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Abstract The aperiodic vibrational resonance (VR)
is investigated in a typical nonlinear system with
fractional-order deflection. The character signal used
to express the useful information is an aperiodic binary
signal. The informationless auxiliary signal used to
induce VR is of a square waveform. We study the clas-
sic aperiodic VR at first. If the strength of the aux-
iliary signal is a control parameter, we find that the
value and the location of the resonance peak on the
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cross-correlation coefficient curve are independent of
the fractional-order exponent. However, for a smaller
value of the fractional-order exponent, the aperiodic
signal can be improved to a greater extent. Moreover,
if the minimal random pulse width of the aperiodic sig-
nal is small, the classic aperiodic VR cannot occur. We
propose two methods to solve this problem. The first
one is the re-scaled aperiodic VR method in which the
scale parameter is the key factor. The second one is the
twice sampling aperiodic VRmethod in which the sam-
pling transform ratio is the key factor. Through some
examples, we verify the validity of the two proposed
methods. By the twomethods, we can improve the ape-
riodic signal with an arbitrary minimal random pulse
width. Further, the methods proposed in this paper not
only can improve the aperiodic bipolar binary signal,
but also can deal with other kinds of signals.
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1 Introduction

Vibrational resonance (VR) is a typical nonlinear phe-
nomenon. The classic VR theory was first proposed
by Landa and McClintock [1]. When VR occurs, the
response of the nonlinear system to a weak low-
frequency signal can be excellently improved by a
high-frequency signal. Among them, the character sig-
nal used to express the useful information is usually a
weak low-frequency signal. The auxiliary signal which
is often a high-frequency signal does not indicate any
useful information and is only used to enhance the
character signal. Specifically, the response amplitude
at the driving low frequency is a nonlinear function
of the amplitude or the frequency of the auxiliary sig-
nal [2–7]. In the early stage of the VR investigations,
the character signal in the excitations was usually pre-
sented as a low frequency. As the research has been
further developed, researchers have found that the VR
not only occurs at the driving low frequency, but also at
the subharmonic and superharmonic frequencies in the
nonlinear framework [8–10]. Recently, we have pro-
posed a re-scaled VR method [11]. Through match-
ing the system parameters with the character signal,
the re-scaled VR can occur at an arbitrary driving fre-
quency and the weak character signal with an arbi-
trary frequency can be enhanced by the re-scaled VR
method.

Besides the weak harmonic signal, the classic VR
method can also improve the weak aperiodic signal.
Chizhevsky and Giacomelli have detected the weak
aperiodic signal by the aperiodic VR method in the-
oretical and experimental ways in the asymmetric
bistable system [12]. The degree of enhancement of
the weak aperiodic signal can be measured by the
cross-correlation coefficient between the output series
and the input aperiodic signal. In spite that all the
works done in VR, to our knowledge, there is no work
that has discussed the matching problem between the
weak aperiodic signal and the nonlinear system param-
eters. This concerns the realization of the aperiodic VR
and how to obtain the optimal aperiodic VR. Further-
more, this is also the main motivation of the present
work.

We consider the following dimensionless system,

dx(t)

dt
= ax(t) − bx(t)|x(t)|α−1 + s(t) + F(t), (1)

where a > 0, b > 0 and α > 1, to investigate the
aperiodic VR in detail. Moreover, the parameter α can
be an integer or a fractional number and the function
s(t) is the character signal, which is a weak aperiodic
signal in the bipolar binary form and is defined as

s(t) = A
+∞∑
j=−∞

R jΓ (t − jT )

�(t) =
{
1, t ∈ [0, T ]
0, /∈ [0, T ]

(2)

In the previous equation, A is the amplitude of the ape-
riodic signal. R j is a random number generator of + 1
or− 1 with an independent Gaussian distribution.Γ (t)
is a pulse with width T , and T is the minimal random
pulse width of the aperiodic signal. The auxiliary sig-
nal F(t) is a square waveform function and is defined
as

F(t) = Bsgn[cosΩt], (3)

where B is the strength of the signal. What is worth
mentioning is the potential function of the system

V (x) = − a

2
x2 + b

α + 1
|x |α+1. (4)

This kind of potential is widely used in modeling
many real systems. Its physical background has been
described in detail in some former literatures [13–15].
In this paper, the nonlinear model of Eq. (1) is consid-
ered as a signal processor. When α = 3, the poten-
tial degenerates to the classic bistable potential and
the system in Eq. (1) turns to the usual double-well
bistable system. There are one unstable equilibrium

x0 = 0 and two stable equilibria x1,2 = ± ( ab )
1

α−1 in
Eq. (1).We show the curves of the potential function for
different values of the fractional-order exponent α in
Fig. 1. The bistable structure of the potential is clearly
displayed.

