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Jesús M. Seoane, Ricardo L. Viana, Miguel A.F. Sanjuán

PII: S0022-5193(17)30328-4
DOI: 10.1016/j.jtbi.2017.07.003
Reference: YJTBI 9138

To appear in: Journal of Theoretical Biology

Received date: 13 April 2017
Revised date: 29 June 2017
Accepted date: 5 July 2017
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Highlights

• A chemotherapeutic treatment consists of drugs delivered in periodic cycles.

• Tumor cells regrow between cycles, reducing the benefits of the treatment.

• Increasing the frequency of the cycles maximizes the cancer cell kill.

• There exists a minimum time between cycles for a protocol to be effective.

• Dose-dense protocols can be beneficial, but present difficulties.
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Ricardo L. Vianad, Miguel A. F. Sanjuána,e
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Abstract

Chemotherapy is a cancer treatment modality that uses drugs to kill tumor cells.
A typical chemotherapeutic protocol consists of several drugs delivered in cycles
of three weeks. We present mathematical analyses demonstrating the existence
of a maximum time between cycles of chemotherapy for a protocol to be effec-
tive. A mathematical equation is derived, which relates such a maximum time
with the variables that govern the kinetics of the tumor and those characterizing
the chemotherapeutic treatment. Our results suggest that there are compelling
arguments supporting the use of dose-dense protocols. Finally, we discuss the
limitations of these protocols and suggest an alternative.

1. Introduction

In order to assess the benefits of the different combination chemotherapeutic
protocols, clinical experience reveals that simple trial-and-error, in the absence
of guiding principles, is a rather slow and inefficient process (Simon and Norton,
2006). To establish these guiding principles, hypotheses have to be accompanied
by mathematical models (Borges et al., 2014; Iarosz et al., 2015), in such a man-
ner that empirical data allows their rigorous falsification. Log-kill models have
provided important progress in chemotherapy along the last forty years (Norton,
2014), specially concerning haematological cancers. However, randomized trials
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carried out in recent decades (Bonadona et al., 1995; Hudis et al., 1999; Citron et
al., 2003) have demonstrated that the periodicity of the cycles is very important, as
well. One of the reasons that support this fact is that tumors grow between cycles
of chemotherapy. Even worse, some of these proliferating cells could be resistant
to further treatment. Another reason is that there is evidence suggesting that the
rate of destruction by chemotherapy is proportional to the rate of growth of the
same tumor in the absence of therapy (Simon and Norton, 2006). This statement
is formally known as the Norton-Simon hypothesis. According to it, and because
many solid tumors follow Gompertzian or sigmoidal growth (Laird, 1964; Norton,
1988), bigger tumors are less susceptible to therapy. All these facts have led to the
introduction of the concept of dose-dense protocols in chemotherapy. Dose-dense
chemotherapy is based on the increase in the frequency of drug delivery to avoid
regrowth between cycles and achieve the maximum cancer cell kill. It has been
an important breakthrough in the evolution of chemotherapy for breast cancer and
lymphoma (Hudis and Schmitz, 2004).

However, dose-dense protocols of chemotherapy are still being debated, and
no general consensus has been reached on their beneficial properties (Foukakis et
al., 2016). Moreover, as far as the authors are concerned, the role of dose-density
compared to the effect of increasing the dose per cycle, has not been addressed
in previous modeling efforts (Panneta and Adam, 1995; Pinho et al., 2002; De
Pillis et al., 2006) on chemotherapy. The importance of the Norton-Simon hy-
pothesis and how it affects the dose-dense principle has not been rigorously es-
tablished either. These novel features can be studied by introducing protocols of
chemotherapy that are in closer resemblance to those used in the clinical practice.
For this purpose, we devise a one-dimensional discrete mathematical model from
a well-established continuous mathematical model. This new model represents
the evolution of the tumor size in the presence of chemotherapeutic agents for
periodic instants of time. Discrete models are computationally very affordable,
and can be used to study other more complex aspects of chemotherapy for can-
cer. The model is then used to show the existence of a maximum time between
cycles of chemotherapy for a treatment to be able to reduce the tumor mass. The
continuous mathematical model assumes the sigmoidal growth of tumors (Norton,
1988), although other types of growth can be considered to obtain similar conclu-
sions. Concerning chemotherapy, it is represented by means of the Exponential
Kill Model (Gardner, 1996), which was developed in the last decade, and includes
features that go beyond traditional log-kill models. We do not need to assume the
Norton-Simon hypothesis to develop our ideas. Nevertheless, we show that such
hypothesis enhances the forcefulness of our results. Before developing our ideas,
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it is convenient to put on a clear physical basis some concepts commonly used in
the arrangement of chemotherapeutic protocols, which might be potentially con-
fusing.

