2D shadow has parts which are
regular and parts which are fractal. Mixed-modality
shadows occur for coordinate separations d such that
the coexistence condition p̂ϕ < p�

ϕ is met. We show in
the next section that the coexistence condition is only
satisfied for sufficiently separated BHs with d > d̂. For
d < d̂, the coexistence condition is not met, and thus
we anticipate that the shadow will have no regular
boundaries.

FIG. 5. Shadows cast by the static MP binary BH for different values of the separation d. The photons which escape to spatial infinity
are plotted in green; the shadow cast by the upper (lower) BH is plotted in blue (red). These three open sets can be viewed as exit basins,
defined on the image plane of a distant observer.

FIG. 4. Schematic diagram of the ray-tracing algorithm used to
compute MP dihole shadows in the ðx; zÞ-plane. The BHs are
located at z ¼ �d=2, separated by coordinate distance d. The
upper (lower) BH is represented using a blue (red) circle. The
observer’s image plane is located at r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

¼ rmax with
viewing angle θ and is spanned by the image plane coordinates
ðX; YÞ; the Y-direction is suppressed in the diagram. The
relationship between the background coordinates and the observ-
er’s coordinates is explained in the text.
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E. The critical separation

Here we describe a method to calculate the critical
value d̂ introduced in the previous section. We seek the
dihole separation parameter d which gives rise to a single
outer fundamental orbit for pϕ ¼ p�

ϕ. That is, the value of
d for which the outer Types II and III orbits merge at
exactly the value of pϕ at which the BHs become
inaccessible.
First, we choose a value of d and find the corresponding

value of p�
ϕ by using the method presented in Appendix B

of Ref. [12]. We then consider rays which start on the
contour h ¼ p�

ϕ with ρ ¼ ρ0. The value of z0 > 0 is
determined by numerically solving hðρ0; zÞ ¼ p�

ϕ for z.
On the contour, pρ ¼ 0 ¼ pz. We then evolve the geodesic
equations for this choice of initial conditions until the ray
passes through z ¼ 0. At this point, we record the value
of ϑ ¼ π=2þ arctan ðpz=pρÞ, where arctan ðpz=pρÞ is the
angle made by the tangent vector and the ρ-axis when the
ray passes through the equatorial plane. By symmetry,
the fundamental orbits II and III must have ϑ ¼ 0. Hence,
the zeros of the function ϑðρ0Þ give the location of the
fundamental orbits II and III.
Figure 7 shows the function ϑðρ0Þ for three representa-

tive values of d. We seek the value of d ¼ d̂ for which ϑðρ0Þ
admits a single zero, corresponding to the blue curve in
Fig. 7. We find that

d̂ ≈ 1.2085M; ð8Þ

for the highly symmetric equal-mass MP dihole. In the case
of unequal masses, the Z2 reflection symmetry is broken.
A more detailed analysis of the fundamental orbits would
therefore be required to determine the value of d̂ in
this case.
For tightly bound diholes with d < d̂, there exist three

types of fundamental orbits for all pϕ ∈ ½0; p�
ϕ�. In this

FIG. 6. Examples of fundamental null orbits for an MP binary BH with coordinate separation d ¼ 2. The two BHs appear as points,
located at ðρ; zÞ ¼ ð0;�1Þ. The blue curves are contours h ¼ pϕ. There are three types of fundamental null orbits in the ðρ; zÞ-plane: (I)
a one-component light ring [orange]; (II) a figure-of-eight orbit [red]; (III) a two-component light ring [purple]. As one increases the
value of pϕ, orbits II and III move closer together and then disappear. This corresponds to the end of the fractal region of the shadow.
Orbit I exists up to pϕ ≈ 5.92214. This value corresponds to the end of the BH shadow since absorption is forbidden by the contour
h ¼ pϕ for pϕ > 5.92214.

FIG. 7. Result of the algorithm used to search for fundamental
orbits for three examples: (i) d < d̂ [red]; (ii) d ¼ d̂ [blue];
(iii) d > d̂ [green]. The function ϑ has (i) two zeros for d < d̂;
(ii) one zero for d ¼ d̂; and (iii) no zeros for d > d̂. The zeros of ϑ
are shown as black points in the figure.
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regime, we anticipate that the MP dihole shadow boundary
will be entirely fractal. Conversely, for sufficiently sepa-
rated diholes with d > d̂, there exists some pϕ ¼ p̂ϕ, such
that the outermost fundamental orbits no longer exist. We
anticipate that the corresponding shadows will have regular
(i.e., nonfractal) parts.

