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a b s t r a c t 

A fundamental model of tumor growth in the presence of cytotoxic chemotherapeutic 

agents is formulated. The model allows to study the role of the Norton-Simon hypothe- 

sis in the context of dose-dense chemotherapy. Dose-dense protocols aim at reducing the 

period between courses of chemotherapy from three weeks to two weeks, in order to avoid 

tumor regrowth between cycles. We address the conditions under which these protocols 

might be more or less beneficial in comparison to less dense settings, depending on the 

sensitivity of the tumor cells to the cytotoxic drugs. The effects of varying other param- 

eters of the protocol, as for example the duration of each continuous drug infusion, are 

also inspected. We believe that the present model might serve as a foundation for the 

development of more sophisticated models for cancer chemotherapy. 

© 2018 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Improvements in chemotherapy mainly depend upon minimizing the toxic side-effects of drugs on healthy tissues and

tackling the resistance of cancer cells to such medications [1,2] . Nevertheless, randomized trials carried out along the last

half century have proved that the specific arrangement of protocols is of relevance as well [3–5] . In particular, breast cancer

trials have revealed that reducing the period between cycles of chemotherapy from three to two weeks introduce moderate

but statistically significant benefits in disease free survival at five years and overall survival [6] . Surprisingly, this can be

achieved without introducing higher toxicities with the aid of granulocyte colony-stimulating factor. This increase in the

frequency of drug administration has been termed dose-dense chemotherapy , because when the dose is represented against

time, these protocols look more dense [7] . 

Despite recent success in adjuvant chemotherapy for breast cancer [8] , the benefits of dose-dense chemotherapy are not

undoubted [9] . Remarkably, the appearance of these protocols for the treatment of solid tumors has posed fundamental

questions concerning the nature of solid tumor growth. Moreover, it has also suggested a theory of tumor growth for breast
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cancer, based on the concept of self-metastasis [7,10] . In particular, the Norton-Simon hypothesis has been suggested as a

possible explanation to its beneficial properties. This hypothesis states that the rate of destruction by chemotherapy is pro-

portional to the rate of growth of the unperturbed tumor [11] . As has been recently suggested, the concept of dose-density

might be pertinent even in the absence of any hypothesis affecting the particular nature of the growth of the tumor [12] . 

Concerning previous modelling effort s on this topic, some preliminary discussion is deserved. Several deterministic and

stochastic models have appeared in the literature over the last decades to describe different phenomena related to dose-

dense chemotherapy and protocol optimization [13–18] . However, some of these works do not model cell kill [13] , while

others model it in an indirect way, by imposing conditions on the decay of the tumor once the drugs have been administered

[14] . On the other hand, to the best of our knowledge, those works that explicitly model cell kill and consider the Norton-

Simon hypothesis always assume a linear dependence between the rate of cell destruction and the dose of drug delivered

[15,16] . This assumption leads to dose-response curves which are linear when plotted on a log scale. These curves, as has

been demonstrated, do not fit properly data from solid tumors [19] . 

In the present work we propose an ordinary differential equation (ODE) model for nonlinear cancer chemotherapy to

investigate under which conditions dose-dense protocols are more or less advantageous. It is not our purpose to develop

specific protocols for a certain class of tumors, but rather to find general guiding principles which might aid clinicians to

bias their decisions in the design of better protocols in the future. Special attention is paid to the relative possible benefits

of dose-dense protocols compared to more dose-intense ones. Although dose-intensity is commonly defined as an average

over the whole treatment in the field of oncology, we use it hereafter to deem an increase of the total dose administered

per cycle [12] . 

2. Model description 

2.1. Tumor growth in the presence of chemotherapeutic drugs 

A general multicompartment model for cancer chemotherapy can be built from previous modeling works [16,20–24] .