2. Protocols of chemotherapy

Chemotherapy can be used in several ways (Pazdur et al., 2005). Among its
different uses, it can be administered concurrently with other treatments, such as
radiation and surgery (adjuvant chemotherapy). It can also be administered in a
long-term setting at low-doses, to a patient who has achieved a complete remis-
sion, with the intent of delaying the regrowth of residual tumor cells (maintenance
chemotherapy). Or it can be delivered to prolong life, to a patient whose cure is
not likely (palliative chemotherapy). In all these cases, chemotherapy is com-
monly delivered in periodic cycles of three weeks1, which seems to be the time
required for the organism to recuperate from the toxic side-effects of the ther-
apy (e.g. to replenish cells originated in the bone marrow). Finally, a cycle of
chemotherapy consists of several drugs, which are frequently administered intra-
venously through continuous infusion. These infusions can last from half an hour
to several hours. Therefore, four elementary variables associated to a chemother-
apeutic protocol can be distinguished. During a cycle, for each drug, there is a
variable representing the dose administered D, another that symbolizes the total
duration of the infusion ta and a third variable that represents the rate of elimina-
tion of such drug from the bloodstream k. Finally, one more variable representing
the time T between the successive cycles of the treatment is necessary.

There are two fundamental concepts related to these variables. The first is
dose-intensity, which is defined as the total dose of drug administrated during
a treatment, divided by the duration of the treatment (Fornier and Norton, 2005).
The second concept is dose-density, and it can be precisely defined as the period T
between the cycles of the treatment (Fornier and Norton, 2005). Several protocols
illustrating these two concepts are shown in Fig. 1. Since dose-intensity is defined
as an average, there are two ways in which it can be incremented. The first is to
increase the dose of a drug (or the number of drugs) given in a cycle. The second
is to shorten the treatment by an increase of dose-density (keeping fixed the total
amount of drug delivered and the number of cycles). To avoid this ambiguity,

1Information about standard protocols of chemotherapy has been drawn
from: http://www.bccancer.bc.ca/health-professionals/professional-resources/chemotherapy-
protocols.
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Figure 1: Protocols of chemotherapy. (a) A reference protocol of chemotherapy consisting of
four cycles of the same dose of drug, given every three weeks. (b) A protocol that is more dose-
intense than the reference, because higher doses of the drug are administered (higher D). (c) A
protocol that is more dose-intense, again because more drug is administered in a cycle, but through
a longer continuous infusion (higher ta). (d) A protocol consisting of four cycles, which is more
dose-dense than the reference, because the frequency of the cycles is increased (lower T ) to one
week.

dose-intensity must be defined at every instant of time, as the rate at which drug
flows into the body I(t) = dD/dt. However, in practice, we also define the
dose-intensity as an average. In particular, we say that the dose-intensity 〈I〉 is
the average of the instantaneous dose-intensity I(t) over a cycle of chemotherapy.
Mathematically, this can be written as

〈I〉 = 1

T

∫ T

0

I(t)dt. (1)

Now, this concept is independent of dose-density and the only way to increase it
is through an increase of dose or through the addition of more drugs to a cycle.
To conclude, we recall that other concepts, such as the cumulative dose, do not
play any role in our study, since drugs barely accumulate when the time between
cycles is considerably longer than the half-lives of the drugs. For the same reason,
the time along which drugs are administrated ta through continuous infusion, is
neglected.

3. Model description

To develop our ideas, a one-dimensional nonhomogeneous ODE model gov-
erning the dynamics of a solid tumor under the effect of cytotoxic drugs is con-
sidered. The kinetics of the tumor is assumed to be Gompertzian, although for
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mathematical simplicity, the logistic equation is used. The chemotherapeutic pro-
tocol is represented by means of the Exponential Kill Model, which was designed
regarding in vitro data (Gardner, 1996) and has also been tested against in vivo
results (López et al., 2014). Therefore, the mathematical equation can be written
as

dP

dt
= rP (t)

(
1− P (t)

K

)
− b
(
1− e−ρC(t)

)
P (t), (2)

where P (t) represents the tumor cell population, r its maximum rate of growth
and K its carrying capacity. The second term represents the action of a cytotoxic
agent, being b the maximum fractional cell kill, C(t) the concentration of the drug
at the tumor site and ρ the resistance of the tumor cells to such drug.

