
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2020106
DYNAMICAL SYSTEMS SERIES B

KINK SOLITARY SOLUTIONS TO A HEPATITIS C

EVOLUTION MODEL

Tadas Telksnys∗ and Zenonas Navickas

Research Group for Mathematical, and Numerical Analysis of Dynamical Systems

Kaunas University of Technology

Studentu 50-147, Kaunas LT-51368, Lithuania

Miguel A. F. Sanjuán

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de F́ısica
Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
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Abstract. The standard nonlinear hepatitis C evolution model described in
(Reluga et al. 2009) is considered in this paper. The generalized differential
operator technique is used to construct analytical kink solitary solutions to the

governing equations coupled with multiplicative and diffusive terms. Condi-
tions for the existence of kink solitary solutions are derived. It appears that

kink solitary solutions are either in a linear or in a hyperbolic relationship.
Thus, a large perturbation in the population of hepatitis infected cells does
not necessarily lead to a large change in uninfected cells. Computational ex-
periments are used to illustrate the evolution of transient solitary solutions in

the hepatitis C model.
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1. Introduction. Recent developments in computer hardware and software enable
to use powerful symbolic computation techniques for the construction of nonlinear
wave solutions to high-dimensional nonlinear evolution equations in mathematical
physics. Solitary (or soliton) solutions represent solitary wave packets that do not
change their shape when propagating at constant velocities [24]. Due to their unique
properties, construction of solitary solutions is an important problem in nonlinear
science [26, 4, 1].

A short overview of typical examples illustrating the discovery of solitary solu-
tions in nonlinear evolution problems is presented below. The dynamic pressure of
an irrotational solitary wave propagating at the surface of water over a flat bed is
studied in [6]. Properties of bright and dark solitary solutions in strongly magne-
tized warm plasmas are considered in [5]. Solitary wave solutions to a system of cou-
pled complex Newell-Segel-Whitehead equations are constructed in [9]. Gray/dark
solitons in nonlocal nonlinear media are analytically studied using the symmetry
reduction method in [8]. A closed-form analytical solution, including bright and
dark solitons, to the driven nonlinear Schrödinger equation is constructed in [22].

Solitary solutions are often encountered in coupled differential equations. Next
we mention several typical examples. Dark-bright soliton solutions to a coupled
Schrödinger system with equal, repulsive cubic interactions are considered in [2].
In [23], exact bright one- and two-soliton solutions to a particular type of coher-
ently coupled Schrödinger equations are constructed using the non-standard Hi-
rota’s bilinearization method. Three families of analytical solitary wave solutions of
generalized coupled cubic-quintic Ginzburg-Landau equations are obtained in [27].

Even though kink solitary solutions are the simplest type of solitons, their con-
struction and analysis is far from being trivial [21]. Kinks and bell-type soliton
solutions to a differential equation describing the dynamics of microtubules are
constructed in [28]. The interaction of kink-type solutions of harmonic map equa-
tions is studied in [7]. The kink solutions to the negative-order KdV equation
are constructed using the Lax pair in [18]. Kink solutions to models of transport
phenomena and mathematical biology are considered in [25].

The main objective of this paper is to seek kink solitary solutions in a hepatitis
C virus infection model [20] that explicitly includes proliferation of infected and
uninfected hepatocytes. The mathematical equations of the model are:

T ′
t̂

= ŝ+ rT T
(

1− T + I
Tmax

)
− dT T − (1− η)βVT + q̂I;

I ′
t̂

= rII
(

1− T + I
Tmax

)
+ (1− η)βVT − dII − q̂I;

V ′
t̂

= (1− ε) pI − cV,

(1)

where t̂ is time; T
(
t̂
)

represents uninfected hepatocytes; I
(
t̂
)

represents infected

cells and V
(
t̂
)

represents free virus population. The parameters of (1) have the

following meaning: p is the free virus production rate per infected cell; c is the
immune virus clearance rate; dT , dI are death rates for uninfected hepatocytes
and infected cells respectively; rT , rI are parameters of the logistic proliferation
of T and I respectively; logistic proliferation happens only if T < Tmax; β is
the rate of infection per free virus per hepatocyte; parameters ŝ and q̂ represent
the increase rate of uninfected hepatocytes through immigration and spontaneous
cure by noncytolytic process respectively; finally the effect of antiviral treatment
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reduces the infection rate by a fraction η and the viral production rate by a fraction
ε. Ranges of parameters are given in [20].

The third equation of system (1) can be explicitly solved for V if patients are in
a steady state before treatment. The introduction of dimensionless state variables
x and y for uninfected and infected cells respectively reduces (1) to:

x′τ = x (1− x− y)− (1− θ) bxy + qy + s;

y′τ = ry (1− x− y) + (1− θ) bxy − dy − qy.
(2)

Note that (2) can be rearranged in the general form:

x′τ = a0 + a1x+ a2x
2 + a3xy + a4y; x

∣∣∣∣∣
τ=c

= u;

y′τ = b0 + b1y + b2y
2 + b3xy + b4x; y

∣∣∣∣∣
τ=c

= v,

(3)

where c, u, v, ak, bk ∈ R, k = 1, . . . , 4. System (3) is comprised of Riccati equations
[19] coupled with both multiplicative and diffusive terms.

