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a b s t r a c t 

In dynamical systems, basins of attraction connect a given set of initial conditions in phase 

space to their asymptotic states. The basin entropy and related tools quantify the unpre- 

dictability in the final state of a system when there is an initial perturbation or uncertainty 

in the initial state. Based on the basin entropy, the ln 2 criterion allows for efficient testing 

of fractal basin boundaries at a fixed resolution. Here, we extend this criterion into a new 

test with improved sensitivity that we call the S bb fractality test . Using the same single 

scale information, the S bb fractality test allows for the detection of fractal boundaries in 

many more cases than the ln 2 criterion. The new test is illustrated with the paradigmatic 

driven Duffing oscillator, and the results are compared with the classical approach given 

by the uncertainty exponent. We believe that this work can prove particularly useful to 

study both high-dimensional systems and experimental basins of attraction. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

1. Introduction 

Dynamical systems often show multistability with the coexistence of several asymptotic states, known as attractors [1] . 

In dissipative systems, the set of initial conditions that asymptotically approach an attractor is called the basin of attrac- 

tion [2] . In open Hamiltonian systems, instead of attractors we have exits, and consequently the initial conditions leaving

the system by these exits are their escape basins [3] . In both cases, basin boundaries can either be smooth or fractal curves.

Under repeated enlargement, fractal boundaries reveal new structures at arbitrarily small scales. This leads to non-integer 

dimensions and it is often considered as one of the hallmarks of chaos [4,5] . The existence of fractal basin boundaries is

profoundly intertwined with the unpredictability under uncertainty in the initial state of the orbit’s attractor; this is the 

facet of chaos we aim to study here. 

The classical method for studying the lack of predictability of a multistable system is via the uncertainty exponent α [6] .

Basically, it measures the fractal dimension of the boundaries counting the number of boxes that lie between basins at 

different scales. The uncertainty exponent ranges from zero for the most unpredictable basins to one for smooth boundaries. 

Nonetheless, the uncertainty exponent presents some unavoidable numerical difficulties, such as accessing arbitrarily small 
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scales or exploring multiple box sizes. Besides, it makes a poor use of the information obtained by sampling the phase space

with the boxes, since it only classifies them as certain (lying in the interior) or uncertain (lying on a boundary). 

Other tools able to quantify the attractors unpredictability given a finite uncertainty in the initial states are the basin 

entropy and the boundary basin entropy [7] . Starting with a similar tiling of phase space, the idea is to compute the proba-

bilities of going to each attractor within a box and exploit Shannon’s information entropy. Since their formulation, the basin 

entropy and the boundary basin entropy have been applied to experiments with cold atoms [8] , chaotic scattering [9,10] ,

biological systems [11,12] , electronic micro/nanodevices [13] , oscillators [14] and astrophysical models [15–17] , among others. 

Based on the boundary basin entropy, the ln 2 criterion [7] to detect fractal boundaries at a fixed resolution was devel-

oped. The use of a single scale to test for fractality makes it both computationally and experimentally convenient. The ln 2

criterion applies to boundaries separating more than two different basins, like the Wada basins [18] . The goal of this paper

is to extend the ln 2 criterion, presenting a test as a criterion to ascertain for fractal structures with an improved sensitivity

that also applies for boundaries separating only two basins. 

The article is organized as follows: we start in Section 2 with a quick revision of the basin entropy and its relation to

fractal structures on phase space. We continue in Section 3 introducing the fractal test and developing it for the case when

basins are known exactly in two-dimensional phase spaces. Then, in Section 4 , we study finite resolution effects in discrete

phase spaces given by finite grids. In Section 5 , we give a recipe of the test and illustrate it with an example. Moreover, in

Section 6 , we extend the test to phase spaces in any dimension. Finally, we summarize and discuss the results in Section 7 .