Since the cell cycle comprises four phases (mitosis, gap 1, synthesis and gap 2) and cells can also be quiescent (gap 0),

a possible modeling framework should consider five different compartments representing the cell populations in each of

them. In principle, the use of different compartments is relevant since some drugs only destroy cells on a specific phase of

the cell cycle [25,26] . However, in practice, one or more compartments can be joined into a single compartment, reducing

the dimensionality of the problem. For example, if there is only one cycle specific drug, a model with three compartments

can be devised. Firstly, two compartments would be required to distinguish between mitotic and quiescent cells. Then, the

cycling cells should be subdivided among those cells which are in the particular phase in which the cycle specific drugs

exert their effect, and those that are in the complementary part of the cell cycle. 

We begin with the most simple model example capable of representing the Norton-Simon hypothesis. Thus, in this first

approach, we are only interested in the effects of just one cycle non-specific (CNS) drug and, therefore, we restrict ourselves

to a single compartment of mitotic tumor cells P ( t ). Accordingly, we also gather in a single compartment the mitotic and

the quiescent cells, and use a single function γ ( P ) to represent the net result of proliferation and death of tumor cells due

to necrosis and apoptosis. The drug concentration is represented as C ( t ) and the fractional cell kill caused by the drug is

written as κ(P, C) . Therefore, we study the differential equation 

dP 

dt 
= γ (P ) P − κ(P , C) P . (1) 

Because a somatic cell divides through mitosis, the growth of a cell population is at most geometric [27] . This suggests that

γ ( P ) should be a monotonically decreasing function of P . We illustrate most of our analysis using γ (P ) = r(1 − P/K) , which

corresponds to a logistic growth [28–30] , even though Gompertzian growth γ (P ) = r log (K/P ) is tested as well [31] . 

The design of the function κ( P, C ) is more delicate, since we want the model to be capable of reproducing the Norton-

Simon hypothesis. We start from the Exponential-Kill model, which has been tested using in vitro and in vivo data [19,32] .

The fractional cell kill is represented in such model by a term b(1 − e −ρC ) , where b represents the maximum fractional

cell kill and ρ is commonly referred in the literature as the resistance of the tumor cells to the drugs [12,19] . However,

resistance is a complex evolutionary process involving several biological mechanisms, as for example the drug efflux through

transmembrane proteins or DNA-damage repair mechanisms [33] . Hence, those models that incorporate tumor resistance to

chemotherapeutic drugs traditionally make use of several compartments [14,15] consisting of cells with different values

of ρ . Therefore, we shall call the parameter ρ the sensitivity, hereafter. More precisely, ρ is directly proportional to the

sensitivity. In the present work we investigate rather homogeneous tumors consisting of cells whose deviations in this

parameter from the average value is very small. In summary, we can consider a nonlinear separable function in the form

κ(P, C) = h (P ) b(1 − e −ρC ) . It is important to note that this new fractional cell kill saturates for increasing values of the drug

concentration, a feature frequently overlooked in models of chemotherapy for solid tumors, which mainly consider a linear

dependence on the drug concentration [15,16] . 

Now we recall that, according to the Norton-Simon hypothesis, the rate of destruction of the tumor is proportional to

the rate of growth of the same unperturbed tumor. Here, we take this statement in a non-strict sense, since we have not

found experimental evidence of a direct proportionality h ( P ) ∝ γ ( P ). Quite the opposite, there is evidence that CNS drugs
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Fig. 1. A protocol of chemotherapy. The continuous infusion of two drugs (red and blue) delivered with a period T of three weeks and using different doses 

D . The time duration of each infusion t a differs for the two drugs as well. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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act to some extent on the quiescent compartment as well [22,34] , which contradicts such direct relation of proportionality.

Nevertheless, it is likely that cells inside a solid tumor are less susceptible to chemotherapeutic drugs. This might be a

consequence of the fact that the concentration of drugs attenuates as they penetrate inside a solid tumor, since they are

absorbed by the outmost external cells. Note also that cells in the interior are less exposed as well and that the cells on

the boundary of a tumor are more actively proliferating than the cells in its core [35,36] . Hence, as previously stated, we

believe that it is enough to assume that the fractional cell kill of chemotherapeutic drugs decreases for bigger tumors. 