The effect of chemotherapeutic drugs is not exerted immediately, and there
exist time delays imposed by their metabolism (López et al., 2014). However,
these delays do not alter the results of this work, since they simply displace in
time the treatment. Thus, concerning the pharmacokinetics, we simplify it as
much as possible, following previous modeling efforts (De Pillis et al., 2006).
This allows us to derive analytical results. Hence, we assume a one-compartment
model and first order pharmacokinetics. The differential equation governing the
concentration of the drug is

dC

dt
= I(t)− kC(t), (3)

where I(t) is the function representing the input of drug (the instantaneous dose-
intensity) and k is the rate of elimination of the drug from the bloodstream, from
which the half-life can be computed as τ1/2 = (loge 2)/k.

If the drug is administered through an intravenous bolus or by a short contin-
uous infusion, the time along which the drug is given (from minutes to a couple
of hours) can be neglected compared to the time between cycles of chemotherapy
(weeks), and we can safely approximate the input function as

I(t) =
Nc∑

m=0

Dδ(t−mT ), (4)

where δ(t) is the Dirac delta function and T is the time elapsed between cycles.
Therefore, every T weeks a dose of drugD is administered to the patient, during a
treatment that comprises Nc cycles of chemotherapy. Note that, with this approxi-
mation, the dose-intensity 〈I〉, as computed from equation (1), is simply given by
D. For the moment, we consider that the same dose of drug is administered with
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Figure 2: The drug input. The arrows represent a protocol of four cycles of chemotherapy mod-
eled through a series of Dirac delta functions. The dashed line represents the concentration of the
drug as it is eliminated from the organism.

each cycle. In Sec. 6 our results are extended to more sophisticated protocols. For
a representation of the protocol see Fig. 2. The solution to equation (3) with a
drug input given by equation (4) at a time instant t between the (n − 1)-th and
n-th cycle is

C(t) = D
enkT − 1

ekT − 1
e−kt. (5)

If the drug is eliminated quickly (in comparison to the duration of the cycle) we
can neglect the accumulation of the drug along the cycles of the treatment and use
the approximation C(t) = De−k(t−(n−1)T ), with t in the interval mentioned above.
Or more simply

C(t) = De−kt(mod T ). (6)

We now briefly describe the main features of the model dynamics. To this end,
we consider the following set of parameters, which are chosen in conformity with
experimental data. The values of r = 0.8 week−1 andK = 1×109 cells have been
borrowed from the literature (De Pillis et al., 2005). An extremely fast growing
tumor would be one in which all cells were constantly dividing through mitosis.
Since the cell cycle of a human cell lasts approximately one day, this corresponds
to an exponentially growing tumor with a constant rate value of r = 4.85 week−1.
Therefore, we are considering a quite aggressive tumor. The carrying capacity
corresponds to a detectable tumor mass of approximately one gram. The values
of ρ = 0.1 mg−1 and b = 2.8 week−1 are within values appearing in other work
as well (Gardner, 1996). The dose of drug administered in these simulations is
D = 60 mg, while the rate of drug elimination k = 4.85 week−1 corresponds to
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a half-life of approximately one day. These are typical values of the drug dox-
orubicine, which is used in the treatment of locally advanced breast cancer, for
example. Nevertheless, the effects of varying these parameters are inspected in
Sec. 5. As can be seen in Fig. 3, if the drug is effective destroying the tumor
cell population (low resistance), the tumor is considerably reduced when the drug
concentration is high. However, as soon as most of the drug has been eliminated,
the tumor resumes its growth. Consequently, if the period of time between cycles
is too long, the protocol leads to an oscillatory dynamics and cannot be effec-
tive, bearing in mind that typical half-life values of cytotoxic drugs span from
several hours to several days. Unlike other cancer treatments, where the drugs
are given for longer periods of time and the phenomenon of drug resistance is
more pronounced (Hirata et al., 2010), in chemotherapy the resulting oscillations
are in general undesired. An example is the use of adjuvant chemotherapy for
the treatment of breast cancer, where the phenomenon of resistance has not been
demonstrated to be more important than the effect of dose-density (Bonadona et
al., 1995).