2. Basin entropy and the definition of fractality 

Since our main goal is the identification of fractal boundaries, we first need to consider the definition of fractal . Even

though fractals are not defined in the literature in a precise and unambiguous manner, they typically share some of the

following properties [19] : (1) fine or detailed structure at arbitrarily small scales, (2) local and global irregularity non- 

describable by ordinary geometry, (3) some notion of self-similarity, (4) a ‘fractal dimension’ greater than the topological 

dimension and (5) simple and perhaps recursive definitions. Here, we refer to fractal structures as those fulfilling at least 

properties (1), (2) and (4). Nonetheless, numerically we are always able to reach only up to a given scale. This connects

with the experience that physical systems do not exhibit ‘true’ fractal structures, in the sense that there are only some

finite accessible or even defined scales [20] . 

The basin entropy provides a way to characterize phase space structures at a given scale. We consider a region of the

phase space with M distinct basins and we sample it using N boxes of size ε (see Fig. 1 ). The box size ε dictates the

scale to study the boundary structures. These boxes can be thought as initial states either with uncertainty ε or an initial

perturbation ε. We can construct the discrete probability distribution of having a basin k for each box, p(k ) , as the ratio of

the volume of the basin k in the box, v (k ) , to the phase space volume comprised by the box, V : 

p(k ) ≡ v (k ) 

V 

, (1) 

such that 
∑ M 

k =1 p(k ) = 1 . Its associated information entropy s, 

s ≡ s (p(1) , . . . , p(M)) = 

M ∑ 

k =1 

−p(k ) ln p(k ) , (2) 
Fig. 1. To compute the basin entropy, we draw boxes of size ε from the phase space. For each box, we calculate the information entropy from the fractions 

of each basin within the box; then, averaging over all boxes we calculate the basin entropy S b ; and averaging only over boundary boxes (red dashed circles), 

the boundary basin entropy S bb . These basins are from the periodically driven Duffing oscillator ẍ + 0 . 15 ̇ x − x + x 3 = F sin ωt, and (a) F = 0 . 10 0 ,ω = 0 . 20 0 , 

(b) F = 0 . 395 ,ω = 1 . 617 and (c) F = 0 . 128 ,ω = 1 . 106 . For N b = 10 4 disks boxes in the boundary of radius ε = 0 . 025 , the figures are ordered from left to 

right by the boundary basin entropy: S bb = 0 . 465 ± 0 . 002 < 0 . 6323 ± 0 . 0011 ≤ ln 2 < 0 . 760 ± 0 . 004 . Using the ln 2 criterion, only basins (c) are tested with 

fractal boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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measures the final state unpredictability of an initial condition chosen at random within the box defined by ε. It increases

monotonically with the number of basins within the box and tends to a maximum value s = ln M as the probabilities p(k )

tend to the equiprobable conditions p(k ) = 

1 
M 

for all k . 

Then, the basin entropy S b is defined as the average of the entropy of the box s for the total number of boxes N, 

S b ≡
1 

N 

N ∑ 

i =1 

s (i ) , (3) 

where i labels the boxes. Therefore, for an initial random position in the phase space region that is uncertain within a

volume of size ε, the basin entropy quantifies the unpredictability of the orbit’s attractor. Moreover, the boundary basin 

entropy S bb is defined as the average of the entropies s (i ) restricted only to the N b boxes falling on basin boundaries (in

Fig. 1 , these correspond to the red dashed boxes): 

S bb ≡
1 

N b 

N b ∑ 

i =1 

s (i ) . (4) 

The boundary basin entropy quantifies the unpredictability focusing only on the unpredictable regions of the phase space: 

the basin boundaries. 