III. THE METHOD: MERGING WADA BASINS

The Wada property has its origins in topology. Three or
more open sets are said to exhibit the Wada property if they
share a common boundary [23]. This counterintuitive
situation appears naturally in nonlinear dynamical systems,
where fractal geometry rules [24]. Several methods have
been proposed to test this striking property in dynamical
systems; we briefly review these below.
Nusse and Yorke [24,38] established that an unstable

manifold crossing three (or more) basins could be used to
prove the existence of Wada basin boundaries in phase
space. However, this method cannot be applied in all
circumstances, and it requires detailed knowledge of the
system: an unstable trajectory starting on the boundary and
crossing all of the basins must be found. This process can
be cumbersome; indeed, many papers have been devoted to
checking the Nusse-Yorke condition in a single dynamical
system, for a particular set of parameters [8,39–41]. Later, a
numerical method based on successive refinements of a
grid was introduced. This approach allows one to test the
Wada property in a variety of situations up to a given
resolution [42,43]. Recently, a third numerical method has
been proposed [25]. This method involves merging the
basins in a pairwise fashion and comparing the boundaries
of the merged basins with the original basins. Among the
three methods outlined above, the merging method is
the fastest and the only one able to provide a reliable test
of the Wada property through simple examination of the
basins at finite resolution, without computing new rays or
invariant manifolds of the system.
The merging method is based upon the following

counterintuitive observation: Wada boundaries are invariant
under the action of merging any two of the basins together.
In order to illustrate this property, we have depicted in
Fig. 8(a) the exit basins of the MP dihole system and their
merged versions. At first glance, it may seem that we have
simply changed the colors of the basins. However, a closer
examination reveals that the boundaries are the same, but
that in each case two of the three basins have been merged
to form a new basin. Non-Wada boundaries change when
the basins are merged, as shown in Fig. 8(b). Using this
feature we can test which basins are Wada based on which
boundaries are invariant under the merging of the basins.
Given finite numerical resolution, it is impossible to

ascertain whether two boundaries are exactly the same. In
fact, the boundaries of the merged basins are slightly
different even for Wada basins because of the finite grid
of initial conditions used to realize the exit basin diagram.

For this reason, we fatten the boundaries by replacing each
pixel by itself plus its r nearest neighbors. The condition of
the method states that if all the (original) slim boundaries are
contained in all the fat boundaries then the basin possesses
the Wada property. If this condition is fulfilled, we can say
that the boundaries have the Wada property at a resolution
determined by the internal parameter of the method r. The
whole method relies on this fattening parameter r. We begin
with r ¼ 1 and increase its value until either the basins are
classified as fully Wada or a stopping condition r > rstop is
reached. Of course, the merging method only ascertains that
a basin is Wada up to a resolution determined by the fat
pixels defined by the parameter r.
Here are the steps of the method:
(1) Begin with a finite resolution image of NB exit

basins. The method does not require any prior

(b) Regular

(a) Wada

FIG. 8. Illustration of the merging algorithm. (a) Merged Wada
basins for the MP dihole in ðρ; zÞ-space with Δpϕ ¼ 0.03. The
top-left panel shows the original three-color basins, as described
in the text. The other three panels show the two-color basins
obtained from merging the original basins together. (b) Simple
example of regular (nonfractal) basins and their merged versions.
In this case, only one boundary point (the center of the disc) is
invariant under the pairwise merging of the basins; the remaining
boundary points are not Wada points. The color code is given in
the right-hand plot.
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knowledge of the underlying dynamical system, but
only the exit basins themselves.

(2) Pick one basin, and merge all of the others to obtain
a two-color basin diagram. Repeat for each basin in
turn. This yields NB two-color basin diagrams.

(3) Identify the boundary in each two-color basin
diagram. This is achieved by identifying pixels with
at least one neighbor of the opposite color. This
yields NB slim boundaries.

(4) Fatten each slim boundary by a factor r to obtain NB
fat boundaries.

(5) Take a fat boundary and test whether the union of slim
boundaries is contained inside it. Repeat for each fat
boundary in turn. If the union of slim boundaries is
contained inside every fat boundary, then the basins
have the Wada property up to the resolution of the fat
pixels. If this is not the case, then increase the value of
r and return to step 4, until the stopping condition
r > rstop is met. If the value rstop is reached and the
union of slim boundaries is not contained in each fat
boundary, then the method classifies the system as
non-Wada. In the case of partial Wada boundaries
[44], where Wada points and non-Wada points are
present, the method can provide a list of the non-
Wada points of the original image.