The rest of the paper is organized as follows. In
Sect. 2, the classic aperiodic VR in Eq. (1) is presented.
Effects of the fractional-order exponent α and the ape-
riodic signal parameters on the aperiodic VR are our
focus in this section. In Sect. 3, the re-scaled aperi-
odic VR method is proposed to realize the aperiodic
VR with an arbitrary minimal random pulse width. In
Sect. 4, the twice sampling aperiodic VR method is
put forward to improve the weak aperiodic signal with
an arbitrary minimal pulse width. The re-scaled aperi-
odic VR and the twice sampling VR are new methods
first proposed in the aperiodic signal excited system.
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Fig. 1 The bistable potential function of Eq. (4) for different
fractional-order exponent values. The system parameters are a =
1 and b = 1

In Sect. 5, some further discussions on the two meth-
ods are given. Finally, we end this work with the main
conclusions.

2 The classic aperiodic VR

There is no doubt that the response to the weak ape-
riodic signal depends on the auxiliary square wave-

form signal. To explain this better, we give Fig. 2 as an
example, in which the response is obtained under dif-
ferent strength values of the auxiliary square waveform
signal. As is well known, in the stochastic resonance
(SR) phenomenon [16], the SR can be explained as a
particle moving in the potential wells. The response
of the system is the trajectory of the particle. When
the particle crosses the wells synchronized with the
input signal, the SR occurs and the weak input signal
is improved. Moreover, a too strong or too weak noise
intensity cannot make the particle trajectory go across
the potential wells synchronized with the input signal.
Only an appropriate dose of noise can do it. Similarly,
the occurrence of VR can also be explained in a similar
way. Apparently, in Fig. 2a, the auxiliary square wave-
form signal is too weak and it cannot induce the parti-
cle trajectory to cross the potential wells synchronized
with the input aperiodic signal. Hence, the weak ape-
riodic signal cannot be improved. In Fig. 2c, the auxil-
iary square waveform signal is too strong. Although the
particle trajectory crosses between the two wells, the
trajectory does not synchronizewith the input aperiodic
signal. As a result, the weak aperiodic signal cannot be
improved neither. Only in Fig. 2b, the particle trajec-
tory crosses the potential barrier synchronized with the
input aperiodic signal. As a result, the weak aperiodic

Fig. 2 The time series of
the output under different
strength values of the
auxiliary square waveform
signal. The red thick line is
the input aperiodic signal,
and the blue thick line is the
output of the system. a
B = 1, b B = 2, c B = 4.
Other simulation parameters
are a = 1, b = 1, α = 5,
A = 0.3, T = 20 and
Ω = 4
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Fig. 3 The dependence of the cross-correlation coefficient on
the strength of the auxiliary square waveform signal under dif-
ferent values of the fractional-order exponent. The simulation
parameters are a = 1, b = 1, A = 0.3, T = 20 and Ω = 4

signal is enhanced to a great extent. In other words,
the aperiodic VR occurs in Fig. 2b. Due to the widely
existence of the weak aperiodic signal in science and
engineering fields, it is very important to choose the
strength of the auxiliary signal to induce the occurrence
of VR and improve the weak input aperiodic signal.

Further analysis is needed to quantify the occur-
rence of the aperiodic VR. The cross-correlation coef-
ficient is an effective index to measure the similarity
between two time series. When the cross-correlation
coefficient between the output and the input aperi-
odic signal achieves the maximal value, the signal may
be improved greatly. The cross-correlation coefficient
between the output and the input of the aperiodic signal
is defined by

Csx =
∑n

j=1[s( j) − s̄][x( j) − x̄]
√∑n

j=1 [s( j) − s̄]2 ∑n
j=1 [x( j) − x̄]2

, (5)

where s̄ and x̄ are average values of the input aperiodic
signal and the output time series, respectively.