In conclusion, we assume that h ( P ) is a monotonically decreasing function of the cell population P . More specifically, we

consider a Holling type II functional response [37] in the form 

h (P ) = 

rK 

K + sP 
. (2)

This particular choice can be justified on the following grounds: 

a) The maximum rate of cell kill is proportional to the maximum growth rate of the tumor. 

b) The fractional cell kill is smaller as the tumor gets close to the carrying capacity. The maximum value at the carrying

capacity is r/ (1 + s ) . Therefore, the parameter s controls the Norton-Simon hypothesis, being both in a direct relation. 

c) For s = 0 or K → ∞ we obtain the fractional cell kill used in [19] . In fact, if both conditions hold, the model itself is the

one used in such reference. This situation corresponds to an exponentially growing tumor for which the Norton-Simon

hypothesis establishes that the rate of destruction should be exponential. 

d) The action of some cytotoxic drugs resembles enzyme kinetics, where the drug plays the role of the enzyme and the cell

resembles to the substrate ( e.g. the alkylating agent Cisplatin binds to the cell DNA causing intrastrand cross-links that

ultimately can lead to apoptosis). 

e) In the limit of small concentrations or low sensitivity, the term 1 − e −ρC can be approximated as ρC . In this limit the

function κ( P, C ) obeys the Michaelis-Menten kinetics, which has been extensively used in previous studies [21,23] . 

Nevertheless, other functional responses will be tested, which allow to represent the Norton-Simon effect in its more

strict formulation. But, unless otherwise specified, we shall utilize the nonlinear ODE model 

dP 

dt 
= r 

(
1 − P 

K 

)
P − rb 

K 

K + sP 

(
1 − e −ρC 

)
P, (3)

throughout the following sections. 

2.2. Pharmacokinetics and protocols of chemotherapy 

It remains to be introduced the pharmacokinetics of the model, which governs the dynamics of the concentration of drug

at the tumor site C ( t ). As in previous works [21,32,38] , we consider a one-compartment model and first order pharmacoki-

netics, which in some situations can be used as a good approximation in the clinical practice [39] . The differential equation

governing the concentration of the drug is 

dC 

dt 
= I(t) − kC(t) , (4)

where I ( t ) is the function representing the rate of flow of drug into the body (the instantaneous dose-intensity) and k is the

rate of elimination of the drug from the bloodstream, from which the half-life can be computed as (log e 2)/ k . Concerning

the drug delivery, we assume that the drug is administered intravenously at constant speed during a time t a in cycles of

period T . Thus, a typical protocol of chemotherapy can be schematically represented as in Fig. 1 . If the dose of drug given

in a course of chemotherapy is D , then the instantaneous dose-intensity I ( t ) is expressed mathematically as 

I(t) = 

⎧ ⎨ 

⎩ 

D 

t a 
for t( mod T ) ∈ [0 , t a ) 

0 for t( mod T ) ∈ [ t a , T ) 

. (5)
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Fig. 2. The drug concentration. The time series of the drug concentration for five cycles of chemotherapy administered every T weeks. Each course of 

chemotherapy consists of a continuous infusion of drug that lasts a time t a . Hence the rate of infusion is D / t a . The constant rate of elimination of the drug 

from the bloodstream is k . Asymptotically, a steady oscillation between two values of the concentration C min 
s and C max 

s is attained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solution to Eq. (4) with a drug input given by Eq. (5) , when a number of N chemotherapeutic cycles have been

delivered, yields 

C(t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

D 

kt a 
(1 − e −kt ) + a N (t) for t( mod T ) ∈ [0 , t a ) 

D 

kt a 
(e kt a − 1) e −kt + a N (t) for t( mod T ) ∈ [ t a , T ) 