It appears that models (2) and (3) are natural extensions of the competing species
evolution model with the Allee effect [12, 3]. Furthermore, similar evolution models
are at the forefront of the analysis of population dynamics in many fields of research
[11]. Thus, insight into the evolutionary dynamics of (3) would be valuable for
understanding of transient processes in the hepatitis C model as well.

It has already been demonstrated that in the case a4 = b4 = 0, system (3) does
admit both kink and bright/dark solitary solutions [14, 16]. The aim of this paper
is to construct kink solitary solutions to (3) when parameters a4, b4 are nonzero.
Existence conditions in the space of the system parameters and explicit expressions
of kink solutions are obtained using the generalized differential operator method.

2. Preliminaries.

2.1. Kink solitary solutions. Kink solitary solutions have the following form
[24, 17, 15]:

x (τ ; c, u, v) = σ
exp

(
η(τ − c)

)
− x1

exp
(
η(τ − c)

)
− τx

; (4)

y (τ ; c, u, v) = γ
exp

(
η(τ − c)

)
− y1

exp
(
η(τ − c)

)
− τy

, (5)

where σ, γ, τx, τy, x1, y1 are functions of initial conditions u, v; η ∈ R. To simplify
the analysis of (4), (5), the standard substitution

t := exp (ητ) , ĉ := exp (ηc) ; (6)

is used to transform (4), (5) into:

x̂ (t; ĉ, u, v) = x

(
1

η
ln t;

1

η
ln c, u, v

)
= σ

t− x̂1

t− tx
; (7)

ŷ (t; ĉ, u, v) = y

(
1

η
ln t;

1

η
ln c, u, v

)
= γ

t− ŷ1

t− ty
, (8)
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where tx, ty, x̂1, ŷ1 depend on ĉ, u, v. Furthermore (7) and (8) can be rearranged as:

x̂ = λ1 +
λ2

1− ρx (t− ĉ)
; (9)

ŷ = µ1 +
µ2

1− ρy (t− ĉ)
, (10)

with λk = λk (ĉ, u, v) , µk = µk (ĉ, u, v) , ρx = ρx (ĉ, u, v) , ρy = ρy (ĉ, u, v).
In the remainder of this paper, kink solutions written in the form (9),(10) will

be considered.

2.2. Operator expression of solutions to systems of nonlinear ODEs. Let
P,Q be trivariate analytic functions. Consider the following system of differential
equations:

x̂′t = P (t, x̂, ŷ) ; x̂

∣∣∣∣∣
t=ĉ

= u;

ŷ′t = Q (t, x̂, ŷ) ; ŷ

∣∣∣∣∣
t=ĉ

= v.

(11)

The generalized differential operator with respect to system (11) is defined as [14]:

Dĉuv := Dĉ + P (ĉ, u, v)Du +Q (ĉ, u, v)Dv, (12)

where Dĉ,Du,Dv are partial differentiation operators with respect to the indexed
variables. Note that standard properties of differential operators [13] do hold for
(12).

The general solution to Eq.(11), [14, 13], takes the following form:

x̂ =

+∞∑
j=0

(t− ĉ)j

j!
Dj
ĉuvu; ŷ =

+∞∑
j=0

(t− ĉ)j

j!
Dj
ĉuvv. (13)

Note that D0
ĉuv = I, where I is the identity operator.

3. Existence conditions for kink solutions to (11). Let

pj := Dj
ĉuvu; qj = Dj

ĉuvv, j = 0, 1, . . . . (14)

Note that the functions pj = pj (ĉ, u, v) ; qj = qj (ĉ, u, v) satisfy recurrence relations
pj+1 = Dĉuvpj ; qj+1 = Dĉuvqj . Furthermore, (13) and (14) yield:

x̂ =

+∞∑
j=0

(t− ĉ)j

j!
pj ; (15)

ŷ =

+∞∑
j=0

(t− ĉ)j

j!
qj . (16)

If (11) admits the solution (9),(10) then (15) and (9) must be equal, so that:

+∞∑
j=0

(t− ĉ)j

j!
pj = λ1 +

λ2

1− ρx (t− ĉ)
. (17)
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Expanding the right side of (17) results in:

+∞∑
j=0

(t− ĉ)j

j!
pj = λ1 + λ2 +

+∞∑
j=1

(t− ĉ)j

j!

(
j!λ2ρ

j
x

)
. (18)

Equality (18) together with p0 = u yields:

u = λ1 + λ2; (19)

pj = j!λ2ρ
j
x, j = 1, 2, . . . . (20)

Analogously, (16) and (10) yield:

v = µ1 + µ2; (21)

qj = j!µ2ρ
j
y, j = 1, 2, . . . . (22)

Theorem 3.1. System (11) admits kink solitary solutions (9) and (10) if and only
if the following conditions hold true for all values of ĉ, u, v:

λ2 =
p1

ρx
, ρx 6= 0; µ2 =

q1

ρy
, ρy 6= 0; (23)

Dĉuvρx = ρ2
x; Dĉuvρy = ρ2

y; (24)

Dĉuvλ2 = λ2ρx; Dĉuvµ2 = µ2ρy. (25)

