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Nonautonomous dynamical systems help us to understand the implications of real systems which
are in contact with their environment as it actually occurs in nature. Here, we focus on systems
where a parameter changes with time at small but non-negligible rates before settling at a stable
value, by using the Lorenz system for illustration. This kind of systems commonly show a long-
term transient dynamics previous to a sudden transition to a steady state. This can be explained
by the crossing of a bifurcation in the associated frozen-in system. We surprisingly uncover a
scaling law relating the duration of the transient to the rate of change of the parameter for a
case where a chaotic attractor is involved. Additionally, we analyze the viability of recovering
the transient dynamics by reversing the parameter to its original value, as an alternative to
the control theory for systems with parameter drifts. We obtain the relationship between the
paramater change rate and the number of trajectories that tip back to the initial attractor
corresponding to the transient state.

Keywords : Transient dynamics; nonautonomous system; parameter shift; dynamic bifurcation;
rate-induced tipping.

1. Introduction

The evolution of a system with time is typically
divided into two different regimes: the transient and
the steady states. The latter corresponds to the
asymptotic dynamics: after some time the system
settles in this state for an indefinite time unless
it is perturbed. This final state might include not
only fixed points, but also limit cycles or chaotic
attractors. The dynamics before the system settles
in any of these attractors is what we call transient
dynamics. This type of dynamics is also very rich
and includes, as a classic example, decaying oscilla-
tions before a fixed point, but also chaotic motion.
When the system behaves in a chaotic way for a

finite amount of time before reaching an attractor,
it is said to present transient chaos.

Traditionally, the study of dynamical systems
has focused on the steady state as transients usually
last for a short-time scale and it has been assumed
that the system’s dynamics can be reflected by the
asymptotic behavior of models describing these sys-
tems. However, some systems present long-lasting
transients compared to the scale of the system. Addi-
tionally, the relevant time scales may correspond to
the transient regime rather than to the asymptotic
one. Furthermore, transients may provide an expla-
nation for sudden regime shifts, even without any
underlying change in external conditions.
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Transient phenomena in autonomous systems
has been studied in the past few years in sev-
eral scientific disciplines. Much of the work has
focused on analyzing the factors that make a system
prone to long transients, for example, time delay
[Morozov et al., 2016]. Evidence of systems present-
ing relevant long-lasting transients include ecologi-
cal systems [Hastings, 2004; Hastings et al., 2018;
Morozov et al., 2020], but also different models in
neuroscience [Rabinovich et al., 2006; Rabinovich
et al., 2008], power electronics [Warecki & Gajdzica,
2014], earthquake activity in seismology [Picozzi
et al., 2019], and gravitational waves [Thrane et al.,
2015]. Furthermore, transient chaos is relevant in a
wide variety of systems ranging from optomechan-
ics [Wang et al., 2016] to electronic engineering [Bao
et al., 2010]. For a recent review on transient chaos,
see [Lai & Tél, 2011].

Here, we focus on the study of transient phe-
nomena in nonautonomous dynamical systems. In
particular, in systems where one of the parameters
varies slowly with time. The system can be mathe-
matically written as

dx
dt

= F (x,p(εt)), (1)

where ε is very small compared to the natural time
scale of the system. This type of systems are fun-
damental to understand the relation of the sys-
tem with its environment. Real systems are affected
by external conditions, which can be reflected as
a gradual change in a parameter. Sometimes, the
parameter is controllable. One example is a ferro-
magnet within a low frequency magnetic field. In
other cases, it is not controllable, as in the context
of climate dynamics.

Time series with long-lasting and physically rel-
evant transients are often found in systems with
parameter drift. Because of the duration of tran-
sients one may think that the system is at its steady
state. However, for a later time, they show a sudden
transition to their real steady state.

Due to the fact that the time-dependence of
the parameter represents a small perturbation, the
associated frozen-in system, that is, the system with
fixed parameters, provides useful information about
the nonautonomous system [Berglund, 2000]. In
fact, the origin of the previously mentioned sud-
den transition may be found in the crossing of a
bifurcation in the associated frozen-in system. This
type of bifurcations are called dynamic bifurcations
[Benôıt, 1991]. Recently, they have been also called

bifurcation-induced tipping points [Ashwin et al.,
2012]. Either way, they refer to the regime shift
that is produced due to the slow passage through a
bifurcation.

Dynamic bifurcations were studied when only
regular attractors are involved. The case of the
supercritical Hopf bifurcation has been studied in
[Neishtadt, 1987, 1988; Baer et al., 1989]. As a
result, it was found that the appearance of oscil-
lations was delayed when the parameter is slowly
drifting and that the delay depends on the rate
of the drift, what is called the delay effect. How-
ever, when chaotic attractors are involved, dynamic
bifurcations have been only studied so far for maps.
In particular, the case of a Lorenz-type map when
the control parameter varies monotonically with
time and when it induces a periodic forcing, has
been analyzed in [Maslennikov & Nekorkin, 2013;
Maslennikov et al., 2018] respectively. Here, we aim
to broaden the current knowledge on dynamic bifur-
cations to flows presenting strange attractors.