, (6) 

where a N ( t ) represents the decaying accumulated concentration of drug during the N + 1 th cycle of chemotherapy. This

function equals zero during the first cycle ( a 0 (t) = 0 ) and it is equal to 

a N (t) = 

D 

kt a 
(e kt a − 1) e −kt 

N ∑ 

n =1 

e −nkT , (7) 

for the subsequent cycles. Using this equation, it can be easily demonstrated that when the number of cycles N tends to

infinity, the concentration reaches a steady oscillation C s ( t ) between a minimum value 

C min 
s = 

D 

kt a 

e kt a − 1 

e kT − 1 

, (8) 

and a maximum value C max 
s = C min 

s e k (T −t a ) . This periodicity is represented in Fig. 2 . Since the periodicity of the cycles of

chemotherapy commonly spans several weeks, whereas the drug is eliminated rather quickly (days) in comparison, the

accumulation of drug is not usually very important, unless t a is close to T . 

3. High continuous doses 

To prepare our intuition for the numerical results that are presented in the following section, we first study the parameter

space in the case that of tumors which are highly sensitive ( ρ → ∞ ) to the drug, which is continuously administered at

sufficiently high doses ( D � 0). If this holds, we can take the limit ρC → ∞ and the differential equation (3) can be simplified

to 

dx 

dτ
= ( 1 − x ) x − b 

1 + sx 
x, (9) 

where the dimensionless variables x = P/K and τ = rt have been introduced. This differential equation possess one, two or

three fixed points, depending on the values of the parameters b and s . The fixed point x ∗ = 0 is always present, while the

others are the solution to the quadratic equation (1 − x )(1 + sx ) − b = 0 , whose discriminant equals to (s − 1) 2 − 4 s (b − 1) .

As shown in Fig. 3 , b < 1 defines region I, in which there always exist two fixed points. The origin is a repelling fixed

point, whereas the remaining point is an attractor representing a tumor that exists bellow its carrying capacity. Conse-

quently, if the drug is not effective enough, the tumor can not be destroyed, even if the drugs are delivered continuously

and forever. The remaining part of the parameter space is subdivided into three smaller regions (II, III and IV) by the curve
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Fig. 3. The parameter set. When the drugs are given at high doses for long periods of time, four different regions can be distinguished according to the 

asymptotic dynamics. In region I the therapy is not effective and the tumor is just reduced in size, but not eliminated. The regions II and III represent 

parameter values for which the tumor is surely destroyed. The cyan region is separated from the dark blue region by the dashed line, because it presents 

two more fixed points. However, they occur for negative values of the cell population, which have no biological meaning. In region IV the tumor can be 

eradicated or not depending on its size at the beginning of the treatment. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 4. Investigated protocols. (p 1 ) A reference protocol consisting on a continuous infusion of a dose of a single drug delivered every three weeks through 

intravenous bolus. (p 2 ) A more dose-intense protocol for which the dose of drug per course is multiplied by three. (p 3 ) A more dose-dense protocol for 

which the period between cycles is divided by three. (p 4 ) A protocol for which the same dose of drug is delivered, but through longer lasting infusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b = 1 + (s − 1) 2 / (4 s ) . The upper and left blue regions delimited by this curve (regions II and III) represent a domain for

which there is only one positive attracting fixed point x ∗ = 0 . In this case, the tumor can be asymptotically destroyed by the

chemotherapeutic drugs. The only difference between regions II and III is that the latter has two more fixed points. However,

they occur for negative values of the cell population, which are biologically meaningless. Finally, when we go from region

II to region IV, two fixed points are born through a saddle-node bifurcation. Two of them are attractors, one at x ∗ = 0 and

another existing bellow the carrying capacity, separated by a repelling fixed point. Therefore, the tumor can be destroyed or

not, depending on its size at the beginning of the treatment. 

4. Numerical simulations 

In the present section we accomplish a comparative study between several types of chemotherapeutic protocols. For

this purpose, we solve equation (3) with a drug concentration given by equation (6) for four different protocols, which

are represented in Fig. 4 , and two sensitivity scenarios. The high sensitivity scenario corresponds to a value ρ = 1 . 0 mg −1 ,

while the low sensitivity scenario is given by ρ = 0 . 01 mg −1 , which are within extreme values appearing in [19] . We use

as a reference a protocol (p 1 ) with parameter values T = 3 weeks , t a = 1 min and D = 60 mg , which are typical for locally

advanced breast cancer. 1 A second protocol (p 2 ) is considered that it is three times more dose-intense, with D = 180 mg .