Proof. Derivations presented in Section 3 yield that system (11) admits kink solitary
solutions if and only if (20) and (22) hold true. Thus it will be proven that conditions
(23)–(25) are necessary and sufficient for (20) and (22) to hold true.
Necessity. Let (20) hold true. Taking j = 1, 2 results in:

p1 = λ2ρx; (26)

p2 = 2λ2ρ
2
x. (27)

Solving (26) for λ2 yields (23). Solution to (27) for ρx together with (23) results in:

ρx =
p2

2p1
, p1 6= 0. (28)

Equation (28) results in (24):

Dĉuvρx =
2p1 (Dĉuvp2)− 2p2 (Dĉuvp1)

4p2
1

=
12λ2

2ρ
4
x − 8λ2

2ρ
4
x

4λ2
2ρ

2
x

= ρ2
x. (29)

Analogously, (23) yields (25):

Dĉuvλ2 = Dĉuv
p1

ρx
=
ρx (Dĉuvp1)− p1 (Dĉuvρx)

ρ2
x

=
2λ2ρ

3
x − λ2ρ

3
x

ρ2
x

= λ2ρx. (30)

Sufficiency. Condition (23) yields:

p1 = λ2ρx. (31)

Applying the operator Dĉuv to (31) and using (24) and (25) yields:

p2 = Dĉuv (λ2ρx) = ρx (Dĉuvλ2) + λ2 (Dĉuvρx) = 2λ2ρ
2
x. (32)

Thus, continuing by induction, if pj = j!λ2ρ
j
x, then:

pj+1 = Dĉuv

(
j!λ2ρ

j
x

)
= j!

(
ρjx (Dĉuvλ2) + jλ2ρ

j−1
x (Dĉuvρx)

)
= j!

(
λ2ρ

j+1
x + jλ2ρ

j+1
x

)
= (j + 1)!λ2ρ

j+1
x ,

(33)

which finishes the proof.
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Corollary 1. Equations (19) and (28) yield:

λ1 = u− 2p2
1

p2
, (34)

furthermore:

Dĉuvλ1 = Dĉuvu−Dĉuvλ2 = 0. (35)

Analogous relations hold for µ1.

Corollary 2. Let (20) hold true. Then:

2p1p3 − 3p2
2 = 0. (36)

Equivalently, (22) results in:

2q1q3 − 3q2
2 = 0. (37)

4. Construction of kink solutions to (3). Results of Theorem 3.1 are used to
determine existence conditions of kink solutions to (3) in this section. Furthermore,
explicit expressions of kink solutions are given in terms of the system’s parameters.

4.1. Transformation of (3). Applying transformation (6) to (3) results in the
following system:

ηtx̂′t = a0 + a1x̂+ a2x̂
2 + a3x̂ŷ + a4ŷ;

ηtŷ′t = b0 + b1ŷ + b2ŷ
2 + b3x̂ŷ + b4x̂.

(38)

System (38) is subject to initial conditions:

x̂

∣∣∣∣∣
t=ĉ

= u; ŷ

∣∣∣∣∣
t=ĉ

= v. (39)

4.2. Derivation of existence conditions of kink solutions to (3). The gen-
eralized differential operator Dĉuv with respect to (38) reads:

Dĉuv :=Dĉ +
1

ηĉ

(
a0 + a1u+ a2u

2 + a3uv + a4v
)
Du

+
1

ηĉ

(
b0 + b1v + b2v

2 + b3uv + b4u
)
Dv.

(40)

The conditions of Theorem 3.1 can only be satisfied for special values of parameters
η; a0, . . . , a4; b0, . . . , b4. Derivation of these parameter values is given in the following
subsection.

4.2.1. Computation of parameter η. Coefficients pj , qj ; j = 1, 2, 3 are computed us-
ing (14) and (40). Note that to satisfy Theorem 3.1, η must also satisfy Corollary
2. Equations (36), (37) result in the following system:

2p1p3 − 3p2
2 = 0; (41)

2q1q3 − 3q2
2 = 0. (42)

Values of η can be computed from (41) and (42) using computer algebra. First it
can be noted that (41) and (42) have the following structure:

Ap(u, v)η2 +Bp(u, v) = 0; (43)

Aq(u, v)η2 +Bq(u, v) = 0, (44)
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where Ap, Aq, Bp, Bq are known functions of u, v. Equation (43) yields:

η2 = −Bp(u, v)

Ap(u, v)
. (45)

If the parameter η is not a function of ĉ, u, v, then the kink solution definition holds
true. Furthermore, if η does not depend on ĉ, u, v sufficient conditions of Theorem
3.1 hold true.

Long division of (45) results in:

η2 = Sp(u, v) +
Rp(u, v)

Ap(u, v)
. (46)

Analogously, (44) yields:

η2 = Sq(u, v) +
Rq(u, v)

Aq(u, v)
. (47)

Parameter η does not depend on u, v only if a0, . . . , a4; b0, . . . , b4 are chosen in
such a way that Sp = Sq are independent of u, v and

Rp = Rq = 0. (48)

4.2.2. Solution of (48). Remainder Rp has the following structure:

Rp =
1

a2
2

u3
3∑
j=0

c3jv
j + u2

4∑
j=0

c2jv
j + u

4∑
j=0

c1jv
j +

4∑
j=0

c0jv
j

 , (49)

where coefficients ckj depend only on a0, . . . , a4; b0, . . . , b4. Equations (48) and (49)
result in the following system of 19 algebraic equations:

c3j = 0, j = 0, . . . , 3;

ckj = 0, k = 0, 1, 2, j = 0, . . . , 4.
(50)

Solution to (50) reads:

a0 =
a4 (a1a3 − a2a4)

a2
3

; (51)

b0 = −a
2
1a

2
3b3 − a1a2a

2
3b1 − 2a1a2a3a4b3 + a2

2a3a4b1 + a2
2a

2
4b3

a2a3
3

; (52)

b2 =
a3b3
a2

; (53)

b4 = −a1a3b3 − a2a3b1 − a2a4b3
a2

3

. (54)

Inserting (51)–(54) into Rq results in Rq = 0, thus (48) is satisfied.