Based on the boundary basin entropy, the ln 2 criterion provides a sufficient condition to test for fractal boundaries. It 

is based on the fact that smooth boundaries separate only two basins, with the possible exception of a countable number

of points that can separate three or more basins at a time. Therefore, for a sufficient large number of small boxes, for

smooth boundaries S bb ∈ [0 , ln 2 � 0 . 693] . This is the case of the basins in Fig. 1 a, where for a box scale ε = 0 . 025 ,S bb =
0 . 465 ± 0 . 002 . Equivalently, if S bb is significantly larger than ln 2 , this implies the boundary will not be smooth (i.e., it will

be fractal). This occurs for the basins in Fig. 1 c, where S bb = 0 . 760 ± 0 . 004 . Nonetheless, the criterion fails for the case of

Fig. 1 b with a manifested fractal boundaries between two basins and S bb = 0 . 6323 ± 0 . 0011 . Following this idea, there is

room to make a better test using a single scale with the basin entropy. 

3. Beyond the ln 2 criterion: the S bb fractality test 

Simple smooth boundaries are those which are locally flat (as a straight line in 2D). According to our previous definition

of a fractal, we consider as a fractal boundary any boundary that is not simple smooth. A simple smooth boundary could

also include a few finite points where boundaries from several basins intersect. Nevertheless, in the infinitely fine scale 

these regions become negligible in front of the other locally flat regions. 

Based on this idea and the boundary basin entropy, we can define a statistical test to identify fractal structures, which we

name S bb fractality test . It consists on comparing the value of the boundary basin entropy S bb of the boundary under study

to the theoretical value S bb of a flat boundary, at a given small box scale ε. If they are deemed statistically significantly

different, the boundary has a fractal structure. We will define it formally after studying the boundary basin entropy of a flat

boundary. Since the boundary basin entropy is defined as an average of the box entropies s and different configuration of

the boxes’ entropies can give rise to the same value, this test is a sufficient but not necessary condition. Nonetheless, it is

more restrictive than the ln 2 criterion and consequently it can detect fractal boundaries in many more cases, e.g. in regions

with only two basins. 

Assuming a perfect knowledge of the phase space structure for a flat boundary in a two-dimensional phase space, we can

derive the theoretical value of the boundary basin entropy. We start by choosing a disk as box shape, because its rotational

symmetry under any angle allows to compute the boundary basin entropy independently of the box orientation. Now, having 

disk boxes in a phase space with a flat boundary, we can obtain the boundary basin entropy by sliding the box from side to

side along the boundary. If a disk box has a radius ε and is centered at the coordinate x 0 ∈ [ −ε , ε ] from the perpendicular

direction to the boundary with origin on the boundary, the probability p(x 0 ) to have a disk point in one of the basins is the

fraction of the disk given by the circular segment 

p(x 0 ) = 

1 

2 

+ 

1 

π

[ 

x 0 
ε 

√ 

1 −
(

x 0 
ε 

)2 

+ arcsin 

x 0 
ε 

] 

. (5) 

Then, S bb is given numerically by: 

S bb = 

1 

2 ε 

∫ ε 

−ε 
dx 0 s ( p ( x 0 ) , 1 − p ( x 0 ) ) = 0 . 4395093(6) . (6) 

This means that if we were able to compute exactly the boundary basin entropy of a smooth boundary using small disks we

would get that result, and any other number would correspond to a fractal case. However, in practice we always have some

errors induced by the use of a finite number of trajectories. The effects that this can introduce into our test are explored in

the next section. 
3 



A. Puy, A. Daza, A. Wagemakers et al. Commun Nonlinear Sci Numer Simulat 95 (2021) 105588 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Effects of finite grids 

Both numerically and in experiments, basins are commonly calculated using a finite number of grid points. The number 

of grid points within a box determines the observed probabilities ˆ p (k ) of the box. Ultimately, this lack of detail results in

an observed boundary basin entropy ˆ S bb with a systematic error or bias δ ˆ S bb 
. In addition, we are generally limited to draw a

finite number of boxes too. This results in an observed boundary basin entropy with a statistical error σ ˆ S bb 
. Here, we study

these effects for a two-dimensional square grid with a flat boundary and disk boxes, which provides confidence intervals for 

our fractal basin boundary test. 