This increase in the dose is chosen bearing in mind that the dependence of the fractional cell kill on the drug concentration

is exponential. Therefore, this variation suffices for our purposes. Nevertheless, we note that in practice there is a great

variability concerning the values of ρ and D among the different drugs and protocols [19] . The third protocol (p 3 ) is more

dose-dense than the first protocol, with T = 1 week . Although protocols that are more dose-dense that two weeks are

unrealistic, we have decided to push dose-density to the smallest values as possible, to have as a reference a situation
1 Information about standard protocols of chemotherapy has been drawn from http://www.bccancer.bc.ca/health-professionals/clinical-resources/ 

chemotherapy-protocols . 

http://www.bccancer.bc.ca/health-professionals/clinical-resources/chemotherapy-protocols
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Fig. 5. Time series. The evolution of a tumor cell population (red) under the action of chemotherapy (blue) for a dose of drug D = 60 mg injected as a 

bolus ( t a = 1 min ). The parameter values characterizing the cytotoxicity are ρ = 0 . 1 mg −1 , s = 4 . 1 and b = 3 . 6 weeks 
−1 

. The concentration of drug is plotted 

for clarity, disregarding its specific values. (a) A dense protocol with a period T of one week. The survival fraction of tumor cells at the minimum of the 

treatment (nadir) is σ = P (t nad ) /P (0) = 0 . 61 . (b) A less dense protocol with a period T of three weeks. The survival fraction of tumor cells at the nadir is 

σ = 0 . 84 . Note that in this case the nadir is reached at the beginning of the treatment, while in the previous case the tumor is progressively reduced. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is limiting in the time scale commonly considered (weeks). A final fourth protocol (p 4 ) tests the effect of increasing

the duration of the infusion up to half a week t a = 0 . 5 weeks , keeping the total dose per course constant. 

To investigate the relative benefits of each protocol, we compute the survival fraction of tumor cells at the nadir σ =
P nad /P 0 of the treatment. This effectiveness criterion has been adopted in previous works [22] . Consequently, we recall that,

since in this first study we are not explicitly modelling toxicity, the benefits or the effectiveness of a protocol should not

be read from a clinical point of view, but instead from a theoretical one. Then, we represent it in the parameter space ( b,

s ), as in the previous section. More specifically, we represent in logarithmic scale the ratio between survival fractions at

the nadir σ i / σ j for a pair (p i and p j ) of protocols. Therefore, when protocol p i is more beneficial than protocol p j we have

log ( σ i / σ j ) < 0, since σ is always smaller than one. Oppositely, it will be higher or equal than zero when p i is less beneficial

than protocol p j . 

Unless otherwise specified, the simulations are carried out considering a tumor whose maximum rate of growth is

r = 0 . 8 weeks −1 and with a value of the carrying capacity of K = 10 9 cells [32] . An extremely fast growing tumor would

be one in which all cells were ceaselessly dividing through mitosis. Since the cell cycle of a human cell lasts approxi-

mately one day, this corresponds to an exponentially growing tumor with a constant rate value of r = 4 . 85 weeks −1 . There-

fore, we are considering a quite aggressive tumor. The carrying capacity corresponds to a detectable tumor mass of ap-

proximately one gram. The original size of the tumor is considered to be P 0 = 9 × 10 8 cells. We take a typical value of

k = 4 . 85 weeks 
−1 

, which corresponds to a half-life of approximately one day [12] . Two typical trajectories for the parameter

values ρ = 0 . 1 mg −1 , s = 4 . 1 and b = 3 . 6 weeks −1 are shown in Fig. 5 . They illustrate a situation suggesting the possible

benefits of dose-dense protocols. 