Another interesting phenomenon occurs to sys-
tems with parameter drift when there is multista-
bility. In this case, the parameter drift may cause
the system to tip to another state. Sometimes, this
happens because the current attractor disappears
and it has to tip to any of the rest of the attractors.
More surprisingly, this can happen for certain rates
above a critical value, even if the first attractor is
still stable. In this case, the system cannot track the
attractor and it tips to another one with a certain
probability. This has been called rate-induced tip-
ping [Ashwin et al., 2012]. Besides, the study of the
tipping probabilities for a monodimensional system
including the passage through a chaotic attractor
was shown in [Kaszás et al., 2019], but they do not
consider the case when the chaotic attractor coex-
ists with other attractors.

Our goal here is to study the transient phenom-
ena for a multistable system with parameter drift,
in particular the Lorenz system. The nature and
duration of the transient dynamics and the tran-
sition to the steady state can be explained by the
delay effect previously mentioned. The bifurcation
diagram of the frozen-in system gives us informa-
tion about the dynamics that has to be corrected
by a scaling law that relates the magnitude of the
delay with the parameter rate of change.

The paper is organized as follows. We start in
Sec. 2 with the description of the frozen-in system,
including the basins of attraction for the starting
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and ending points of the parameter shift. In Sec. 3,
we let the parameter evolve with time in such a
way that the heteroclinic bifurcation is crossed. We
uncover an interesting scaling law that predicts the
duration of the transient for the nonautonomous
system. Also, we show that the presence of a chaotic
attractor induces unpredictability, causing a ran-
dom tipping.

Next, in Sec. 4, we study the possibility of
reversing the transient dynamics once the transition
to the steady state has taken place by reversing the
parameter to its original value. For that purpose,
higher parameter rates have to be considered and
rate-induced tipping is the phenomenon responsible
for the transient state recovery. Finally, the main
conclusions of this work are discussed.

2. The Lorenz System

We have chosen the Lorenz system [Lorenz, 1963]
described by Eqs. (2), since it can be considered
as a paradigmatic example of a multistable system
that presents both chaos and transient chaos. These
equations were proposed by Edward Lorenz as a
simple model of convection dynamics in the atmo-
sphere (Rayleigh–Bénard convection). These equa-
tions also arise in models of lasers [Li et al., 1990]
and chemical reactions [Poland, 1993], among oth-
ers. The equations of the system read as follows

ẋ = −σx + σy,

ẏ = rx − y − xz,

ż = −βz + xy,

(2)

where σ, β and r are the system parameters. In the
context of convection dynamics, σ is the Prandtl
number and is characteristic of the fluid, β depends
on the geometry of the container and has no spe-
cific name. Finally, r is the Rayleigh number and
it accounts for the temperature gradient. In this
context, x represents the rotation frequency of con-
vection rolls, while y and z correspond to variables
associated to the temperature field. We fix the clas-
sical parameter values as σ = 10 and β = 8/3. And
we explore the dynamics of the system in terms of
the variation of r by using a bifurcation diagram.

Depending on the temperature gradient, i.e. the
value of r, convection rolls may exist or not. This
can be seen in detail in the bifurcation diagram
shown in Fig. 1. For r < 1 the only attractor is
(0, 0, 0), which means that the fluid remains at rest.
At r = 1, the origin becomes a saddle through a

Fig. 1. Bifurcation diagram for the Lorenz system. For r = 1
a supercritical pitchfork bifurcation takes place and the ori-
gin becomes a saddle point. For 1 < r < 24.06, two attractors
coexist: the upper branch corresponds to C+ and the lower
branch corresponds to C−. For this range of r values, past the
homoclinic bifurcation (when r > 13.926), trajectories may
be chaotic before settling to one of the two fixed point attrac-
tors. For r > 24.06, the chaotic attractor is born in a hetero-
clinic bifurcation and the three attractors coexist. Finally, for
r > 24.74, a subcritical Hopf bifurcation leaves the chaotic
attractor as the global attractor. In the insets, the attractors
are represented in phase space for the regions where multi-
stability is present (the stars mark the initial conditions).

supercritical pitchfork bifurcation, and this insta-
bility is reflected in the bifurcation diagram by
a discontinuous line for r > 1. Two symmetrical
branches

C± = (±
√

b(r − 1),±
√

b(r − 1), r − 1) (3)

are created and are stable until r = 24.74. The
unstable manifold of the origin, W s(0), separates
their respective basins of attraction. The fixed point
attractors C± correspond to convection rolls with
the two possible directions of rotation.