IV. RESULTS

A. The Wada property in phase space

The exit basins of the HH Hamiltonian are known to
exhibit the Wada property [8]. Given its links with the MP
dihole system (see Sec. II and Fig. 1), it is natural to
speculate that the MP dihole basins shown in Fig. 3 will
share this property [12]. Here we test this.
We applied the merging algorithm outlined in Sec. III

to the MP exit basins in both ðρ; zÞ-space and ðρ; pρÞ-
space (see Fig. 3), using basin images with a resolution of
1000 × 1000 pixels. We tested every boundary point for the
Wada property, for exit basis with Δpϕ ¼ pϕ − p�

ϕ in
the rangeΔpϕ ∈ ½0.02; 0.15�. For this choice of parameters,
the merging algorithm classified all boundary points as
Wada points for fattening parameter r ¼ 3.
As Δpϕ → 0, the width of the escapes also approaches

zero, and KAM islands become dominant [see Figs. 3(a)
and 3(d)], and the escape time for photons which start
inside the scattering region blows up [33]. It becomes
computationally expensive to verify the Wada property for
small values of Δpϕ. We have not verified the Wada
property for widths Δpϕ < 0.02; nevertheless, we expect
all boundary points to remain Wada as Δpϕ → 0.

B. The Wada property in black hole shadows

We now examine the shadows of the MP dihole, which
are described in Sec. II C and shown in Fig. 5.

We applied the merging method (Sec. III) to test for the
Wada property in MP dihole shadows, for various coor-
dinate separations d ∈ ½0; 3� between the BHs. We gen-
erated the BH shadow images for an observer with a fixed
viewing angle of θ ¼ π=2 by numerically integrating
Hamilton’s equations for a grid of 1000 × 1000 initial
conditions (see Fig. 5).
The results of the algorithm are presented in Fig. 9,

which shows the percentage of boundary points which are
not classified as Wada points by the merging algorithm, as
we vary the BH separation d. Figure 9 provides evidence
that the shadows are totally Wada (i.e., all boundary points
are Wada points) for 0.1≲ d ≲ 1.2. The algorithm suggests
that there is a qualitative transition at d ≈ 1.2, after which
the shadow becomes only partially Wada.
A qualitative change of this kind was anticipated in our

study of fundamental photon orbits in Secs. II D and II E.
The existence of three types of fundamental periodic orbits
(Fig. 6) for a fixed value of pϕ gives rise to Cantor-like
structure in the 1D shadows of the MP dihole. If all three
types of fundamental orbits exist for 0 ≤ pϕ < p�

ϕ, then the
2D shadow will be totally Wada. Conversely, if there
exists some value p̂ϕ < p�

ϕ for which the outer fundamental
orbits cease to exist [e.g., Fig. 6(c)], then the 1D shadows
with p̂ϕ < pϕ < p�

ϕ will be regular, i.e., nonfractal. In such
cases, the 2D shadow will be only partially Wada. We
showed in Sec. II E that the latter is the case for
d > d̂ ≈ 1.2085. This value matches well with the observed
transition in Fig. 9 (vertical line).

FIG. 9. Percentage of non-Wada points detected by the merging
method for different values of the coordinate separation between
the BHs d. The merging algorithm was performed for different
values of the fattening parameter r. The dashed vertical line
indicates the critical value d ¼ d̂ ¼ 1.2085, below which the
shadows exhibit the full Wada property. The dotted vertical line,
at d ¼ 1.97, indicates the second jump in the number of non-
Wada points. (See text for details.)
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The results of the algorithm shown in Fig. 9 also suggest
that there is a second qualitative change in the shadow
structure at d ≈ 1.9. It appears likely that the second
transition occurs where the regular (i.e., nonfractal) region
of the shadow touches the top of the main lobes of the
shadow (see Fig. 5). For d ≳ d̂, only the tips of the primary
eyebrow-like features are regular. As one increases d, the
regular region incorporates the top of the globular features
in the center of the shadow. Numerical investigation of the
MP shadows indicates that this occurs at d ≈ 1.97. This
agrees well with the results of the Wada merge algorithm
and is shown as a dotted vertical line in Fig. 9.
To confirm this interpretation, we used the merging