4.2.3. Final solution for η. Inserting (51)–(54) into Sp, Sq yields:

Sp =
2a3b3 (a2 − b3)

a2
uv +

a2
3

(
a2

2 − b23
)

a2
2

v2 − 2 (a2 − b3) (a1a3b3 − a2a3b1 − a2a4b3)

a2a3
u

+
2
(
a1a2a3 + a1a3b3 − 2a2

2a4 − a2a4b3
)

(a2 − b3)

a2
2

v

+
1

a2
2a

2
3

(
a2

1a
2
2a

2
3 + 3a2

1a
2
3b

2
3 − 4a1a

3
2a3a4 − 2a1a

2
2a3a4b3
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− 4a1a2a
2
3b1b3 − 6a1a2a3a4b

2
3 + 4a4

2a
2
4 + 2a3

2a3a4b1 + 2a3
2a

2
4b3 + a2

2a
2
3b

2
1

+ 4a2
2a3a4b1b3 + 3a2

2a
2
4b

2
3

)
;

(55)

and

Sq = −2a3 (a2 − b3)uv +
(
b23 − a2

2

)
u2 − 2 (a2 − b3)

a2a3

×
(
−a4a

2
2 +

(
(a1 − b1) a3 − 2a4b3

)
a2 + 2a1a3b3

)
u− 2a4 (a2 − b3) v

+
1

a2
3a

2
2

(
4a2

1a
2
3b

2
3 − 2a1a

3
2a3a4 − 2a1a

2
2a3a4b3 − 4a1a2a

2
3b1b3

− 8a1a2a3a4b
2
3 + 3a4

2a
2
4 + 2a3

2a3a4b1 + 2a3
2a

2
4b3 + a2

2a
2
3b

2
1 + 4a2

2a3a4b1b3

+ 4a2
2a

2
4b

2
3

)
.

(56)

From (55) and (56) it follows that Sp, Sq are equal and do not depend on u, v in
the following two cases:

Case 1. If

b3 = a2, (57)

then

η2 = Sp = Sq =

(
2a1a3 − 3a2a4 − a3b1

a3

)2

. (58)

Conditions (51)–(54) read:

a0 =
a4 (a1a3 − a2a4)

a2
3

; (59)

b0 = − (a1a3 − a2a4) (a1a3 − a2a4 − a3b1)

a3
3

; (60)

b2 = a3; (61)

b4 =
a2 (a2a4 + a3b1 − a1a3)

a2
3

. (62)

Note that coefficients ak and bk can be interchanged in (57)–(62) because of sym-
metry.

Case 2. If b3 = −a2 then (55) and (56) read:

η2 = Sp = Sq = −4a2a3uv +
4
(
(a1 + b1) a3 − a2a4

)
a2

a3
u− 4a2a4v

+
4
(
a1 + b1

2

)2

a2
3 − 8a4a2

(
a1 + b1

2

)
a3 + 5a2

4a
2
2

a2
3

.

(63)

From (63) it follows that Sp, Sq is independent of u, v only if:

b3 = a2 = 0. (64)

Condition (64) transforms (63) into:

η2 = (b1 + 2a1)
2
. (65)
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Conditions (51)–(54) read:

a0 =
a1a4

a3
; (66)

b0 =
a1 (a1 + b1)

a3
; (67)

b2 = −a3; (68)

b4 = 0. (69)

4.3. Kink solutions in linear relationship.

Theorem 4.1. System (38) admits kink solitary solutions for all initial conditions
ĉ, u, v if the parameters η; a0, . . . , a4; b0, . . . , b4 satisfy the following relations:

η = ±2a1a3 − 3a2a4 − a3b1
a3

; (70)

b2 = a3; a2 = b3; (71)

b4 (b1b3 − b2b4) = b0b
2
3; (72)

a2 (a1a3 − a2a4) = b2 (b1b3 − b2b4) ; (73)

a0a3b4 = b0b3a4. (74)

Proof. Let (57), (59)–(62) hold true. Equation (70) follows from (58).

1. Let us consider the (+) branch of (70).
Condition (28) yields:

ρx = ρy =
a2

3v + a3b3u− a1a3 + a3b1 + 2a4b3
ĉ (2a1a3 − a3b1 − 3a4b3)

. (75)

Applying operator (40) to (75) results in (24).
Condition (23) yields values of λ2, µ2:

λ2 =
(a3u+ a4)

(
va2

3 + (b3u+ a1) a3 − a4b3
)

a3

(
va2

3 + (b3u− a1 + b1) a3 + 2a4b3
) ; (76)

µ2 =

(
va2

3 + (b1 − a1) a3 + a4b3
) (
va2

3 + (b3u+ a1) a3 − a4b3
)

a2
3

(
va2

3 + (b3u− a1 + b1) a3 + 2a4b3
) . (77)

From (76), (77) and (40) it follows that (25) holds true. Thus, (38) admits
kink solutions.