These facts suggest that, having fixed the remaining parameters of the model,
there exists a maximum time between cycles of chemotherapy that permits a pro-
gressive reduction of the tumor. And then, obviously, protocols set at values of T
higher than such threshold (i.e., not enough dose-dense), are useless. A mathe-
matical function that allows to estimate the relation between the threshold value
of the cycle periodicity and the model parameters is derived in the following sec-
tions.

4. A one-dimensional map

To obtain a function that relates the threshold value of T with the other param-
eters of the model, we first derive a one dimensional map for cancer chemother-
apy. In dynamical systems, a map is a function that relates a set of possible
states with itself in an iterative manner. In our case, this function relates the
size of the tumor right before two successive cycles of chemotherapy. The first
assumption in this derivation is that the drugs are effective enough to reduce
the size of the tumor at some time. An upper bound for the value of r that
guarantees this condition is r < b(1 − e−ρD), which can be obtained by con-
sidering that rP (1 − P/K) ≤ rP < b

(
1− e−ρC(t)

)
P in equation (2), which

assures that Ṗ < 0. Rearranging this condition we can also set a restriction
on the minimal dose of drug required for a treatment to be effective, which is

8
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w w

Figure 3: Two protocols of chemotherapy. (a) A protocol consisting of two-week cycles
(T = 2 weeks) is able to reduce the size of the tumor (red) progressively. (b) A protocol whose
drugs are administered every four weeks (T = 4 weeks) is insufficient to reduce the size of the
tumor progressively. The time series of the drug concentration C(t) is plotted for clarity (green),
disregarding its specific values.

ρD > loge(b/(b − r)). For this not to hold, the particular nature of the proto-
col would not have much importance, since the only effect of chemotherapy is
just to slow the growth of the tumor, but not to reduce it. As depicted in Fig. 4,
when the drug concentration is high, the second term on the right hand side of
equation (2) dominates over the first term. Conversely, once most of the drug
has been eliminated C(t) → 0, it occurs the other way around, i.e., the second
term is vanishingly small in comparison to the first. Thus, we can divide a cycle
of chemotherapy [0, T ) into two time intervals. The first interval [0, τ) is dom-
inated by the cytotoxic drugs, and during it, equation (2) can be approximated
as

dP

dt
= −b

(
1− e−ρC(t)

)
P (t). (7)

During the second interval [τ, T ) the tumor growth prevails, and therefore we can
consider the growth term only

dP

dt
= rP (t)

(
1− P (t)

K

)
. (8)

These two equations can be easily integrated. However, a difficulty arises in
order to estimate τ , which represents the time at which the drug concentration has
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Figure 4: The action of chemotherapy. A cycle of chemotherapy of length T can be subdivided
into two time intervals. The red curve represents the time series of the tumor size P (t), while the
drug concentration C(t) is added for clarity (blue curve). During the first interval [0, τ), when the
drug concentration is high C(t) > D/N , the chemotherapeutic drugs govern the dynamics and
the tumor is reduced from its original size P (0) to a size P (τ). During the second interval [τ, T ),
which starts when the drug concentration has dropped to low levels, the tumor regrows from P (τ)
to its final size at the end of the cycle P (T ). Note that, by definition, the inequality τ ≤ T always
holds.

decreased to values for which the first term on the right hand side of (2) starts to
dominate over the second. One possibility is to approximate the growth of the tu-
mor to exponential. Since this value is the maximum rate at which the tumor can
grow (occurring for small tumor burdens), the value thus obtained is clearly a con-
servative overestimation. In this case, making use of equation (6), the following
inequality must hold

r ≥ b
(
1− e−ρDe−kt

)
. (9)

The value at saturation can be used to solve for τ , yielding

τ =
1

k
loge (ρD/ loge (b/(b− r))) . (10)

A simpler and less restrictive possibility is to assume that when the drug con-
centration has dropped to a certain level, its cytotoxic effect is negligible. Fol-
lowing this reasoning, we can write τ = (logeN)/k, where N represents the
fraction to which the drug concentration has dropped. Of course, comparison of
this equation with equation (10) allows to solve for N . More generally, a pru-
dent choice could be to consider that when the concentration has reduced in an

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

order of magnitude (N = 10), the effects of the drug can be disregarded. In fact,
for the parameter values presented in the previous section and this criterion, the
estimated values of the time τ obtained through these two different methods are
quite similar (around four days). In what follows, for simplicity, and because the
conclusions are more resounding, we consider a fixed value of N to illustrate our
results. Nevertheless, the first approach can be used to obtain similar conclusions,
because τ grows slowly when ρD is increased.