In Fig. 3, the weak input aperiodic signal is still
used to obtain the Csx − B curve under different values
of the fractional-order exponent α. All curves in this
figure achieve their peaks with the increase of B. As a
result, the aperiodic VR occurs and the weak aperiodic
signal is improved. Another important fact in the figure
is that all curves achieve their peaks at almost the same
point. In particular, the peak value and the peak location
are independent of the fractional-order exponent. We
believe this is an important and interesting finding.

Fig. 4 Contour plot of the cross-correlation coefficient Csx ver-
sus the strength of the auxiliary square waveform signal B and
the fractional-order exponent α. Different colors represent dif-
ferent numerical values of Csx. The simulation parameters are
a = 1, b = 1, A = 0.3, T = 20 and Ω = 4

1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

α

C
sx

B=2
B=2.5
B=2.75
B=3

Fig. 5 Thedependence of the cross-correlation coefficient on the
fractional-order exponent α for different values of the amplitude
of the auxiliary signal B. The simulation parameters are a = 1,
b = 1, A = 0.3, T = 20 and Ω = 4

To make the dependence of the cross-correlation
coefficient on the fractional-order exponent much
clearer, a color code plot of the value of Csx in a two-
dimensional plane in function of B and α is illustrated
in Fig. 4. The figure shows that the peak value and the
peak location of the Csx − B curve are independent of
the fractional-order exponent α once again.

In Fig. 5, we show the cross-correlation coefficient
reaching amaximal value for different values of B, with
the increase of α. If B is a large value, such as B = 3,
the resonance curve is much more evident. After the
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Fig. 6 The time series of
the output for different
strength values of the
fractional-order exponent α.
The red thick line is the
input aperiodic signal, and
the blue thick line is the
output of the system. a
α = 1.3, b α = 2, c α = 3,
d α = 7. Other simulation
parameters are a = 1,
b = 1, A = 0.3, T = 20,
B = 2 and Ω = 4
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peak, the cross-correlation coefficient decreases with
the increase of B. If B has a little smaller value, such
as B = 2, the cross-correlation coefficient rises rapidly
and then keeps almost fixed, though slightly increas-
ing. To explain this phenomenon, Fig. 6 shows the time
series of the output for B = 2 and different values of α,
where the aperiodic VR is observed. In each subplot,
the output crosses the potential barrier with the input
aperiodic signal synchronously. However, the ampli-
tude of the output is different in each subplot. Obvi-
ously, with the increase of the fractional-order expo-
nent α, the amplitude of the output decreases. With
the aid of the information provided by Fig. 6, we can
understand better the curve corresponding to B = 2.
Specifically, for B = 2 in Fig. 5, with the increase of
α, the amplitude of the output decreases, but the wave-
form is closer similar to the input aperiodic signal. It
results that the VR always occurs for values of B above
a certain critical value as shown in Fig. 5.

The dependence of the cross-correlation coefficient
Csx with respect to the strength of the auxiliary square
waveform signal B for different values of A is illus-

trated in Fig. 7. This allows us to investigate the effect
of the weak aperiodic signal amplitude A on the cross-
correlation coefficient. As it can be seen, the resonance
peak corresponds to larger values of the amplitude of
the aperiodic signal. Another fact in this figure is that
the location of the resonance peak turns to the left with
the increase of A.Moreover, for the samevalue of A, the
value and location of the resonance peak are indepen-
dent of the fractional-order exponent α. Similar results
are shown in Figs. 3 and 4.

In Fig. 8, the effect of the minimal random pulse
width T on the cross-correlation coefficient is inves-
tigated. The resonance peak of the cross-correlation
coefficient is also larger for larger values of T . It is
easy to understand that the effect of the pulse width
here is similar to the effect of the low frequency in the
classical VR phenomenon where a typical nonlinear
system is excited by a bi-harmonic signal. Specifically,
a lower-frequency weak signal can induce a stronger
VR in the bi-harmonic excited nonlinear system.

To investigate the effect of theminimal randompulse
width further, we plot the dependence of the cross-
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Fig. 7 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of A. a α = 2, b α = 2.5, c
α = 3, d α = 3.5, e α = 5, f
α = 7. Other simulation
parameters are a = 1,
b = 1, T = 20 and Ω = 4 0 2 4 6 8
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correlation coefficient Csx with respect to the pulse
width T for different values of B in Fig. 9, where T is a
control parameter. For different values of B, the cross-
correlation coefficient increases with the increase of T .
However, for small values of T , the cross-correlation
coefficient may be also very small. This indicates that
there is no aperiodic VR and the weak aperiodic signal
cannot be improved by the auxiliary square waveform
signal. Precisely for that reason, we propose two meth-
ods in the following sections to solve this problem. By
the new methods, the aperiodic VR can occur in any
value of the minimal random pulse width, leading to
an improvement of the aperiodic signal with any min-
imal random pulse width.