2. For the (−) branch of (70) steps of the proof are repeated, yielding:

ρx = ρy =
a4b3 − a1a3 − a3b3u− a2

3v

ĉ (2a1a3 − a3b1 − 3a4b3)
; (78)

λ2 =
1

a3
(a3u+ a4) ; µ2 =

1

a2
3

(
a4b3 + a3b1 − a1a3 + a2

3v
)
. (79)

Conditions (24) and (25) hold true for (78) and (79).

It can be shown that symmetric conditions (71)–(74) are equivalent to (57),
(59)–(62). Relations (59) and (62) can be rewritten as:

a1a3 − a2a4 =
a0a

2
3

a4
; (80)

a1a3 − a2a4 = a3b1 −
b4a

2
3

a2
. (81)
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Inserting (80) and (81) into (60) yields:

b0 =
a0b4a3

a2a4
, (82)

which results in (74).
Equation (81) together with (71) yields (73), which can be rewritten as:

b1b3 − b2b4 =
a2

b2
(a1a3 − a2a4) . (83)

Using (80) and (71) transforms (83) into:

b1b3 − b2b4 =
b0b

2
3

b4
, (84)

that results in (72).

Corollary 3. It follows from subsection 4.1 that system (3) admits kink solutions
of the form (4), (5) when conditions of Theorem 4.1 hold true. Parameters of (4),
(5) read:

σ = λ1; γ = µ1; (85)

τx = τy =
1 + ĉρx
ĉρx

; (86)

x1 =
1

ĉρxλ1

(
λ1 (1 + ĉρx) + λ2

)
; (87)

y1 =
1

ĉρxµ1

(
µ1 (1 + ĉρx) + µ2

)
, (88)

where ρx, λ2, µ2 are given by (75), (76) and (77) or (78) and (79) depending on the
sign of η. Parameters λ1, µ1 are defined in Corollary 1.

Note that ĉρx = ĉρy does not depend on ĉ, thus (85)–(88) depend only on initial
conditions u, v. Also note that cases with positive and negative signs of η are
interchangeable, because:

x = σ
exp

(
η(τ − c)

)
− x1

exp
(
η(τ − c)

)
− τx

=
σx1

τx

exp
(
−η (τ − c)

)
− 1

x1

exp
(
−η (τ − c)

)
− 1

τx

. (89)

Analogous rearrangements also hold true for y. Thus in further computations only
one sign of η can be considered.

Corollary 4. Let conditions of Theorem 4.1 hold true. Kink solutions to (3) satisfy
the following linear relationship:

Ax(τ) +By(τ) = 1, (90)

where

A =
a1a3 − a3b1 − a4b3 − a2

3v

(a1a3 − a3b1 − a4b3)u+ a3a4v
; (91)

B =
a3 (a3u+ a4)

(a1a3 − a3b1 − a4b3)u+ a3a4v
. (92)

Proof. Equation (4), (5) yields:

Ax(τ) +By(τ) =
(Aσ +Bγ) exp

(
η (τ − c)

)
− (Aσx1 +Bγy1)

exp
(
η (τ − c)

)
− τx

. (93)
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Kink solutions are in linear relationship (90) if:

Aσ +Bγ = 1;

Aσx1 +Bγy1 = τx.
(94)

Solution of (94) together with (85)–(88) result in (91) and (92).

Corollary 4 demonstrates that all phase plane trajectories of the system (3) are
straight lines if the conditions of Theorem 4.1 hold true.

4.4. Kink solutions in hyperbolic relationship.

Theorem 4.2. System (38) admits kink solitary solutions for all initial conditions
ĉ, u, v if (64), (66)–(69) hold true and

η = −b1 − 2a1. (95)

Proof. Let (64), (66)–(69) hold true. It follows from (65) that:

η = ± (b1 + 2a1) . (96)

1. Let us consider the (+) branch of (96). It can be obtained that pj = 0, j =
2, 3, . . ., thus by Theorem 3.1 x̂ cannot be a solitary solution.

2. Considering the (−) branch of (96) yields the following parameters:

ρx = −1

ĉ
; ρy =

a3v − a1 − b1
ĉ (b1 + 2a1)

; (97)

λ2 =
(a3v + a1) (a3u+ a4)

a3 (b1 + 2a1)
; µ2 =

a3v + a1

a3
. (98)

The conditions of Theorem 3.1 are satisfied for (97), (98), which finishes the
proof.