On the other hand, at r = 24.06, a chaotic
attractor is born through an heteroclinic bifurca-
tion which makes the fluid become turbulent. For
24.06 < r < 24.74, the system is multistable
(C+, C− and the chaotic attractor coexists) and
the attractor to which a given trajectory goes to
depends on the initial conditions.

Furthermore, at r = 24.74, the fixed points C±
lose the stability through a subcritical Hopf bifur-
cation and the chaotic attractor becomes the global
attractor. Another important phenomenon occurs
at r = 13.926, when a homoclinic bifurcation takes
place. This implies that a chaotic saddle is born,
making some trajectories rattle around chaotically
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for a while before they settle down to C±, which is
known as transient chaos or preturbulence. This is
not reflected in the bifurcation diagram as it only
shows the steady state dynamics. In phase space,
the chaotic behavior is confined to the vicinity of
the chaotic saddle [Tél & Gruiz, 2006]. The lifetime
of these chaotic transients increases with r until it
reaches the value 24.06 when the lifetime becomes
infinite and the chaotic attractor appears.

Also, at r = 13.926 a pair of unstable limit
cycles Γ± (not represented in the diagram), called
homoclinic orbits, are created and last until they
are absorbed in the Hopf bifurcation at r = 24.74.
For further details about the homoclinic and hete-
roclinic bifurcations in terms of the organization of
the respective two-dimensional manifolds of 0, C±
and Γ± see [Doedel et al., 2006].

Now, we focus on the dynamics before and
after r = 24.06 in order to explore the effects
of a parameter drift when a strange attractor
appears/disappears. This is why we present the
basins of attraction for r = 20, where transient
chaos is present, and r = 24.5, where the chaotic
attractor and the fixed point attractors C± coexist.

For this purpose, we distribute N = 105 initial
conditions uniformly, preserving approximately the
same density of points for any area on the sphere,
that is, avoiding accumulation of points in the poles.
The radius of the sphere is fixed to 30 for all the
simulations in this paper, but similar results are

found for other radii. The sphere is likewise cen-
tered at the halfway between C± : (0, 0, r − 1).
The basins are computed integrating the trajecto-
ries starting on the sphere by a Runge–Kutta algo-
rithm with adaptive step size control. The criterion
for convergence to a particular attractor is that the
trajectory enters a sphere of radius 0.1 centered at
C+/C−. For the basin at r = 24.5, we take a suf-
ficiently long integration time (the maximum time
for trajectories to arrive to C± is around 90 and we
take tf = 2000 as the final integration time) and we
consider that trajectories that do not converge to
C+/C−, converge to the chaotic attractor.

The basins of attraction for r = 20 are repre-
sented in Fig. 2: in red, the initial conditions that
end up in C+, and in blue the ones that end up
in C−; the attractors are also represented in the
inside as points with matching colors. The sphere
is divided in two, following approximately the sym-
metry plane x + y = 0. More precisely, the basin
boundary is defined by the stable manifold of the
origin W s(0). It is important to notice that the blue
face is nearer the red attractor and vice versa. There
is also a circular blue region that is immersed in
the red region, and symmetrically there is a circu-
lar red region toward the back of Fig. 2(a). Finally,
the basin boundary is smooth for z < (r − 1) = 19
(downside) and fractal for z > (r−1) = 19 (upside)
and around the immersed circle. This fractality is a
trace of chaos.

(a) (b)

Fig. 2. Basins of attraction for r = 20. (a) The sphere of initial conditions is represented with the trajectories that end up in
the C+ attractor as depicted in red and the ones that end up in C− are depicted in blue. The attractors are also represented
inside as points with matching colors. (b) We present a view in the (x, y)-plane. Fractality appears in the basin boundaries
for z > (r − 1) = 19.
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Fig. 3. Time to reach the attractors for r = 20. The numeri-
cally computed lifetime of the transients is represented show-
ing a wide range of lifetimes, denoted in the color bar, with
higher values on the corresponding fractal regions from Fig. 2.
This corresponds to the trajectories presenting transient chaos.

The time that the trajectory needs to reach
the attractors is depicted in Fig. 3. The lifetime
is increased for higher values of the temperature
gradient, if r < 24.06. Comparing this figure with
Fig. 2, it can be seen that the fractal areas cor-
respond to initial conditions that take the longest
time to reach the attractors. The explanation for
this phenomenon is related to the stable and unsta-
ble manifolds of the chaotic saddle. Points exactly
on the stable manifold necessarily reach the chaotic
saddle and never leave it (these points are excep-
tional and are not shown), and points initially far
from the stable manifold escape the chaotic saddle
quickly (not showing transient chaos), while points
near the stable manifold have a longer lifetime. The
closer to the stable manifold, the longer the life-
time of the transients is. Thus, the structure seen

(a) (b) (c)

Fig. 4. Basins of attraction for r = 24.5. (a) The sphere of initial conditions is represented with the same color code as before:
red accounts for C+ and blue for C−. Yellow regions account for trajectories that head to the chaotic attractor. The (b) and
(c) panels show the (x, y)-plane for z > 19 (view from the top) and z < 19 (view from the bottom) respectively.