method to highlight the non-Wada parts of the shadow.
Figure 10(a) shows the MP dihole shadow for d ¼ 2 with
an observer at a viewing angle θ ¼ π=2. The exit basins
corresponding to the two BHs are both plotted in gray. The
non-Wada points identified by the merging method are
highlighted in red (with a fattening parameter r ¼ 5). The
regular region, in which the shadow boundary is expected
to be regular according to our analysis of fundamental
orbits in Sec. II D, lies between the horizontal blue dashed
lines. The plot confirms that all the non-Wada points
identified by the algorithm lie within that regular zone.
Furthermore, it shows that for d ¼ 2 the regular region has
begun to impinge upon the main lobes.
In Fig. 10, the agreement between the horizontal blue

lines (determined by considering critical values of pϕ) and
the non-Wada points detected by the algorithm (red) could
be improved by (i) increasing the resolution of the exit
basin diagram and (ii) taking rmax (the location of the

observer) to infinity. Both of these would make the
algorithm more computationally expensive.

V. DISCUSSION AND CONCLUSIONS

Here we have applied a new technique from nonlinear
dynamics to study the fractal structures that arise in a binary
BH model in general relativity. Remarkably, light rays on
a MP dihole are governed by a Hamiltonian dynamical
system which has much in common with the Hénon-Heiles
system [8], i.e., the paradigmatic Hamiltonian for 2D time-
independent chaotic scattering. We have analyzed the
dynamics of the MP dihole—modeling a pair of extremally
charged BHs in static equilibrium—in terms of exit basins
in a plane (Fig. 3). We applied the Wada merge method [25]
(Sec. III) to verify the Wada property in both (i) the exit
basins in phase space (Sec. IVA) and (ii) the exit basins on
an image plane which define the shadow cast by the BHs
(Sec. IV B).
We have demonstrated that the BH shadow can exhibit

either the partial Wada or the full Wada property, depending
on the value of the BH separation parameter d. The Wada
property is typically associated with indeterminacy in a
deterministic system. In this case, the final fate of a photon
on a Wada boundary in phase space is uncertain, as it can
end up in either of the BHs or yet escape to spatial infinity.
Importantly, the algorithm of Ref. [25] does not use

knowledge of the underlying dynamical system or require
computation of its invariant sets such as the unstable
manifold. All that is needed as input is an exit basin image
at finite resolution. A key result, shown in Fig. 10, is that

(a) (b)

FIG. 10. (a) Shadow of the MP binary BH system for d ¼ 2. The shadows of the two BHs are shown in gray, whereas the basin
corresponding to spatial infinity is plotted in white. The horizontal blue lines delimit the nonfractal regions, determined by looking at the
critical values of pϕ. The red points are the non-Wada points detected by the merging algorithm. (b) Magnified region of panel (a), which
shows good agreement between the non-Wada points detected by the merging algorithm and the regular (i.e., nonfractal) regions of the
BH shadow.
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the algorithm successfully detected a “phase transition” in
the BH shadow from fully Wada to partially Wada, at a
certain value of the parameter d. This transition was
anticipated from an analysis of fundamental photon orbits
of the system (see Figs. 7 and 10). In cases where the
underlying dynamical system is either unknown or too
complex to study analytically, the merging method offers a
route to new physical insight.
The merging algorithm has several advantages over the

Nusse-Yorkemethod [38]. To verify that a basin isWada, the
Nusse-Yorke method requires the computation of an unsta-
ble manifold which crosses all of the exit basins in phase
space. The image plane mixes phase space and parameter
space: the coordinates on the observer’s image plane are
dependent on the phase space coordinates and the conserved
parameterpϕ. It is thereforeunclear howonewouldconstruct
an unstable manifold on the observer’s image plane. Using
the Nusse-Yorkemethod to test for theWada property in BH
shadows does not appear to be possible.
An open question is whether the shadows cast by BH

binaries in Nature, such as the progenitor of GW150914,
truly exhibit the Wada property. Sadly, although direct
images of singleton shadows are anticipated soon [4], there
appears to be little prospect of direct imaging of binary
shadows. However, realistic simulations from spectral
codes in numerical relativity can now generate high-
resolution 2D images of binary shadows [9]. It would
certainly be of interest to apply the merging method to

classify high-resolution images as partially or fully Wada
(or otherwise). Similarly, the method could be applied to
shadows in other binary models [13].
To our knowledge, this work represents the first dem-

onstration of the Wada property for a general relativistic
system. As well as demonstrating that tools from the field
of chaos theory can be used to understand the rich
dynamics of scattering processes in general relativity, this
work highlights that there exist novel dynamical systems in
gravitational physics which can be fruitfully explored by
nonlinear dynamicists.
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