The systematic error of the observed boundary basin entropy ˆ S bb depends on two factors: the extension of the grid and

the angular orientation of the grid. The effect of the grid extension decreases with the number of grid points per axis. Our

numerical simulations showed that this factor is no longer relevant for larger values than 50 ε g grid points per axis, where

ε g is the disk radius in grid units . The second factor, the angle between the grid and the boundary, is inherently unavoidable.

We have investigated this effect in Fig. 2 , representing in function of the disk radius ε g in grid units and for largely extended

grids, ˆ S bb for different angles (legend) and the exact S bb (magenta dashed line). The figure inset displays the absolute errors 

of ˆ S bb . Even in the worst case scenario (red line), the systematic error decreases approximately inversely proportional to the 

disk boxes radius ε g . Indeed, a power law fit gives an upper bound for the systematic error: 

δUB 
ˆ S bb 

� Aε B g , (7) 

with A = 0 . 224 ± 0 . 010 and B = −1 . 006 ± 0 . 014 . 

On the other hand, there is a statistical error of the observed boundary basin entropy ˆ S bb , which is due to the finite

number N b of boxes in the boundary. Indeed, ˆ S bb is the average of the boxes’ entropies in the boundary. This means that, by

the central limit theorem, the statistical error follows a Gaussian distribution with a standard deviation given by: 

σ ˆ S bb 
= aN 

− 1 
2 

b 
, (8) 

where a ≡
√ 

1 
N b −1 

∑ N b 
i =1 

(
ˆ S bb − ˆ s (i ) 

)2 
is the sampling standard deviation and ˆ s (i ) the observed entropy for the box i . 

Taking into account all the finite grid effects for 2D phase spaces, we can formulate our test for fractal boundaries as

follows: under an infinitesimal disk box with radius ε g in grid units and a finite grid that is largely extended (with at least 50 ε g 
grid points per axis), if the observed boundary basin entropy ˆ S bb with a standard deviation σ ˆ S bb 

( Eq. 8 ) is deemed statistically

significant away from a flat boundary, either below the exact boundary basin entropy value S bb ( Eq. 6 ) or above the upper-bound

systematic error value S bb + δUB 
ˆ S bb 

( δUB 
ˆ S bb 

is given by Eq. 7 ), the boundary has a fractal structure. Using one standard deviation σ ˆ S bb 

for the statistical error, we can express the S bb fractality test by the following sufficient conditions: 

ˆ S bb < S bb − σ ˆ S bb 
, (9) 
Fig. 2. For a grid with a flat boundary and disk boxes of radius ε g in grid units, the systematic error of the observed boundary basin entropy ˆ S bb depends 

on the angle between the grid and the boundary (legend): (outset) ˆ S bb in function of ε g and the exact S bb value (magenta dashed line); (inset) absolute 

errors of ˆ S bb in function of ε g . We considered large grid extensions of around 128 ε g points per axis and N b = 10 5 disk boxes in the boundary. The worst 

systematic error is given by the angle 0 in red. In the infinite grid resolution ( ε g → ∞ ) and for any angle α, we recover the exact boundary basin entropy 

S bb . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

4 
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ˆ S bb < S bb + δUB 
ˆ S bb 

+ σ ˆ S bb 
. (10) 

5. Example of application 

The periodically driven Duffing oscillator is a paradigmatic model that accounts for nonlinear elastic effects in large 

displacements of a forced damped elastic structure. It is defined by: 

ẍ + γ ˙ x − x + x 3 = F sin ωt, (11) 

where x is the displacement of the oscillator at time t,γ is the damping coefficient, F is the forcing amplitude and ω is

the frequency of the driving. Depending on these parameters, the system exhibits a wide variety of dynamics. Here, we 

investigate a parameter space region given by γ = 0 . 15 ,F ∈ [0 . 1 , 0 . 5] and ω ∈ [0 . 2 , 2 . 5] . We search for fractal boundaries in

the basins of attraction given by a finite grid in the phase space region 	 = 	x × 	 ˙ x = [ −2 . 5 , 2 . 5] × [ −2 . 5 , 2 . 5] , with 10 3 

points per axis. 