(a) (b)

Fig. 5. Time to reach the C+/C− attractors for r = 24.5. (a) Red/blue points correspond to the attractors C+/C−. Only
the initial conditions that end in C+/C− are depicted, the rest of the sphere corresponds to initial conditions that end up
in the chaotic attractor. As we can see, the borders of the structure show higher lifetimes due to the slow oscillation decay
to the C+/C− attractors. (b) This panel shows the (x, y)-plane of the previous panel.
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in light blue in Fig. 3 is due to the cut of the stable
manifold of the chaotic saddle with the sphere of
initial conditions.

The basins of attraction for r = 24.5 are repre-
sented in Fig. 4. Following the same color code as
before, red/blue regions correspond to initial condi-
tions that end up in C+/C−. The initial conditions
that end up in the chaotic attractor are depicted in
yellow. For the 105 trajectories, 10 348 correspond
to the red basin, 10 130 to the blue basin and 79 522
to the yellow basin. Thus, approximately 20% of the
trajectories go to C+/C−. This time, the structure
for the red and blue basins consists of two loops for
z < 19 that overlap in the plane x + y = 0 and four
circular regions for z > 19 (one of each color on top
and another two smaller ones on the sides).

The lifetime of the trajectories that end up in
either C+/C− were also computed. We can observe
that there is a wide range of lifetimes in Fig. 5. This
is not due to transient chaos but to the fact that the
oscillations around C+/C− are slowly damped until
they reach the attractor.

3. Dynamic Heteroclinic Bifurcation

In this section, we explore the dynamics of the sys-
tem when the parameter that accounts for the tem-
perature gradient, r, slowly varies. The bifurcation
diagram in Fig. 1 represents the dynamics for each
value of r when the system evolves with the corre-
sponding fixed value of r. We are interested in the
case when the parameter varies during the evolu-
tion of the system. In other words, the parameter
turns into a slowly varying function of time of the
form: r = r0 ± εt, where ε is a sufficiently small
parameter compared to the natural time scale of
the system. Bifurcations that are crossed due to
this parameter time-dependence are called dynamic
bifurcations [Benôıt, 1991].

As previously stated, this type of bifurcations
have been studied when they imply the appearance/

disappearance of regular attractors. For example,
the dynamic pitchfork bifurcation for the Lorenz
system has been deeply studied. It was found that
when the temperature gradient is increased, con-
vection rolls appear suddenly at r > 1, which is
what is called the delay effect. When the temper-
ature gradient is decreased they slowly decelerate
and finally disappear for r < 1, showing hystere-
sis. Furthermore, they always follow the same equi-
librium, i.e. roll in the same direction, to which
one depends on the initial conditions. The area
enclosed in the hysteresis diagram depends on the
adiabatic parameter, ε, and this relation is defined
by its corresponding scaling law [Berglund & Kunz,
1999].

As far as we know, the crossing of a bifurca-
tion due to a slow parameter drift when chaotic
attractors are implied has been only studied so
far for maps, for instance, in the Lorenz map in
[Maslennikov & Nekorkin, 2013] and [Maslennikov
et al., 2018]. Here, we study the dynamic hetero-
clinic bifurcation at r = 24.06 for the Lorenz sys-
tem. This implies a change in the number of the
attractors and the appearance/disappearance of a
chaotic attractor.

In analogy with the delay effect found for
the pitchfork bifurcation where the origin becomes
unstable but the system tracks that path for a
period of time, we start our analysis for a value
of r > 24.06 and we decrease this value past the
heteroclinic bifurcation where the chaotic attractor
is no longer stable.

The first difference in this analysis with the one
for regular attractors is that single trajectories are
no longer representative and do not contain all the
possible dynamics, thus we follow an ensemble of
trajectories starting on the same sphere of initial
conditions used in the previous section.

Moreover, we refer to Eqs. (2) as the frozen-in
system when r is a fixed parameter and the nonau-
tonomous system to the same set of equations when
r is a function of time in the following form

r =

⎧⎪⎪⎨
⎪⎪⎩

r0 for t < t1

r0 − ε · (t − t1) for t1 < t < t2

r0 − ε · (t2 − t1) for t > t2

(4)
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Fig. 6. Time series for the nonautonomous Lorenz sys-
tem with ε = 10−3. The secondary x-axis shows the time-
dependence in the r parameter. It can be seen that the tran-
sient lasts for a long period of time and that the transition to
the steady state starts at r < 24.06, specifically, for r = 23.3
(when the line turns blue).

where t1 is the time for which the parameter shift
starts and t2 when it ends. This way, we let the sys-
tem evolve to its steady state, the chaotic attractor
in our case, before the shift in r starts. Besides, we
call tf > t2 the final observation time.