3 The re-scaled aperiodic VR

For small values of T , we need to find appropriate sys-
tem parameters to match the character signal. Here, we

propose the re-scaled aperiodic VR method to realize
it. The inspiration comes from the re-scaled SR and
the re-scaled VR. The re-scaled SR is widely used in
the engineering fields, such as in the subfield of fault
diagnosis [17–19]. The re-scaled VR can be used to
improve the weak harmonic signal with an arbitrary
frequency [11,20]. Herein, we introduce the re-scaled
idea to deal with the bipolar binary signal with an arbi-
trary minimal random pulse width. The method is as
follows. At first, we introduce variable substitutions,

τ = βt, x(t) = z(τ ), (6)

where β is the scale parameter. Then, Eq. (1) becomes

dz (τ )

dτ
= a

β
z (τ ) − b

β
z (τ ) |z (τ )|α−1 + 1

β
s

(
τ

β

)

+ 1

β
F

(
τ

β

)

. (7)

Each minimal random pulse width in the re-scaled sys-
tem is amplified β times with respect to the original
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Fig. 8 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of T . a α = 2, b α = 2.5, c
α = 3, d α = 3.5, e α = 5, f
α = 7. Other simulation
parameters are a = 1,
b = 1, A = 0.3 and Ω = 4
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Fig. 9 The dependence of the cross-correlation coefficient Csx
with respect to the pulse width T for different values of B. The
simulation parameters are a = 1, b = 1, α = 3.5, A = 0.3 and
Ω = 4

system. By choosing an appropriate scale parameter β,
we can find the match condition of T with the system
parameters a and b. Meanwhile, we must note that the

dynamics of Eq. (7) is not equivalent to Eq. (1). This is
because the amplitudes of the two signals are reduced
to 1/β of the original ones. We obtain Eq. (7) only to
obtain the scale match condition. Hence, we need to
amplify the signal to its β times strength in Eq. (7). As
a result, we get Eq. (8),

dz(τ )

dτ
= a

β
z(τ ) − b

β
z(τ )|z(τ )|α−1

+ s

(
τ

β

)

+ F

(
τ

β

)

. (8)

To simplify it, we let

a1 = a

β
, b1 = b

β
, (9)

so that Eq. (8) becomes

dz(τ )

dτ
= a1z(τ ) − b1z(τ )|z(τ )|α−1 + s

(
τ

β

)

+ F

(
τ

β

)

. (10)
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Fig. 10 Contour plot of the cross-correlation coefficientCsx ver-
sus the strength of the auxiliary square waveform signal B and
the scale parameter β. A color code plot shows the value of Csx.
The simulation parameters are a = 1, b = 1, α = 3, A = 0.3,
T = 0.2 and Ω = 100π

From above deductions, we need to realize the aperi-
odic VR in the equation

dx(t)

dt
= a1βx(t) − b1βx(t)|x(t)|α−1

+βs(t) + βF(t), (11)

to improve the aperiodic bipolar binary signal with the
arbitrary minimal random pulse width by the aperiodic
VR method. In other words, if T is small, we need to

find appropriate system parameters to amplify the input
character and auxiliary signals according to Eq. (11).
Then, the aperiodic VR occurs and the weak aperiodic
signal is enhanced. Next, we will verify the validity of
this method by using some examples.

In Fig. 10, we have plotted the contour plot of the
cross-correlation coefficient Csx versus the strength of
the auxiliary square waveform signal B and the scale
parameter β and fixed T = 0.2. As pointed out in last
section, if we use the classic aperiodic VR method,
there is no resonance phenomenon and the weak aperi-
odic signal cannot be improved. However, by using the
re-scaled aperiodic VRmethod, the resonance appears.
In other words, the weak aperiodic signal is greatly
improved, which indicates the validity of the proposed
method. The effect of different parameters such as B,β,
T on the cross-correlation coefficient will be discussed
later in detail.

Three waveforms of the aperiodic signal for differ-
ent values of T are shown in Fig. 11. They have simi-
lar wave profiles but with different values of the pulse
width T .