4.1. High sensitivity scenario 

Obviously, when the sensitivity to the drugs is high, we see that increasing the dose delivered or the frequency of the

cycles three times is beneficial for all parameter values. This is shown in Fig. 6 , where the survival fraction at the nadir

of the treatment is represented in the parameter space. Thus, mathematically, increasing the frequency of the cycles and

the dose of drug are both convenient. However, as can be seen in Fig. 6 (b), if the drugs are very effective destroying the

tumor cells (high values of b ), the benefits of increasing dose-density (the frequency) are very small ( σ 1 / σ 3 close to one).

The reason that explains this behavior is that if the cell population is severely reduced, then the regrowth of the tumor

cells is comparatively small. This does not occur for an increase in the dose-intensity (see Fig. 6 (a)), although increasing too

much the dose might introduce an intolerable toxicity. Consequently, the relative benefits of increasing three times the dose,

compared to an identical increase in the frequency of administration, are higher for small values of s and high values of b .

This is shown in Fig. 6 (d), where we clearly see that σ 2 is smaller than σ 3 for such values of b . 

We also see in the same figure that as we increase s , dose-densification becomes more pertinent. Indeed, the Norton-

Simon hypothesis strengthens the importance of dose-density. Ultimately, an increase in the duration of the infusion to half

a week, maintaining constant the dose and the periodicity, seems to be the most beneficial in our model (see Fig. 6 (e) and

(f)). In part this occurs because the drug is acting more time on the tumor, avoiding the regrowth between cycles. However,

it must be noted that the peak of drug concentration is smaller. Therefore, it is expected that this is true only for tumors

which are very sensitive to the drugs and when these drugs are administered at sufficiently high doses. Furthermore, this
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Fig. 6. Highly sensitive tumors ( ρ = 1 . 0 mg −1 ). The fraction of cells that have survived the treatment σi = P (t nad ) /P (0) at the time t nad when the tumor 

reaches its minimum size (nadir) is computed for each protocol p i . Then the same computation is repeated for a 300 × 300 square grid of values in the 

parameter set ( s, b ). Finally, the relative destruction between two protocols p i and p j is represented in the parameter space by computing the natural 

logarithm (for which the results are the most clear) of the quotient σ i / σ j (color bar). If log ( σ i / σ j ) > 0 in the color bar, the protocol p j is better than 

protocol p i . (a) The effects of increasing the dose represented by σ 1 / σ 2 , which is always beneficial. (b) The case σ 1 / σ 3 representing an increase in dose- 

density, which is beneficial for all parameter values. (c) Longer continuous infusions are studied by computing σ 1 / σ 4 , which is the most beneficial. (d) 

Dose-intensity versus dose-density is studied by computing σ 2 / σ 3 . Depending on the parameter values one strategy is better than the other. (e) The values 

of σ 4 / σ 3 , comparing an increase in dose-intensity against an increase in the time of infusion. (f) The case σ 2 / σ 4 shows that a sufficient increase in the 

duration of infusion is better that increasing the dose-intensity. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

is somewhat equivalent to deliver drugs continuously at doses that are smaller than the standard, which in many situations

can be more toxic and ineffective [40] . 

4.2. Low sensitivity scenario 

Now we turn our attention to a situation in which the sensitivity of the tumor cells to the drugs is low. In this case

the scenario changes dramatically and becomes less rich. Firstly, in Fig. 7 we observe that the effects of increasing the
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Fig. 7. Slightly sensitive tumors ( ρ = 0 . 01 mg −1 ). Again, the fraction of cells that have survived the treatment σi = P (t nad ) /P (0) at the time t nad when the 

tumor reaches its minimum size (nadir) is computed for each protocol p i . Then the same computation is repeated for a 300 × 300 square grid of values in 

the parameter set ( s, b ). Finally, the relative destruction between two protocols p i and p j is represented in the parameter space by computing the natural 

logarithm of the quotient σ i / σ j (color bar). If log ( σ i / σ j ) > 0 in the color bar, the protocol p j is better than protocol p i . (a) The effects of increasing the dose 