Remark 1. Note that analytical non-kink solutions do exist for η = b1 + 2a1.
Equation (15) yields that x̂ is a linear functions of t:

x̂ =
(a3u+ a4)

(
(a3v + a1) t− (a3v − a1 − b1) ĉ

)
ĉa3 (b1 + 2a1)

− a4

a3
, (99)

while ŷ is a kink solution with the following parameters:

ρy = − a3v + a1

ĉ (b1 + 2a1)
, µ2 =

a3v − a1 − b1
a3

, µ1 =
a1 + b1
a3

. (100)

Corollary 5. When conditions of Theorem 4.2 hold true, system (3) admits kink
solutions of the form (4), (5) with the following parameters:

σ = λ1; γ = µ1; (101)

τx = 0; (102)

τy =
1 + ĉρy
ĉρy

; (103)

x1 =
1

ĉρxλ1

(
λ1 (1 + ĉρx) + λ2

)
; (104)

y1 =
1

ĉρxµ1

(
µ1 (1 + ĉρx) + µ2

)
, (105)

where ρx, ρy, λ2, µ2 are given in (97) and (98) and λ1, µ1 are computed as in Corol-
lary 1.
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Corollary 6. If conditions of Theorem 4.2 hold true, then kink solutions x, y to
(3) satisfy the following hyperbolic relationship:

x (τ) y (τ)− a1 + b1
a3

x (τ) +
a4

a3
y (τ) = uv − a1 + b1

a3
u+

a4

a3
v. (106)

Proof. Let B,C be unknown coefficients. Equations (101)–(105) together with (4),
(5) result in:

x (τ) y (τ)−Bx (τ)− Cy (τ)− uv +Bu+ Cv

=

(
1−exp(η(t−c))

)
(a3v+a1)

(
(a1+b1−a3v)Ξ(B,C) exp(η(t−c))+(a3v+a1)(a3u+a4)Θ(B,C)

)
a23η exp(η(t−c))

(
(a1+b1−a3v)

(
exp(η(t−c))+a3v+a1

)) ,

(107)

where

Ξ (B,C) = −Bua2
3 −

(
(2C + u) a1 + (C + u) b1 + a4B

)
a3 + a1a4; (108)

Θ (B,C) = Ba3 + a1 + b1. (109)

Solving Ξ = 0,Θ = 0 for B,C finishes the proof.

Corollary 6 shows that all phase plane trajectories of system (3) are hyperbolas
when conditions of Theorem 4.2 hold true.

5. Computational experiments.

5.1. Kink solutions in linear relationship.

5.1.1. Equilibria. Let the conditions of Theorem 4.1 hold true. Equilibrium points
of system (3) are given by:

x
(1)
∗ = −a4

a3
, y

(1)
∗ =

a1a3 − a2a4 − a3b1
a2

3

= −b4
b3

; (110)

b2x
(2)
∗ + a2y

(2)
∗ = −a0a3

a4
. (111)

Note that (111) describes infinitely many equilibria that lie on a straight line.

5.1.2. Construction of kink solutions. Let us consider the following system:

x′τ = −3

8
+ 2x− 2x2 + 4xy − 3y;

y′τ = − 3

16
− y + 4y2 − 2xy +

3

4
x;

x

∣∣∣∣∣
τ=c

= u, y

∣∣∣∣∣
τ=c

= v.

(112)

Using transformation (6) on (112) results in:

ηtx̂′t = −3

8
+ 2x̂− 2x̂2 + 4x̂ŷ − 3ŷ;

ηtŷ′t = − 3

16
− ŷ + 4ŷ2 − 2x̂ŷ +

3

4
x̂;

x̂

∣∣∣∣∣
t=ĉ

= u, ŷ

∣∣∣∣∣
t=ĉ

= v.

(113)
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Coefficients of (112) satisfy (71)–(74). Equation (70) yields:

η = ±1

2
. (114)

By (89), it is enough to consider η = − 1
2 to obtain all solutions to (112).

(a) (b)

Figure 1. Kink solutions x̂, ŷ to (112) with ĉ = 1. The black line
denotes x̂ (t); the gray line denotes ŷ (t). In (a), u = 10, v = −4; in
(b), u = −2, v = 0.

By Theorem 4.1, the parameters of kink solutions to (113) read:

λ1 =
3

4
; λ2 = u− 3

4
; (115)

µ1 =
3

8
; µ2 = v − 3

8
; (116)

ρx = ρy =
1

ĉ
(4u− 8v − 1) . (117)

Kink solutions x̂, ŷ to (113) are depicted in Fig. 1.
Parameters of kink solutions of the form (4), (5) read:

σ =
3

4
; γ =

3

8
; τx = τy =

4u− 8v

4u− 8v − 1
(118)

x1 =
4 (16u− 24v − 3)

12 (4u− 8v − 1)
; y1 =

8 (12u− 16v − 3)

24 (4u− 8v − 1)
. (119)

Kink solutions x, y with parameters (118), (119) are depicted in Fig. 2. Note that
Fig. 2 (a) and (b) correspond to Fig. 1 (a) and (b), since c = 1

η ln ĉ.

Note that by Corollary 4, kink solutions do satisfy the following linear relation-
ship:

3− 8v

3u− 6v
x+

8u− 6v

3u− 6v
y = 1. (120)

The phase plane of (112) is depicted in Fig. 3. Because (120) holds true, all phase
plane trajectories of (112) are straight lines. Note that the equilibrium point defined
by (110) is an unstable node. The equilibrium line defined by (111) is attractive
on the half-plane that does not contain the unstable node. On the half plane that
does contain the unstable node, the line is repulsive.
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(a) (b)

Figure 2. Kink solutions x, y to (112) with c = 0. The black line
denotes x (τ); the gray line denotes y (τ). In (a), u = 10, v = −4;
in (b), u = −2, v = 0.