In Fig. 12, we show that for different values of α

and T , the re-scaled aperiodic VR occurs. Actually,
the three waveform signals shown in Fig. 11 are used
as input aperiodic signals. Hence, the weak aperiodic
signal can be improved by the re-scaled aperiodic VR
method although the minimal random pulse width is

Fig. 11 Three waveforms
of the aperiodic signal for
different values of T . a
T = 0.4, b T = 0.2 and c
T = 0.1
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Fig. 12 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of T . a α = 2.5, b α = 3, c
α = 3.5, d α = 5. Other
simulation parameters are
a1 = 1, b1 = 1, β = 100,
A = 0.3 and Ω = 20π
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very small, showing once again the validity of the
method.

In Fig. 13, the curves of the cross-correlation coeffi-
cient Csx versus the auxiliary square waveform signal
strength B and for different values of parameter β are
shown. The magnitude and location of the resonance
peak closely depend on the scale parameter β, because
different scale parameter changes each pulse width to
a different value. In other words, the aperiodic signal
is stretched to a different length when a different value
of β is chosen. For a larger value of β, we can obtain a
much stronger resonance. As a result, the weak aperi-
odic signal can be improved to a greater extent.

In Fig. 14, we show once again the curves of the
cross-correlation coefficient Csx versus the auxiliary
square waveform signal strength B. However, differ-
ently from the previous case in Fig. 13, we have fixed
β and T in each subplot. As a result, the three curves of
Csx−B in each subplot are almost identical for the same
value of α. In other words, the dynamical behavior of
the re-scaled system depends only on the parameters β

and T . Hence, although T may be very small, we can
make strong resonance to occur if we choose a large
enough scale parameter β.

4 The twice sampling aperiodic VR

Besides the re-scaled method, there are some other
ways to improve the weak signal. The twice sampling
SR method is one of them [21]. It has been success-
fully used in the field of fault diagnosis [22,23]. Here,
we introduce this method in the investigation of the
aperiodic VR phenomenon. The method is as follows.
First, we change the sampling frequency of the sig-
nal to reconstruct the signal. Specifically, if the origi-
nal sampling frequency is fs0, we let the twice sam-
pling frequency to be fs. The formula γ = fs0/ fs
expresses the sampling transform ratio. Through twice
sampling, we get a new signal and its minimal pulse
width turns to γ times of the original one. Then, we let
the new signal to act as the new input for the non-
linear system. If the transform ratio is an appropri-
ate value, we can make the aperiodic VR to occur.
Finally, we reconstruct the output to the original sam-
pling according to the sampling transform ratio. The
new output is compared with the original signal to cal-
culate the cross-correlation coefficient. At the peak of
the cross-correlation coefficient curve, the resonance
may occur showing that the weak aperiodic signal has
been improved. Some examples to verify the effective-
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Fig. 13 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of β for a fixed value of T . a
α = 2.5, b α = 3, c
α = 3.5, d α = 5. Other
simulation parameters are
a1 = 1, b1 = 1, A = 0.3,
T = 0.2 and Ω = 100π
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Fig. 14 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of β and T . a α = 2.5, b
α = 3, c α = 3.5, d α = 5.
Other simulation parameters
are a1 = 1, b1 = 1, A = 0.3
and Ω = 20π/T
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ness of the twice sampling aperiodic method are given
in the following.

In Fig. 15, the cross-correlation coefficient versus
the strength of the auxiliary square signal and the sam-
pling transform ratio is displayed for an aperiodic sig-
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Fig. 15 Contour plot of the cross-correlation coefficientCsx ver-
sus the strength of the auxiliary square waveform signal B and
the scale parameter γ . A color code plot shows the value of Csx.
The simulation parameters are a = 1, b = 1, α = 3, A = 0.3,
T = 0.2 and Ω = 100π

nal with T = 0.2. On the one hand, for an appropriate
value of γ , the curve of Csx − B presents a resonance
peak at which the weak aperiodic signal is improved.
On the other hand, for a fixed value of B, the resonance
peak on the Csx − B curve may also be induced by the
sampling transform ratio γ . In the following, we dis-

cuss in detail the effects of some important parameters
on the twice sampling aperiodic VR method.