In Fig. 6, the x-component of a trajectory start-
ing at the sphere, with the following parameters:
r0 = 24.5, t1 = 800, t2 = 4000, tf = 4000 and
ε = 10−3 is shown. As we can see, the motion is
chaotic up until a value (when the line turns blue)
for which there is a sudden transition to the attrac-
tor C−. Equation (4) establishes a correspondence
between time and the value of the temperature gra-
dient, r, which is also shown in the figure as a sec-
ondary x-axis. The transition from one regime to
another appears for a value of r < 24.06 that we
call the critical value and designate it by rcr.

Thus, we conclude that the delay effect is also
present when chaotic attractors are involved. Fur-
thermore, it is necessary for a lower temperature
gradient, exactly rcr = 23.3 for the previous exam-
ple, to achieve a constant rotation frequency of the
rolls. However, if we let the system evolve to its
steady state for each value of r, which translated
to our analysis would mean to make ε → 0, the
transition would take place exactly at the value
in the bifurcation diagram, r = 24.06. For 23.3 <
r < 24.06, the system tracks the chaotic attractor
although it is no longer stable. In other words, the
chaotic attractor is a metastable state.

As previously mentioned, when dealing with
chaotic attractors, a single trajectory is not infor-
mative enough and we should consider an ensemble
of trajectories. For that reason, we take 104 initial
conditions on the sphere, and we exclude the ones
for r = 24.5 to go to C+/C−. These correspond to
the red/blue basins in Fig. 4.

The attractor toward which the trajectory goes
depends on the initial conditions. But for a single
initial condition, it depends on the precise moment
that the trajectory is caught wandering in the
chaotic attractor, that is on t1. Using the same
terminology as in [Kaszás et al., 2019], we call
the basins for the nonautonomous system: scenario-
dependent basins. After this clarification, we fix
t1 = 800, ε = 10−3, r0 = 24.5, t2 = 4000 and
tf = 4000, as before and we let the ensemble of
trajectories evolve.

The value of rcr for the dynamic heteroclinic
bifurcation is different for each initial condition
unlike for the dynamic pitchfork bifurcation for
which the transition occurred at the same value of
r for every initial condition. In Fig. 7(a), we can see

(a) (b)

Fig. 7. Critical value of the parameter r and scaling law for the heteroclinic dynamic bifurcation. (a) The normal distribution
of rcr for an ensemble of trajectories with a specific rate of change of ε = 10−3. (b) The mean value of rcr for different values
of ε. The stars correspond to numerically calculated values of 〈rcr〉, the power law fit is also shown in red.
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how the values of rcr follow a normal distribution
with mean 〈rcr〉 = 23.071 and standard deviation
σ = 0.2868.

We may repeat the same procedure for differ-
ent values of ε to study the effect of the parameter
rate of change. We focus on small, but nonnegligi-
ble rates compared to the natural time scale of the
system. In our case, the period of revolution of con-
vection rolls is of order 10−1. In Fig. 7(b), we cal-
culated the rcr for more values of ε on the range
10−4 − 10−2 which are marked as black stars. As
we can see, for higher rates, the delay effect is more
pronounced. For example, for ε = 10−2, the temper-
ature gradient for which the system suffers a sudden
transition from a chaotic state to a stable state is
〈rcr〉 = 22.32, which is significantly a smaller value
than the rcr for ε = 10−3. Another consequence of
this, is that for rapid shifts in the parameter, the
metastable state lasts longer. Also, as ε → 0, the
standard deviation is reduced. In the limit, that is,
the frozen-in system, all the initial conditions suffer
the transition at the same value of 〈rcr〉.

Finally, we derived the corresponding scaling
law for the heteroclinic bifurcation. This equation
relates the value of the parameter for which the
system abandons the chaotic attractor with the
parameter change rate. For that purpose, points in
Fig. 7(b) are fitted to a power law of the form

〈rcr〉 = −a · ε1/4 + r0, (5)

where a > 0 is a constant and r0 = 24.5 in our
case, with a R-square: R2 = 0.9999. This law indi-
cates that a small parameter change rate reduces
the parameter value for the transition, but from a
certain value an increase in the parameter change
rate does not reduce significantly the parameter
value.

We may compare this with the same analysis
for the pitchfork bifurcation for which rcr ∝ ε1/2.
Unlike the scaling law for the pitchfork bifurcation,
our scaling law deals with the presence of chaotic
attractors, which to the best of our knowledge is a
novel finding. This implies that the value of rcr in
the scaling law is a mean value from the ensemble
approach.