On the following, we use the example to illustrate an easy-to-follow recipe for the S bb fractality test for finite grids in

two-dimensional phase spaces: 

1. Choose the box disk radius ε appropriately . On the one hand, the smaller the box, the finer scales we can study.

On the other hand, we want to have sufficient trajectories per box to get good estimates for the probabilities. For our

example, we found that a value of ε g = 5 / ε = 0 . 025 gave good results. 

2. Verify that we are in the largely extended grid limit, with at least 50 ε g grid points per axis. In our example, we

had 10 3 = 200 ε g points per axis. 

3. Draw N b disk boxes in the boundary, uniformly at random from the phase space (and not only at grid points) . In

our example, we took N b = 10 4 boxes in the boundary. 

4. For all boxes in the boundary, calculate both the observed probabilities of the basins and the observed box’s 

entropy. 

5. Compute the observed boundary basin entropy ˆ S bb and its standard deviation σ ˆ S bb 
( Eq. 8 ). 

6. Compute the upper-bound systematic error δUB 
ˆ S bb 

( Eq. 7 ) for the current value of ε g . In our example, we had δUB 
ˆ S bb 

=
0 . 0474 . 

7. Check if the computed value of ˆ S bb lies in the interval provided by the systematic and statistical errors. If the

value is outside the interval, we can affirm that according to our test the boundary is fractal. Otherwise, it is most

likely to be a smooth boundary, although there could be pathological cases leading to wrong results. It is important

to recall that this fractality test is a sufficient but not necessary condition. 

We display the results in the parameter space of Fig. 3 a. The color of each parameter value corresponds to its boundary

basin entropy ˆ S value: white is for regions with a single basin, cold colors are for regions compatible with simple smooth
bb 

Fig. 3. For the periodically driven Duffing oscillator ẍ + 0 . 15 ̇ x − x + x 3 = F sin ωt in the parameter space (F, ω) , we obtain similar regions with fractal 

boundaries (hot colors) and smooth boundaries (cold colors), both for (a) the S bb fractality test and (b) the uncertainty exponent α. In white, we have 

regions with a single basin. In (a), the color of each point corresponds to the boundary basin entropy ˆ S bb , for disk boxes with radius ε = 0 . 025 / ε g = 5 and 

N b = 10 4 boxes in the boundary: cold colors are compatible with simple smooth boundaries and hot colors for fractal basin boundaries (red colors are 

detected by the ln 2 criterion). In (b), we represent the uncertainty exponent with a transition point at α = 0 . 8 from fractal to smooth boundaries; this 

value is arbitrary and based on the observed basins. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

5 
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Fig. 4. For a hyperball box and a flat boundary in the phase space, we plot (a) for several dimensions of the phase space (colorbar), the probability p(x 0 ) 

to have a hyperball point in one basin in function of the box center coordinate x 0 , which indicates the distance to the flat boundary; and (b) the boundary 

basin entropy S bb relationship with the dimension D of the phase space (magenta circles). S bb decreases potentially fast with a power fit S bb = AD B (purple 

line): A = 0 . 898 ± 0 . 006 and B = −0 . 4995 ± 0 . 0012 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

boundaries and hot colors are for fractal basin boundaries. In particular, red colors are for fractal basin boundaries detected 

by the ln 2 criterion. We can observe that this just accounts for a 27% fraction of all the fractal basin boundaries detected

by the single-scale fractal basin boundary test. 

To evaluate the performance of the method, we compare it to the uncertainty exponent α ( Fig. 3 b). From the observed

basins, we have chosen the arbitrary value of α = 0 . 8 as the transition point between smooth and fractal boundaries: α ≥ 0 . 8

correspond to smooth boundaries (cold colors) and α < 0 . 8 to fractal basin boundaries (hot colors). Again, parameters with

a single basin are represented in white. Indeed, both the uncertainty exponent and the S bb fractality test give qualitatively

similar regions with fractal boundaries. However, there are some quantitative differences due to numerical errors in both 

methods. 