Having explained this point, we can proceed to integrate the equations (7) and
(8). Equation (7) can be integrated as follows. In a first step we have

loge(P (τ)/P (0)) = −bτ + b

∫ τ

0

e−ρDe
−kt

dt. (11)

The integral appearing in the second term of the right hand side can be solved in
terms of the exponential integral function Ei(x) (see Appendix A). The result is

∫ τ

0

e−ρDe
−kt

dt = τ
Ei(−ρD)− Ei(−ρD/N)

logeN
. (12)

If we define the fuction g as

g(ρD,N) ≡ Ei(−ρD)− Ei(−ρD/N)

logeN
, (13)

we finally obtain
P (τ) = P (0)e−bτ(1−g). (14)

The function g(x,N) is analytic in the domain of interest [0,∞) × (1,∞)
and resembles an exponential decay, as can be seen in Fig. 5. This means that
the survival fraction P (τ)/P (0) at time τ plateaus for increasing values of the
dose. The value of the survival fraction at the plateau is e−bτ . This feature is
characteristic of the Exponential Kill Model and does not appear in ordinary log-
kill models (Gardner, 1996). It states that at a certain point, which depends on the
tumor resistance to the drugs, the increase of the dose intensity barely affects the
survival fraction.

The solution to the logistic equation (8) governing the second part of the
chemotherapeutic cycle [τ, T ) is well-known. With these limits of integration,
the solution can be written as

P (T ) =
KP (τ)er(T−τ)

K + P (τ)(er(T−τ) − 1)
. (15)
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Figure 5: The function g(x,N). The resemblance between this function and a decaying expo-
nential is shown. For x = 0 it takes a value of 1 and it has an horizontal asymptote at y = 0.

To conclude, we can substitute equation (14) into equation (15) to obtain the
relation between the size of the tumor at the beginning and at the end of a cycle of
chemotherapy

P (T ) =
KP (0)

Ke−r(T−τ(1+b(1−g)/r)) + P (0)(1− e−r(T−τ)) . (16)

If we define the constants α = e−r(T−τ(1+b(1−g)/r)) and β = 1 − e−r(T−τ), the
sequence that relates the size of the tumor cell population right when the n-th
cycle starts and its size at the end of the cycle is

Pn+1 =
KPn

αK + βPn
. (17)

In fact, we can nondimensionalize the tumor size population by dividing it by its
carrying capacity, since it will not affect the results presented in the following
section. In the new variable x = P/K, the map is nicely written as

xn+1 = f(xn) =
xn

α + βxn
. (18)

5. The shrinking condition

We proceed to study the stability properties of the one-dimensional map de-
rived right above. The fixed points of the map satisfy the equation f(x∗) = x∗. If

12
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chemotherapy is able to completely reduce the size of the tumor, the orbit of any
initial condition should asymptotically converge to a state of zero tumor cell pop-
ulation. In mathematical language, x∗ = 0 should be an attractor of the dynamical
system. This imposes a constraint on the values that α can take. Solving for x∗,
we find two possible solutions, which are x∗1 = 0 and x∗2 = (1−α)/β. To address
the stability of the fixed points, the Jacobian has to be computed at these points.
We obtain

f ′(x∗) =
α

(α + βx∗)2
. (19)

Thus, for x∗1 = 0, the value of the Jacobian is 1/α, while for x∗2 = (1− α)/β, the
value is α. Since α is positive, we have two possibilities. The first one is α < 1,
where x1 is a repelling fixed point, while x2 represents a stable state in which the
tumor exists under its carrying capacity. Conversely, if α > 1, the tumor can be
eradicated, which is the desired situation. We can solve for T by expressing the
parameter α in terms of the parameters of the chemotherapeutic protocol and the
rate of growth of the tumor. The result is

T < τ(1 + b(1− g(ρD,N))/r). (20)

As it can be seen, there certainly exists a threshold value of the period be-
tween cycles Ts = τ(1 + b(1− g(ρD,N))/r) for a chemotherapeutic protocol to
be effective. On what follows, we refer to this value as the shrinking time Ts. Pro-
tocols that are sufficiently dose-dense (i.e., T < Ts) provide a sustained reduction
of the tumor. Note that, since our estimation of the time τ does not depend on K,
there is no dependence of Ts on the carrying capacity of the tumor K. This is an
advantage, since, in general, it is not easy to determine a priori the value of K.