In Fig. 16, we plot the dependence of the cross-
correlation coefficient Csx with respect to the strength
of the auxiliary square waveform signal B for differ-
ent values of T . The Csx − B curves have been plotted
by the twice sampling aperiodic VR method for differ-
ent values of α and T , where we have used the three
waveform signals of Fig. 11. These curves are almost
identical to the corresponding results shown in Fig. 12.
This indicates the effectiveness of the twice sampling
aperiodic VR once again. Applying these two different
methods, i.e., the re-scaled aperiodic VR method and
the twice sampling aperiodic VR method, we have the
same results. The aperiodic weak signal with an arbi-
trary minimal random pulse width can be improved by
one of the two methods. Again in Fig. 16, it is easy to
find that the resonance peak has a large value for a large
T and when the corresponding B is small.

In Fig. 17, the effect of the sampling transform ratio
γ on the cross-correlation coefficient is illustrated. If
we choose a large value of γ , it means that the minimal
random pulsewidth of the re-constructed signal is large
too. As a consequence, the resonance peak also has a
large value. Comparing Fig. 17 with Fig. 13, we find
that the effect of the transform ratio γ in the twice

Fig. 16 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of T . a α = 2.5, b α = 3, c
α = 3.5, d α = 5. Other
simulation parameters are
a = 1, b = 1, A = 0.3,
γ = 100 and Ω = 20π
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Fig. 17 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of γ . a α = 2.5, b α = 3, c
α = 3.5, d α = 5. Other
simulation parameters are
a = 1, b = 1, A = 0.3,
T = 0.2 and Ω = 100π
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Fig. 18 The dependence of
the cross-correlation
coefficient Csx with respect
to the strength of the
auxiliary square waveform
signal B for different values
of γ and T . a α = 2.5, b
α = 3, c α = 3.5, d α = 5.
Other simulation parameters
are a = 1, b = 1, A = 0.3
and Ω = 20π
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sampling aperiodic VRmethod is the same as the effect
of the scale parameter β in the re-scaled aperiodic VR
method.

In Fig. 18, although the three original signals
have different minimal random pulse width, the re-
constructed signals have the same waveform by choos-
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Fig. 19 The time series of
the output when the
resonance occurs, a
re-scaled aperiodic VR
method, b twice sampling
aperiodic VR method. The
red thick line is the input
aperiodic signal, and the
blue thick line is the output
of the system. The
simulation parameters are
a = 1, b = 1, α = 3,
A = 0.3, T = 0.2, B = 2
and Ω = 100π
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ing an appropriate transform ratio γ . In other words,
the corresponding random pulse widths are identical
in the three re-constructed signals. Consequently, the
Csx−B curves in each subplot are completely identical,
as it can be seen by comparing Fig. 18 with Fig. 14.

To illustrate the two methods further, in Fig. 19, the
time series of the signals when the resonance occurs
are shown. Although the two time series are obtained
by two different methods, they have the same wave-
form. In the two subplots, the weak aperiodic signal
is improved excellently. It indicates the validity of the
re-scaled aperiodic VRmethod and the twice sampling
aperiodic VR method once again.

5 Some further discussions

The equivalent of the re-scaled VR method and the
twice sampling VR method lies in the choose of the
scale parameter β and the sampling transform ratio γ .
It can be easily understood in a mathematical view-
point. On the one hand, in Sect. 3, we have deduced that
the re-scaled VR is realized in Eq. (11). The dynamics
(response amplitude to the excitations) of Eq. (11) is
equivalent to that of Eq. (10). Further, when a1, b1, and
βT in Eq. (10) equals a, b and T in Eq. (1), respectively,
Eq. (10) turns toEq. (1).Hence, the dynamics (response
amplitude to the excitations) of Eq. (11) is the same as
that of Eq. (1) for this case. On the other hand, accord-

ing to the description in the first paragraph of Sect. 4,
by twice sampling procedure, the time scale of the exci-
tations is 1/γ times of the original time scale. In other
words, the minimal random pulse width changes to be
γ T after the twice sampling processes. As a result, the
new re-constructed signal has been changed to a slow
varied one. At the same time, the system parameters in
Eq. (1) are still adopted.When γ T (T is a small value of
the signal before the twice sampling procedure) equals
T (T is a large value) in Eq. (1), the response ampli-
tude of the system to the re-constructed signal is to
be calculated in Eq. (1) in fact. After the output, the
time series need to be transformed to the original time
scale according to the transform ratio γ . Simultane-
ously, the transform here only changes the time scale
but not changes the amplitude of the output. Hence, the
final response amplitude is stilled determined byEq. (1)
after the twice sampling. Therefore, when γ = β, a1
and b1 in Eq. (11) equal a and b in Eq. (1), the response
results obtained by the re-scaled aperiodic VR method
and the twice sampling aperiodic VR method are iden-
tical.