We may ask ourselves about the spatial dis-
tribution of rcr in the sphere of initial conditions.
However, due to the presence of the chaotic attrac-
tor, there is no pattern and the initial conditions
that lead to longer and shorter metastable states

are completely intermingled. We may say that the
chaotic attractor acts as a memory-loss agent. In
the same way, the scenario-dependent basins do not
show a pattern and both basins (C+/C−: red/blue
basin) are intermingled. The final destination of the
trajectories is related to the precise moment that
the trajectory is caught wandering in the chaotic
attractor when the parameter shift starts rather
than to the initial condition. In other words, pre-
dictability of individual trajectories is lost because
the passage through the chaotic attractor induces
fractal basins of attraction. Similar phenomena have
been addressed as a random tipping in [Kaszás
et al., 2019].

3.1. Transient chaos interpretation

So far, we have defined the delay effect for the
dynamic heteroclinic bifurcation, but this phe-
nomenon can be interpreted from a different point
of view in the context of transient dynamics. The
Lorenz equations with r defined by Eq. (4) form
a nonautonomous system, which can be considered
to present transient chaos as the duration of the
chaotic dynamics is finite (see Fig. 6). In this con-
text, the scaling law predicts the end of the tran-
sient state.

In the previous section, the scaling law pre-
dicted the value of the temperature gradient for
which the dynamics changed as past r = 24.06 the
chaotic attractor was considered to be a metastable
state. In the time framework, the scaling law pre-
dicts when the system suffers a transition to its
steady state. The transient dynamics may last for
long periods of time; therefore, the transient is not
a negligible part of the dynamics as it has been con-
sidered before, and it is fundamental to uncover a
law that predicts the end of this state.

To characterize a nonattracting chaotic set,
as the chaotic saddle responsible for the transient
chaos, we may analyze the decay in the number
of trajectories that still present a chaotic behavior
[Maslennikov & Nekorkin, 2013]. In Fig. 8 we repre-
sent, for different decay rates, N(t) as the normal-
ized number of trajectories in the chaotic attractor
for a time t. As we did earlier, we exclude the ones
that at r = 24.5 belong to the C+/C− basins. Note
that the decay in r starts at t = 800. When the
curves decrease to zero, the transient chaos phase
ends and every trajectory reaches its steady state,
i.e. the C+/C− fixed point attractors.
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Fig. 8. Normalized number of trajectories that remain in
the chaotic attractor for time t. At t = 800, the parame-
ter starts decreasing, but the chaotic attractor constitutes
a metastable state for some time later than before reaching
the steady state. Therefore, the transient behavior is shown.
For a certain parameter change rate, the trajectories do not
reach the steady state at once; instead they follow a normal
distribution. For slow parameter change rates the transient
dynamics lasts for a longer period of time. This may create
the false impression that the transient regime is the steady
state.

As we can see, in all cases, the decay with time
follows a sigmoid which is related to the normal
distribution for rcr in Fig. 7(a). Note that rcr and
time are equivalent through Eq. (4). In fact, we
are representing nothing more than the complemen-
tary cumulative distribution function of Fig. 7(a) in
terms of time.

The S-shape of Fig. 8 reflects that the major-
ity of trajectories decay more or less at the same
time (same rcr), while some of them decay earlier
or later. The curve for ε = 10−3 is further from the
rest of them as we showed in Fig. 7(b) that

〈rcr〉 ∝ −ε1/4,

thus as ε → 0, the 〈rcr〉 decreases and the time for
the transition increases nonmonotonically.

The scaling law on Eq. (5) predicted that for
high parameter change rates the temperature gra-
dient could be decreased to a low value before tur-
bulence disappeared. In this new interpretation, we
add that in terms of time, the transient dynamics
is shorter in that case. Finally, the scaling law can
be written in terms of time using Eq. (4):

〈τ〉 = a · ε−3/4 + t1, (6)

where τ refers to the lifetime of the transient
dynamics, t1 in our case is 800 and a is a positive
constant.

We conclude that in nonautonomous systems,
the transient dynamics may present an unexpected
long-term behavior. After a period of apparent equi-
librium, in our case chaotic, the system suffers a
transition to its true steady state. The transient
dynamics duration depends on the parameter rate
of change through the scaling law. For slow rates,
the transients last for a long period. This may be an
undesired effect for a experimentalist as a param-
eter may be changing too slowly to notice and the
dynamics may seem stable. Additionally, due to the
presence of the chaotic attractor, the final destina-
tion of the trajectory after the transient dynamics
becomes unpredictable.

4. Reversibility

Sometimes, the long-lasting transients that appear
in systems with parameter drifts may be followed
by an undesirable state. This problem has been
addressed from a control theory approach, where
a small perturbation may keep the system in the
desired transient state [Aguirre et al., 2004]. For
instance, this approach has been proposed to pre-
vent species extinction maintaining the system in
the transient chaos regime [Shulenburger et al.,
1999]. Here, we tackle the problem from a differ-
ent perspective.