Because kink solutions are in linear relationship, a perturbation in infected cell
population y leads to a proportional perturbation in uninfected cell population x. In
Fig. 3, as solutions evolve from point A to B, y increases by 0.46 while x decreases
by 1.09.

5.1.3. Control of system parameters. Consider the following system:

x′τ = −3

8
+ a1x+ b3x

2 + 4xy + a4y;

y′τ = − 3

16
+ b1y + 4y2 + b3xy +

3

4
x;

x

∣∣∣∣∣
τ=c

= u, y

∣∣∣∣∣
τ=c

= v,

(121)

where a1, a3, a4, b1 ∈ R. Condition (71) of Theorem 4.1 is satisfied. System (121)
admits kink solitary solutions if (72)–(74) hold true:

3

4
b1b3 −

9

4
= − 3

16
b23; (122)

b3 (4a1 − b3a4) = 4b1b3 − 12; (123)

− 9

8
= − 3

16
b3a4. (124)

Since (122)–(124) contain parameter b3, this parameter can be designated as the
control parameter for the existence of kink solitary solutions. Solving (122)–(124)
with respect to b1, a1, a4 yields:

b1 =
12− b23

4b3
; (125)

a1 =
3

2
− 1

4
b3; (126)

a4 =
6

b3
. (127)
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Figure 3. Phase plot of (112). Black lines denote kink solution
trajectories. The gray circle denotes the unstable node (110). The
gray dashed line denotes the equilibrium line (111). Gray arrows
denote the direction field. The dotted line illustrates that pertur-
bations in infected cell population y lead to proportional changes
in uninfected cell population x. As the solution evolves from point
A to B, y increases by 0.46, while x decreases by 1.09.

Condition (125) can be illustrated by the following numerical experiment. Let
x̃ (τ ; c, u, v; a1, a4, b1, b3), ỹ (τ ; c, u, v; a1, a4, b1, b3) denote the numerical solution of
(121) obtained by a forward constant-step integrator for arbitrary values of a1, a4, b1,
b3. Error ∆ between the numerical solution and kink solution x (τ ; c, u, v; a1, a4, b1,
b3), y (τ ; c, u, v; a1, a4, b1, b3) in the form (4), (5) with parameters defined in Corol-
lary 3 reads:

∆ (a1, a4, b1, b3) =

N∑
j=0

( ∣∣x̃ (c + jh; c, u, v; a1, a4, b1, b3) − x (c + jh; c, u, v; a1, a4, b1, b3)
∣∣

+
∣∣ỹ (c + jh; c, u, v; a1, a4, ; b1, b3) − y (c + jh; c, u, v; a1, a4, b1, b3)

∣∣ ),
(128)

where h is the integrator step size; c, u, v are any fixed initial conditions. Plot of
error (128) when (126) and (127) hold true is given in Fig. 4. Note that the error
is almost zero on the hyperbola defined by (125), which verifies results of Theorem
(4.1). Analogous plots generated for conditions (126) and (127) are depicted in
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20

∆

1.5
1

-20 0.5

b3

0
-40 -0.5

-1
-1.5-60

-2

10

Figure 4. Plot of error (128) for c = 0, u = 5, v = 1. Conditions
(126) and (127) hold true. The step size h is 10−4; error is estimated
over N = 100 steps. Errors higher than 10 are truncated to 10 for
clarity. Note that the error is almost zero on the curve defined by
(125).

Fig. 5 and 6. The classical Runge-Kutta 4th order method [10] is used to generate
numerical solutions to (121).

5.2. Kink solutions in hyperbolic relationship.

5.2.1. Equilibria. Let Theorem 4.2 hold true. Equilibria of (3) read:

x
(1)
∗ = −a4

a3
, y

(1)
∗ =

a1 + b1
b3

; (129)

x
(2)
∗ = α, y

(2)
∗ = −a1

a3
, α ∈ R. (130)

As in Subsection 5.1.1, (130) denotes a straight line of equilibrium points.

5.2.2. Construction of kink solutions. Consider the following system:

x′τ = 3 + 2x+ 2xy + 3y;

y′τ = 3 + y − 2y2;

x

∣∣∣∣∣
τ=c

= u, y

∣∣∣∣∣
τ=c

= v.

(131)

Using transformation (6) on (112) results in:

ηtx̂′t = 3 + 2x̂+ 2x̂ŷ + 3ŷ;

ηtŷ′t = 3 + ŷ − 2ŷ2;

x̂

∣∣∣∣∣
t=ĉ

= u, ŷ

∣∣∣∣∣
t=ĉ

= v.

(132)
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Figure 5. Plot of error (128) for c = 0, u = 5, v = 1. Conditions
(125) and (127) hold true. The step size h is 10−3; error is estimated
over N = 30 steps. Errors higher than 2 are truncated to 2 for
clarity. Note that the error is almost zero on the line defined by
(126).