We now examine the nature of the functional relation between Ts and the pa-
rameters representing the dose D, the resistance ρ, the maximum fractional cell
kill b and the rate of growth r of the tumor. Since these four parameters appear
in pairs in equation (20), ρ and D multiplying each other while b and r dividing
each other, we can simplify the study by defining two new dimensionless param-
eters from them. We call one of them the effective dose D∗ = ρD, while the
other is named the relative maximum fractional cell kill b∗ = b/r. In the fol-
lowing we consider N = 10, which, as previously stated, gives similar results
that equation (10). With the new parameters, the shrinking time can be written
as Ts = (loge 10)(1 + b∗(1 − g(D∗, 10)))/k, where we use the same value of k
as before. As it is shown in Fig. 6, the higher the effective dose D∗, the higher
the shrinking time can be raised. However, it is clearly appreciated that the value

13
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Figure 6: The shrinking condition Ts. The curves Ts are represented against the effective dose
D∗ and for different values of the relative maximum fractional cell kill b∗. The colored regions
T < Ts represent sufficiently dose-dense protocols. Note how the curves asymptote to a value
T∞, showing that the increase in dose does not provide substantial benefits if the density of the
protocol is not enough.

plateaus for high doses, and a point is reached for which increasing the dose in-
tensity does not allow to reduce noticeably the dose density. This is an important
prediction of the present work. Increasing the dose of a protocol might not be very
useful (even if there was no toxicity) if its density is under a certain value. An ap-
proximation of the limiting value is attained for D∗ → ∞ and can be computed
as T∞ = τ(1 + b∗). As shown in Fig. 6, typical values of this time span from
less than a week to several weeks. Concerning the relative fractional cell kill, it
is evident that the shrinking time increases with it. Thus, in our model, slower
growing tumors and higher maximum fractional cell kill (more destructive drugs)
permit to reduce the density of the protocol.

Even though the existence of a shrinking time does not depend on additional
hypothesis, the precise value that it takes, certainly does. It is at this point that the
Norton-Simon hypothesis comes into play. For tumors that have less proliferating
cells, the effects of chemotherapy are expected to be smaller, since chemotherapy
is more effective on proliferating than quiescent cells (Mitchison, 2012). This
phenomenon would maintain a similar value of b∗, by reducing the value of b.
Therefore, our results are also valid for other types of tumor growth, and are
always relevant as long as the relative maximum fractional cell kill is sufficiently
small. For example, for haematological cancers we can use exponential growth
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Ṗ = rP instead of equation (8) and derive equivalent equations. There is also
evidence pointing to the fact that some solid tumors do not follow a sigmoidal
growth, and that their mean radius increases linearly with time (Brú et al., 2003).
This occurs because only the cells on the surface of these tumors are proliferating.
Again, shrinking times can be computed following our recipe, with Ṗ = rP 2/3.
In principle, a tumor that follows this power law tends to grow considerably more
slowly than an exponentially growing tumor with the same constant rate, because
of the factor 2/3 in the exponent. However, this does not mean that the value b∗

is necessarily higher, because the maximum fractional cell kill of chemotherapy
b, according to the Norton-Simon hypothesis, decreases as well.

6. Combination protocols

Generally, several drugs are combined in a protocol of chemotherapy. For
example, an ordinary protocol of chemotherapy for locally advanced breast cancer
can combine at least three cytotoxic drugs, such as cyclophosphamide, epirubicin
and flurouracil (Burnell et al., 2010). It is therefore pertinent to ask if the map
obtained in Sec. 4 can be extended to derive the shrinking conditions for more
complex protocols. Fortunately, the answer is affirmative. We first consider an
imaginary protocol consisting of two drugs (see Fig. 7), which are given in an
alternate fashion (a cycle of the first drug followed by a cycle of the other drug).
Since each drug has its own parameters αi and βi, after the first cycle we have

x1 = f1(x0) =
x0

α1 + β1x0
. (21)

Then, the second cycle is applied

x2 = f2(x1) =
x1

α2 + β2x1
. (22)

Now, we have to note that equation (18) can be regarded as a Möbius transfor-
mation, restricted to the real numbers and with two parameters fixed. This means
that the composition of the two maps yields the same map, but with two different
parameters (α, β). Mathematically we have f = f2 ◦ f1, with x2 = f(x0). The
new parameters are related to the old ones through the relations