For systems with parameter drifts, the param-
eter may be controllable and we may ask ourselves
whether it is possible to reverse the dynamics by
reversing the parameter to its original value. For
example, we can see that in the nonautonomous
Lorenz system, a chaotic transient precedes a sud-
den transition to a fixed point as shown in Fig. 6.
An intuitive way to avoid the latter, is to increase
the temperature gradient again in order to recover
the chaotic dynamics that was lost. However, if
we analyze the frozen-in bifurcation diagram, the
fixed point attractors C+/C− are stable before and
after the heteroclinic bifurcation at r = 24.06. This
implies that it may not be so easy to avoid these
states and a complete study of them would be
needed.

For that purpose, in this section, we analyze
what happens to the system if the temperature
gradient increases with time and the heteroclinic
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bifurcation is crossed “from the left.” The equations for the parameter r read:

r =

⎧⎪⎨
⎪⎩

r0 for t < t1

r0 + ε · (t − t1) for t1 < t < t2

r0 + ε · (t2 − t1) for t > t2

(7)

Once again, we take a sphere of 105 initial con-
ditions and we let these trajectories evolve with
time. Regarding the parameters in Eq. (7), there are
some restrictions in order to reverse the dynamics.
First of all, we take the initial temperature gradient
to be in the range 13.926 < r0 < 24.06. In particu-
lar, we consider r0 = 20, since for this parameter we
have already calculated the corresponding basins of
attraction in the frozen-in system (see Fig. 2). We
aim to increase the temperature gradient in such
a way that those red and blue basins correspond-
ing to C+/C− (the undesirable state), map to the
yellow basin corresponding to the chaotic attractor
(the desirable state).

The ideal situation would be to fix t1 to a
higher value than the maximum lifetime calculated
in Fig. 3, that is, t1 > 140. By doing so, we ensure
that all initial conditions have reached C+/C−.
However, it can be checked that once a trajectory is
close enough to C+/C− it cannot escape, no mat-
ter the rest of the parameter values in Eq. (7). By
close enough, we refer to the same criterion used for
the basins of attraction, that is, that the trajectories
enter into a sphere of radius 0.1 centered at C+/C−.
Higher values of the radii, around 5, mark the no
return limit. Taking that argument into account,
we set t1 = 0, so that the parameter starts increas-
ing from the beginning of the trajectory, when it
is still on the sphere, far enough from the C+/C−
attractors.

For the same reason as before, if we take slow
parameter rates, the trajectories will enter the no-
return limit. Thus, the third restriction is about ε.
For the range of ε considered in the previous section,
the system does not tip to the chaotic attractor. In
fact, we found that a minimum rate close to 5 ·10−2

is needed. This type of tipping, where the system
fails to track a continuously changing quasi-static
attractor for a certain critical rate is called rate-
induced tipping or R-tipping [Ashwin et al., 2012].
In our case, as we are not letting the system reach

C+/C−, no traditional rate-induced tipping is pos-
sible [Kaszás et al., 2019].

On the other hand, the last parameter, t2, is
fixed in such a way that for every ε, the tem-
perature gradient stops at r = 24.5. For exam-
ple, for ε = 10−1, the value of t2 is 45, since
20 + 10−1 · (45 − 0) = 24.5.

Now, we show the results for various parameter
rates above the limit. Figure 9 shows the scenario-
dependent basins for ε = 5 · 10−1, 10−1, 7 · 10−2 and
5 · 10−2. Additionally, we have included the basins
for the frozen-in equations at the starting and end-
ing values of the parameter shift, that is, r = 20
and 24.5, in order to compare the size of the yellow
regions, corresponding to initial conditions that end
up in the chaotic attractor.

As we can see, the faster the parameter shift,
the closer to the basin for r = 24.5. For slower
parameter rates, as ε = 10−2, we obtain that the
scenario-dependent basin is the same as the basin
for r = 20. In other words, no tipping from C+/C−

to the chaotic attractor is possible. For ε = 5 ·10−2,
a few trajectories starting near the stable manifold
of the chaotic saddle at r = 20 tip to the chaotic
attractor. This is because points in that region have
longer lifetimes and show transient chaos in the
static case, see Fig. 3. For ε = 7·10−2 and 10−1, this
effect is stressed. And for ε = 5 · 10−1 the number
of trajectories that tip to the chaotic attractor are
significantly increased and the basin boundaries are
smoothed.

Even for the initial conditions that do not tip,
these trajectories are affected by an increase in the
time to reach the C+/C− attractors. This long-
lasting transient is explained by the fact that the
attractor is continuously changing and the difficulty
to track its path is more severe for higher parameter
change rates as shown in Fig. 10 for ε = 5 · 10−1.
The transient lasts for a longer time compared to
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Rate-induced tipping phenomenon. The scenario-dependent basins of attraction for different values of ε showing that
for high parameter change rates a significant number of trajectories tip to the chaotic attractor. We also show the basins of
attraction of the frozen-in system for r = 20 and r = 24.5 for comparison. In all cases we have fixed t1 = 0, r0 = 20 and
rf = 24.5.

the frozen-in case, even if it does not tip to the
chaotic attractor.