Theorem 4.2 yields the parameters of kink solutions to (132):

λ1 = −1

5
(2uv − 3u+ 3v + 3) ; λ2 =

1

5
(v + 1) (2u+ 3) ; (133)

µ1 = −1; µ2 = 1 + v; ρx = −1

ĉ
; ρy =

2v − 3

5ĉ
. (134)

Kink solutions to (132) are depicted in Fig. 7.
Corollary 5 yields that the above system has kink solutions (3) with the following

parameters:

η = −5; σ = −1

5
(2uv − 3u+ 3v + 3) ; γ = −1; τx = 0; (135)

τy =
2v + 2

2v − 3
; x1 =

2uv + 2u+ 3v + 3

2uv − 3u+ 3v + 3
; y1 = −3v + 3

2v − 3
. (136)

Kink solutions to (131) are depicted in Fig. 8.
The phase plane of (131) can be seen in Fig. 9. Note that by Corollary 5, all

solutions to (131) correspond to kink solutions in hyperbolic relationship:

xy − 3

2
x+

3

2
y = uv − 3

2
u+

3

2
v, (137)

thus all phase trajectories are hyperbolas. Point (129) is a saddle point and the line
(130) is repulsive in both half-planes.
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Figure 6. Plot of error (128) for c = 0, u = 5, v = 1. Conditions
(125), (126) hold true. The step size h is 10−3; error is estimated
over N = 30 steps. Errors higher than 100 are truncated to 100 for
clarity. Note that the error is almost zero on the hyperbola defined
by (127).

(a) (b)

Figure 7. Kink solutions to (132) with ĉ = 1. The black line
denotes x̂ (t); the gray line denotes ŷ (t). In (a), u = 4, v = 1; in
(b), u = −5, v = 2.

Note that if one kink solution is perturbed by an infinitesimal amount, the other
solution can exhibit non-infinitesimal changes. For example, in Fig. 9, the vari-
able representing infected cells y has been decreased by 5.19 from point A to B,
which results in an increase of 0.39 in the variable representing uninfected cells x.
Such instability under perturbations is observed for all systems (3) that satisfy the
conditions of Theorem 4.2.
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(a) (b)

Figure 8. Kink solutions to (131) with c = 0. The black line
denotes x (τ); the gray line denotes y (τ). In (a), u = 4, v = 1; in
(b), u = −5, v = 2.

6. Concluding remarks. Kink solitary solutions to a generalized system of hep-
atitis C evolution equations (3) coupled with both diffusive and multiplicative terms
have been constructed in this paper. The generalized differential operator enabled
the derivation of explicit existence conditions for kink solutions in terms of the
system’s parameters and the construction of general solutions to (3).

It has been shown that kink solutions to (3) hold for all initial conditions and
can be in either linear or hyperbolic relationship. If kink solutions are in linear
relationship, an infinitesimal perturbation of infected cell population results in an
infinitesimal perturbation of uninfected cell population. However, if solutions are
in hyperbolic relationship the former statement does not hold true – a large pertur-
bation of infected cell population can lead to a infinitesimal alteration of uninfected
cell population or vice versa. Such perturbation effects provide valuable insight into
hepatitis C and other population evolution models.
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[11] A. G. López, J. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor
growth including tumor-host interaction, cell-mediated immune response and chemotherapy,

Bull. Math. Biol., 76 (2014), 2884–2906.

http://dx.doi.org/10.1063/1.4962846
http://dx.doi.org/10.1063/1.4962846
http://www.ams.org/mathscinet-getitem?mr=MR3631742&return=pdf
http://dx.doi.org/10.1016/j.na.2017.01.009
http://www.ams.org/mathscinet-getitem?mr=MR1303079&return=pdf
http://dx.doi.org/10.1063/1.530642
http://dx.doi.org/10.1063/1.530642
http://www.ams.org/mathscinet-getitem?mr=MR3526741&return=pdf
http://dx.doi.org/10.1088/0253-6102/64/6/665
http://dx.doi.org/10.1088/0253-6102/64/6/665
http://www.ams.org/mathscinet-getitem?mr=MR3508102&return=pdf
http://dx.doi.org/10.1016/j.cnsns.2016.04.034
http://dx.doi.org/10.1016/j.cnsns.2016.04.034
http://www.ams.org/mathscinet-getitem?mr=MR1127425&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3276452&return=pdf
http://dx.doi.org/10.1007/s11538-014-0037-5
http://dx.doi.org/10.1007/s11538-014-0037-5


KINK SOLUTIONS TO A HEPATITIS C MODEL 21

[12] H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,
Trends Ecol. Evol., 16 (2001), 295–300.

[13] Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by

standard functions, Math. Model. Anal., 11 (2006), 399–412.
[14] Z. Navickas, R. Marcinkevicius, T. Telksnys and M. Ragulskis, Existence of second order

solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA.
J. Appl. Math., 81 (2016), 1163–1190.

[15] Z. Navickas, M. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of non-

linear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016),
333–338.

[16] Z. Navickas, R. Vilkas, T. Telksnys and M. Ragulskis, Direct and inverse relationships between

Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297–313.
[17] A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential

Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.

[18] Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions,
Europhys. Lett., 94 (2011), 50003.

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86,

Academic Press, New York-London, 1972.
[20] T. C. Reluga, H. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models

with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999–1023.
[21] M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in

Physics, Springer-Verlag, Berlin, 1999.

[22] W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency
combs, Scientific Reports, 6 (2016).

[23] K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger

equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp.
[24] A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005.

[25] V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions

of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2
(2006), 15pp.

[26] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathe-

matics, Springer-Verlag, New York, 2001.
[27] G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic

Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013).
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