α = α1α2, β = β2 + α2β1, (23)

which define a Lie group relation between the group elements g = (α, β) and can
be represented as the product of matrices R(g) of the form

R(g) =

(
α 0
β 1

)
. (24)
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In other words, there is an underlying Lie group structure that allows us to reduce
the complex protocol to a simple one. This group representation clearly resembles
to the affine group. In fact, if α and β belonged to R>0 and R respectively, f
would define an action of the half-plane on the real line. However, in our case
α and β belong to the interval [0, 1], and therefore, the inverse element is lost
(there is no such thing as a cycle of antichemotherapy). In summary, we can
combine alternated drugs in a protocol with no difficulty to give estimations of
the shrinking time. Since we have α > 1, and α1 and α2 are exponentials, for the
present example we have

Ts =
1

2
(τ1(1 + b1(1− g(ρ1D1, N))/r) + τ2(1 + b2(1− g(ρ2D2, N))/r)). (25)

Thus, the new shrinking time is the arithmetic mean of the shrinking times of
both drugs. Finally, two or more drugs are frequently given simultaneously. The
general differential equation for a protocol with nd non-interacting drugs given
simultaneously, can be written as

dP

dt
= rP (t)

(
1− P (t)

K

)
−

nd∑

j=0

bj
(
1− e−ρjCj(t)

)
P (t). (26)

In this case, if the drugs have very different half-lives, we can derive again the
same map, but the development is more complicated. Note that, to estimate τ
to construct the map, we have to choose between the different τj of each drug
(j = 1, ..., nd). We can consider as an approximation the maximum of these times
max τj , but this procedure complicates the integrals associated to the other drugs.
However, if the half-lives of the drugs are not so different, we can approximate
all the τj to a single value. Then, the solution is much more simple. For example,
with two drugs given simultaneously we have the shrinking time

Ts = τ1(1 + b11(1− g(ρ11D11, N))/r + b12(1− g(ρ12D12, N))/r), (27)

where a matrix notation has been adopted for the parameters b, ρ and D, corre-
sponding to each chemotherapeutic drug. This equation tells us that giving more
drugs at a time allows us to relax the frequency (dose-density) of the protocol. Of
course, this comes at the expense of more toxicity.

Therefore, a general approximation of the shrinking time for an arbitrary pro-
tocol, as shown in Fig. 7, as long as the half-lives of simultaneously given drugs
are similar, is

Ts =
1

n

n∑

i=1

ni∑

j=1

τi(δij + bij(1− g(ρijDij, N))/r), (28)
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Figure 7: Protocols with several drugs. (a) An alternate protocol consisting of two drugs. (b) A
protocol consisting of two simultaneously administered drugs alternated with a single administered
drug. Note how in the latter case the time τ is approximated to the highest value of the two drugs
(red and blue).

where δij is the Kronecker delta and τi is the time for which simultaneously given
drugs have decayed to sufficiently low levels. The variable ni is the number of
simultaneous drugs given at the i-th step of an alternate protocol comprising n
steps. To conclude this section, we recall that if two different drugs are given
sequentially (some cycles of the first followed by a number of cycles of the sec-
ond), the whole treatment can be reduced to two subtreatments, having its own
shrinking time value each.

7. Conclusions

In the present paper we have introduced a new mathematical model to study
the benefits of dose-dense protocols in chemotherapy. More specifically, we have
derived a compact mathematical equation that relates the maximum time between
cycles of chemotherapy as a function of the parameters that characterize the phar-
macokinetics of the drug and the kinetics of the tumor. Another novel finding is
that this maximum time asymptotes to a constant dependence on the dose.

The existence of a shrinking time is a sound argument that supports the use of
dose-dense protocols and it is in conformity with other works on chemotherapy
(Fornier and Norton, 2005; Norton, 2005), which defend the equal importance
of dose-density and dose-intensity. However, even though the administration of
two-week cycles of chemotherapy represents statistically significant advantages
compared to the conventional three-week administration, these benefits are mod-
est (Fornier and Norton, 2005). Moreover, recent investigations demonstrate that
recurrence-free survival rates are not substantially improved by using tailored
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dose-dense chemotherapy instead of standard chemotherapy over a median of five
years (Foukakis et al., 2016). Among other reasons, this could be explained by
considering that, although dose-dense protocols can reduce significantly the sur-
vival fraction at the nadir, this reduction is not enough to avoid the regrowth of
residual tumor cells.