Finally, we have calculated the tipping prob-
ability as defined in [Kaszás et al., 2019]. In our
case, it corresponds to the proportion of the part
of the basin of attraction of C+/C− at r = 20 that

Fig. 10. Transient lifetime comparison for the frozen-in case
and the nonautonomous system with ε = 5 · 10−1. Even for
the trajectories that do not tip to the chaotic attractor, the
transient regime duration is increased when the parameter
shifts as it is more difficult to track the attractor.

is mapped to the chaotic attractor, A, at r = 24.5
by the end of t2. The evolution of the tipping prob-
ability with the rate of change of the parameter r
is shown in Fig. 11. As we can see, the probability
increases with ε, since more initial conditions tip to
the chaotic attractors for higher parameter change
rates. At a value around 10−1 the curvature changes
sign and around 5 ·10−1 the tipping probability sat-
urates and approximately half of the trajectories tip
to the chaotic attractor.

The shape of the numerically calculated points
describe a sigmoid, specifically, a Gompertz type
function of the form

P = a · e−b·e−c·ε
, (8)

where a is the saturation value, i.e. a = 0.5151,
b = 6.139 and c is the growth rate. In our case,
c = 21.07 with an R-square of 0.9881. As we can
see, the growth in the tipping probability is slower
for low and high values of ε and it reaches a sat-
uration value for which no matter how fast the
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Fig. 11. Tipping probability dependence with ε. This prob-
ability accounts for the number of trajectories that tip from
C+/C− to the chaotic attractor, A, by the end of the param-
eter shift. For higher parameter change rates, more trajecto-
ries that belonged to the red/blue basins at r = 20, tip to
the chaotic attractor when the parameter shifts. The numer-
ically calculated points are fitted to a sigmoid, specifically,
the Gompertz function.

parameter is shifted, approximately half of the tra-
jectories never tip to the chaotic attractor. These
trajectories correspond to the ones with lower life-
times in the frozen-in case.

The results presented above show that it is
possible to change the fate of trajectories that
would reach the C+/C− attractors by increasing
the parameter r. At the beginning of this section,
we considered a trajectory with a chaotic transient
preceding a sudden transition to an undesirable
state, like the one in Fig. 6, and we asked ourselves
whether it is possible to reverse this dynamics by
reversing the parameter to its original value, that is
r = 24.5. In the light of the results shown, this is
not always possible.

Once a trajectory has decayed to either one of
the fixed points, that is, time has passed so that
r has decreased below rcr, reversing the parame-
ter to its original value is not enough to reverse
the dynamics. However, if we observe this behav-
ior for a single trajectory, we may still be able to
reverse the dynamics for other trajectories. As we
showed in Fig. 7(a), each initial condition decays
to the fixed point at a different time, or likewise
at a different parameter value r. This means that
for r > (〈rcr〉− σ), there are still trajectories in the
chaotic region which after some time would decay to
C+/C−, and an increase in the temperature gradi-
ent may keep these in the desirable state. For higher
parameter change rates, a higher number of trajec-
tories will tip to the chaotic attractor as shown in
Fig. 11.

Another consequence is that if we want to make
sure that the chaotic behavior is not recovered once
the temperature gradient is increased for any trajec-
tory, we have to decrease this parameter to a value
of r < 〈rcr〉 − σ.

5. Conclusions

In this paper we have studied the phenomenon of
transient dynamics in a nonautonomous system. In
particular, we have analyzed the Lorenz system sub-
jected to a small parameter drift. First of all, we
have characterized the associated frozen-in system.
We have observed that when the parameter crossed
the heteroclinic bifurcation value, the system con-
tinued tracking the chaotic attractor for further
parameter values until it reached a critical value
at which it jumped to its true steady state. Thus,
we have concluded that the so-called delay effect is
also present in systems with strange attractors. Fur-
thermore, it constitutes the origin for the long-term
transient dynamics before the system settles at its
steady state.

We derived a scaling law to relate the dura-
tion of the transient in the nonautonomous system
to the parameter rate of change. We have shown
that for higher parameter change rates, the tran-
sient dynamics is shorter, while the deviation from
the bifurcation value of the parameter that causes
the transition is larger. This relation is governed by
a power law.

Finally, we have analyzed the possibility of
recovering the transient dynamics by reversing the
parameter value to its original state, as an alter-
native to the control theory for nonautonomous
systems. For this purpose, higher parameter rates
were considered. Above a critical rate, rate-induced
tipping takes place and some trajectories initially
far from the fixed point attractors tip back to the
chaotic attractor. We have also showed the sigmoid
relation between the number of trajectories that
change their fate and end up in the chaotic attrac-
tor and the parameter change rate. For this pur-
pose, the reverse on the parameter must start before
r > 〈rcr〉−σ. Even for the trajectories for which the
system does not tip, we have showed that the tran-
sient dynamics duration is enlarged.
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