represented by σ 1 / σ 2 are always beneficial. (b) The case σ 1 / σ 3 representing an increase in dose-density, which are barely beneficial. (c) Dose-intensity 

versus dose-density is studied by computing σ 3 / σ 2 . As can be seen, dose intensification is always a better strategy in this scenario. (d) Longer continuous 

infusions σ 1 / σ 4 represents now a very bad strategy. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dose of drug or the frequency are in general much smaller. More importantly, increasing the dose three times is now more

convenient than increasing dose-density by the same amount for all the values of the parameters b and s . As can be seen

in Fig. 7 (c), σ 3 > σ 2 everywhere in the parameter space. This result can be interpreted as follows. If the sensitivity of the

tumor cells to the drugs is very low, the more dose of drug we give, the more chances for a tumor cell to be lethally hit by

these drugs. Consequently, if the drugs are not causing substantial destruction, increasing the frequency does not introduce

significant advantages. For the same reason, we see in Fig. 7 (d) that increasing the time of drug infusion is now harmful,

except for drugs that are very destructive in the absence of the Norton-Simon effect. 

4.3. Testing the robustness of our results 

We have tested the effect of modifying the parameters that represent the carrying capacity K and the rate of elimination

of the drug k . Increasing the carrying capacity one thousand times (which approximately corresponds to a tumor of one

kilogram) does not alter substantially the conclusions. Now the growth of the tumor approximates to exponential and the

model is exactly the same as the one presented in [19] . Mathematically, this can be written as γ ( P ) → r and h ( P ) → rb .

Consequently, the parameter s loses its importance and the graphics are similar to the ones appearing in Fig. 6 for small

values of s . Increasing four times the value of k , which reduces the half-life to six hours, introduces two main effects.

Firstly, the drugs spend less time in the organism and therefore the impact of chemotherapy is reduced. This enhances

the importance of dose-density. The convenience of increasing the frequency over increasing the dose for highly sensitive

tumors is more noticeable. Secondly, and for the same reason, the benefits of increasing the time of infusion are higher for

the high sensitivity case. 
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Fig. 8. Logistic vs Gompertz. (a) A comparison between a logistic growth (red) given by the equation γ (P) = 0 . 8 P(1 − P/K) and a Gompertzian growth 

(blue) given by γ (P) = 0 . 12 P log (K/P) . The initial condition is P 0 = 1 cell , for both time series. The parameters have been adjusted so that the time at 

which P = K/ 2 is the same. As can be seen, the logistic growth is more steep. (b) The dose-intense protocol p 2 is compared to the dose-dense protocol p 3 
by computing σ 3 / σ 2 for the Gompertz type of growth and following exactly the methods explained in the two previous figures. The color bar represents 

log ( σ 3 / σ 2 ), and it is positive when the protocol p 2 is more effective than the protocol p 3 . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Other functional forms 

To conclude our study, we have also tested the robustness of our results by modifying the functional form of the growth

term γ ( P ). If we consider the Gompertz differential equation, then we have γ (P ) = r log (K/P ) . We keep the same value of

the carrying capacity K = 10 9 cells but modify the parameter r = 0 . 12 weeks −1 . This value is chosen so that two tumors, one

following Gompertzian growth and another growing logistically, reach a size of half of its maximum value K at the same

time. 

As can be seen in Fig. 8 (a), under these conditions, the Gompertzian growth is less steep than the logistic. If we compare
˙ P for the two types of growth and the parameters given, we see that the regrowth of the tumors between cycles is smaller

for the Gompertz case, except for very small cell populations P . Consequently, and as depicted in Fig. 8 (b), the benefits of

trebling the dose-density relative to augmenting the dose three times are in general smaller. Nevertheless, we insist that

increasing the dose and the frequency are still advantageous for both scenarios. It is remarkable that for small values of s ,

dose-density prevails over dose-intensity. As previously said, this is a consequence of the fact that for small values of the

cell populations and the parameter values used in the simulation, the regrowth is greater for the Gompertz case. Anyway,

this should not be read as a failure of the Norton-Simon hypothesis, since the same stands for sufficiently high values of s . 