In addition, it must be recognized that, at some point, the introduction of
more dose-dense protocols presents similar difficulties that the increase of dose-
intensity. The increase of dose-density achieved by reducing the cycles below one
week would be a synonym of an increase in dose-intensity. Clearly put, in the
limit of small times between cycles, dose-density is tantamount to dose escala-
tion, which can introduce intolerable toxicities. Finally, we recall that part of the
cells that comprise a solid tumor are frequently found in a quiescent state. In such
a case too dose-dense protocols might not work, since quiescent cells are less sus-
ceptible to chemotherapy and some time after a cycle has caused its destruction
might be necessary for these remaining cells to abandon their cell cycle arrest.
Therefore, there is no doubt that dose-density presents numerous difficulties.

As our study suggests, chemotherapy might sometimes present the following
inconvenience. As time is given for the side-effects of chemotherapy to disappear
and for the organism to restore its homeostasis, time is also given for the tumor to
recuperate. In light of the facts argued in the previous paragraph, it is worth to ex-
amine if other treatment strategies, in addition to dose-densification, are possible.
As an example, we wonder if some kind of targeted cytostatic drugs (whenever
they exist) can be administered in a rather continuous fashion between cycles of
chemotherapy to arrest the growth of the tumor during that time. Were this pos-
sible, the targeted cytostatic drug would have the effect of arresting the growth
of the tumor only, while allowing the regrowth of healthy cells that are also de-
stroyed by the cytotoxic drugs. We acknowledge that this method presents other
difficulties, because it requires some degree of synchronization. If the cytostatic
effect of the drug persists for the time a new cycle of cytotoxic drugs starts, the
effectiveness of the latter can be reduced. Again, this is so because chemotherapy
is more efficient on dividing than quiescent cells. Moreover, if we could arrest the
growth of tumor cells by means of some cytostatic targeted drug, the periodicity
of the cycles might be relaxed and the toxic effects of chemotherapeutic drugs
would be reduced. This, in turn, would perhaps allow an increase in the number
of cycles as well.

In summary, we wonder if therapies might be improved as well if non-selective
destructive drugs are alternated with more specific and targeted drugs, which can
prevent the regrowth of the tumor cells between cycles. Taking up the old con-
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cept of the magic bullet (Klaus and Ullrich, 2008) proposed by Paul Ehrlich to
denominate these selective drugs, we suggest that the cannonballs of traditional
cytotoxic chemotherapy might be complemented with the magic bullets of some
cytostatic targeted therapy administered between cycles. In principle, the idea is
fairly simple and testable. Between cycles of destruction, stasis.

Aknowledgments

This work has been supported by the Spanish Ministry of Economy and Com-
petitiveness under Projects No. FIS2013-40653-P and by the Spanish State Re-
search Agency (AEI) and the European Regional Development Fund (FEDER)
under Project No. FIS2016-76883-P. M.A.F.S. acknowledges the jointly spon-
sored financial support by the Fulbright Program and the Spanish Ministry of
Education (Program No. FMECD-ST-2016). A.G.L. akcnowledges the financial
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Appendix A Solution to the integral

In Sec. 4, the following result has been used
∫ τ

0

e−D
∗e−kt

dt = τ
Ei(−D∗)− Ei(−D∗/N)

logeN
, (A1)

where Ei(x) is the exponential integral function, which is defined as

Ei(x) =
∫ x

−∞

et

t
dt. (A2)

Here we demonstrate the equality (A1). To this end, we first perform a change
of variables u = e−kt. Therefore, the relation between the differential elements is
du/u = −kdt. Recalling that we have considered τ = (logeN)/k, the integral in
the new variable reads

∫ τ

0

e−D
∗e−kt

dt = − τ

logeN

∫ 1/N

1

e−D
∗u

u
du. (A3)

Now, performing another change of variables x = −D∗u, we can rewrite the
previous integral as

∫ 1/N

1

e−D
∗u

u
du =

∫ −D∗/N

−D∗

ex

x
dx. (A4)
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Finally, the last integral can be expressed as the sum of two integrals in the fol-
lowing way

∫ −D∗/N

−D∗

ex

x
dx =

∫ −D∗/N

−∞

ex

x
dx−

∫ −D∗

−∞

ex

x
dx. (A5)

In this last step, the conditions D∗ > 0 and N > 1 have been used, since the
Ei(x) has a singularity at x = 0. The integrals appearing in this last equation are
precisely the Ei(x) function.
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