As we mentioned above, the results obtained by
two different methods are equivalent. The main differ-
ence between them is the physical processes to achieve
the same goal. In Fig. 20, we give the flowcharts of
two algorithms to show the main difference apparently.
When the re-scaled VR method is used, the main sig-
nal processors are the signal amplifier and the nonlinear
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Fig. 20 The flowcharts of
the re-scaled aperiodic VR
method and the twice
sampling aperiodic VR
method

(a)

(b)

system (with large parameters). When the twice sam-
pling VR method is used, the main signal processors
are sampling processors (with different sampling fre-
quency) and the nonlinear system (with small param-
eters). However, these differences cannot be consid-
ered as their merits or demerits. Although the algo-
rithms in the present paper are carried out by numeri-
cal simulations, it will be realized by hardware devices
in most engineering occasions. The investigations of
the numerical algorithms are our work of the first step.
Next step, we will build the equipment based on the
numerical algorithms by hardware devices. Usually,
the decision as to which method to choose depends
on the concrete conditions and the hardware devices
one owns. Numerical study on the two algorithms is
the pre-research and theoretical basis of the equipment
construction in the future.

6 Conclusions

Three kinds of aperiodic VR methods are applied to
improve the weak aperiodic bipolar binary signal in
a typical nonlinear system. The system considered is
different from the system in the former VR works. It
is a nonlinear system with fractional-order deflection.
Specifically, the nonlinearity in the system is an abso-
lute value function with a fractional-order exponent.

The first kind of aperiodic VR is the classic VR phe-
nomenon. If the minimal random pulse width of the
bipolar binary signal is long enough, this kind of aperi-
odic VRmethod can improve theweak aperiodic signal
excellently. Moreover, if the cross-correlation coeffi-
cient is treated as a function of the auxiliary signal
strength, the resonance peak on this cross-correlation
coefficient curve is independent of the fractional-order
exponent. However, the magnitude of the aperiodic
signal in the output depends on the fractional-order
exponent closely. Further, if the minimal random pulse
width of the bipolar binary signal is small, the classic

aperiodic VR may not occur and the weak aperiodic
signal cannot be improved.

The second kind of aperiodic VR is the re-scaled
aperiodic VR that we propose in this paper to improve
the bipolar binary signal whose minimal random pulse
width has arbitrary length. Via a scale transformation,
we transform the short minimal pulse width to a long
one. Meanwhile, the system parameters of the original
system are found to match the character signal. Then,
the aperiodic VR occurs and leads to the improvement
of the weak aperiodic signal. The scale parameter is the
key parameter to realize the re-scaled aperiodic VR.

The third kind of aperiodic VR is the twice sam-
pling aperiodic VR proposed in this paper. The twice
sampling aperiodic VR can also improve the bipolar
binary signal with an arbitrary minimal random pulse
width. Via twice sampling, the original signal is re-
constructed by an appropriate sampling transform ratio.
In this step, theminimal randompulsewidth is changed
to a long one. Then, the new signal becomes an input to
the original system to induce the aperiodic VR. Finally,
we transform the output to the original sampling fre-
quency. As a result, the weak aperiodic signal can be
improved to a great extent. The sampling transform
ratio is the key parameter to realize the twice sampling
aperiodic VR.

By three kinds of aperiodic VR methods, we can
improve the aperiodic bipolar binary signal excellently.
In fact, thesemethods can also be used to improve other
kinds of aperiodic signals, e.g., linear or nonlinear fre-
quency modulated signal, and all kinds of periodic sig-
nals. Further, when these methods are used, we must
assure the system is not divergent under the excitations.
Certainly, for the nonlinearmodel used in this paper, the
response of the systemwill not be divergent.Moreover,
if the waveform of the character signal is unknown or
the signal is submerged in heavy noise, we should use
other tools and the methods in this paper together to
process the weak character signal. The related issues
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are our future work. Anyhow, our results in the present
paper not only extend the works of the VR theory but
also might have potential value in the signal processing
field.
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