Finally, we have also inspected the effects of modifying h ( P ), which we recall that models the Norton-Simon effect. In

particular, we have considered the case h (P ) = r(1 − sP/K) . For s = 1 , we obtain a direct proportionality between h ( P ) and

γ ( P ), which represents the most rigorous form of the effect. No substantial changes have been found in this case, except a

less sensitivity to the parameter s , similar to the one described two paragraphs above. 

5. Concluding remarks 

In the present work we have studied the relative benefits of dose-dense protocols and the role of the Norton-Simon

hypothesis in nonlinear cancer chemotherapy. For this purpose, we have devised the simplest mathematical model capable

of representing these protocols in a clear manner. More sophisticated multicompartment models including the evolution

of resistance, combination therapy, toxic side-effects and stochastic fluctuations can be developed in a straightforward way

using the present model as a starting point. 

Our results demonstrate that dose-dense protocols should be generally beneficial, specially if the Norton-Simon hypoth-

esis stands. The main idea underlying this hypothesis is that chemotherapy is less effective on slowly growing tumors. In

particular, if the rate of tumor growth decreases with tumor size, the rate of growth just before a cycle of chemother-

apy starts is lower than the rate of growth right after it, and therefore regrowth might dominate, leading to unsuccessful

treatment. However, when most of the cancer cells are intrinsically insensitive to the drugs, our results suggest that dose-

density might be barely useful, compared to dose escalation. As a rule of thumb, it can be said that dose-density should

be more helpful when cancer cells are very chemosensitive and the regrowth between cycles is considerable, relative to the

destruction caused by the cytotoxic drugs. 



316 Á.G. López, K.C. Iarosz and A.M. Batista et al. / Commun Nonlinear Sci Numer Simulat 70 (2019) 307–317 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is notable that our investigation insinuates that the unresponsiveness of a tumor to chemotherapeutic drugs can be

broadly classified into two categories. The first could be termed intrinsic sensitivity, and depends on all types of biomolec-

ular mechanisms that a single tumor cell possess to circumvent the destructive effects of a cytotoxic drug. In our model,

this sensitivity is represented by the parameter ρ , and leads to the concept of effective dose ρD , which was introduced in

previous works [12] . The second type of sensitivity could be termed extrinsic sensitivity, which emerges as a consequence

of how a tumor organizes as a whole and its morphology. We believe that it is this second class of sensitivity that should be

linked to the Norton-Simon hypothesis and, consequently, the parameter s would model an unresponsiveness of this nature.

To conclude, the results for highly sensitive tumors also point to the fact that the optimal situation should be obtained

when the regrowth between cycles is avoided by increasing the duration of the infusions and administering drugs in an

almost continuous fashion. Since continuous protocols can be too toxic and lead to tachyphylaxis, the present work indi-

cates that perhaps other means of avoiding regrowth between cycles should be devised, instead of increasing the frequency

of the protocol. For example, a good strategy could be to render the tumor cells quiescent after chemotherapeutic drugs

have caused their damage. This could be achieved by means of some targeted cytostatic drug [12] . Then, hours after the

interruption of the cytostatic effects [41] , the cells would abandon the G 0 phase and reenter the cell cycle, to suffer another

destructive wave of cytotoxic chemotherapy. 

Again, the fraction of cells that have survived the treatment σi = P (t nad ) /P (0) at the time when the tumor reaches its

minimum size (nadir) is computed for each protocol p i . Then the same computation is repeated for a 300 × 300 square grid

of values in the parameter set ( s, b ). Finally, the relative destruction between two protocols p i and p j is represented in the

parameter space by computing the natural logarithm (for which the results are the most clear) of the quotient σ i / σ j (color

bar). If log ( σ i / σ j ) > 0 in the color bar, the protocol p j is better than protocol p i . 
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