6. Extension to any phase space dimension 

We can generalize the test to phase spaces for any dimension. The test again compares for small box scales ε the bound-

ary basin entropy S bb of the boundary under study to the theoretical value of that of a flat boundary of the corresponding

dimension. Here, we only consider the case with an exact knowledge of the phase space. We believe that the study for

basins with finite grids can be developed similarly to the two-dimensional case. 

For a given dimension, we can derive the theoretical value of the boundary basin entropy of a phase space with a flat

boundary. The box is now an hyperball of radius ε centered at a coordinate x 0 in the direction that indicates the distance to

the flat boundary. Furthermore, the probability p(x 0 ) to have a hyperball point in one basin is the fraction of the hyperball

given by the hyperspherical cap [21] : 

p(x 0 ) = −1 

2 

sgn 

(
x 0 
ε 

)
I 
1 −( 

x 0 
ε ) 

2 

(
D + 1 

2 

, 
1 

2 

)
+ 


(
x 0 
ε 

)
, (12) 

where D is the dimension of the phase space, sgn (x ) is the sign function, I x ( a, b ) is the regularized incomplete beta function

and 
(x ) is the Heaviside function. We have this quantity plotted for several dimensions (see colorbar) in Fig. 4 a. For D = 1 ,

the probability p(x 0 ) is linear; for larger values of D, it deviates from this behavior; and in the limiting case D → ∞ , p(x 0 )

becomes dominated by the 

(

x 0 
ε 

)
term and has a switching behavior. This large dimension behavior is understood because 

most of the volume of a high-dimensional hyperball lies within two parallel hyperplanes at a small distance from its center

of order O 

(
ε √ 

D −1 

)
. 
Table 1 

Boundary basin entropy S bb for hyperball boxes in a flat boundary of a D dimen- 

sional phase space, for the first five D dimensions. 

D S bb 

1 0.499999(9) 

2 0.4395093(6) 

3 0.39609176(4) 

4 0.36319428(1) 

5 0.33722572 

6 
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Moreover, we calculate the boundary basin entropy S bb analogously to the two-dimensional case, following Eq. (6) . We 

have the S bb relationship with the dimension D in Fig. 4 b; we can see how the boundary basin entropy goes to zero in the

infinite dimension limit following the expression S bb ∼ D 

− 1 
2 . We have tabulated the boundary basin entropy S bb for the first

five D dimensions in Table 1 . 

7. Conclusions 

In this paper, we have applied the theory of the basin entropy and related tools to characterize fractal basin boundaries

using a single scale. Our work consists on comparing, under a given box scale, the value of the boundary basin entropy

S bb of the boundary to the S bb value of a smooth boundary. In contrast to the former basin-entropy-based test, the ln 2

criterion, it achieves both an improved sensitivity and a capacity to identify fractal basin boundaries separating only two 

basins. We call it S bb fractality test . Nonetheless, this test is still a sufficient but not necessary condition. One could think

about an improvement by means of the probability density function (PDF) of the probabilities in the boundary boxes. The 

configuration of a PDF is more restrictive than an average (the boundary basin entropy), but it is also more demanding to

implement. 

On the other hand, testing for fractal basin boundaries with this line of work has important advantages compared to the

classical approach given by the uncertainty exponent α. While both methods hold numerical limitations in the infinitely fine 

scale, the uncertainty exponent requires accessing multiple scales of the system. This is not only numerically inconvenient 

but, for some physical systems, it may be impossible. Indeed, our methods only require accessing a single scale and have a

natural formulation for experimental basins of attraction. 

Finally, we believe the extension for basins in any phase space dimension could prove useful for studying the unpre- 

dictability in higher-dimensional systems, a generally unexplored area in the field; in particular, it could complement current 

studies for network systems [22–24] . 
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