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• Estudios de Licenciatura

? Universidad de Valladolid

• Tesina:

? Contracciones ultrarelativistas del grupo
de Poincaré, 1981

• I. M. Yaglom
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The Nine Geometries of Cayley-Klein type

• The nine two-dimensional CK spaces S2
[κ1],κ2

= SOκ1,κ2(3)/SOκ2(2).

X Singularized by two real parameters κ1, κ2

? Values κ1 > 0,= 0, < 0 denoted +, 0,− label columns; similarly κ2 vs.
rows.

Spherical: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

Oscillating NH: NH1+1
+ Galilean: G1+1 Expanding NH: NH1+1

−
(Co-Euclidean) (Co-Minkowskian)
S2
[+],0 = ISO(2)/ISO(1) S2

[0],0 = IISO(1)/ISO(1) S2
[−],0 = ISO(1, 1)/ISO(1)

Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

(Co-Hyperbolic) (Doubly Hyperbolic)
S2
[+],− = SO(2, 1)/SO(1, 1) S2

[0],− = ISO(1, 1)/SO(1, 1) S2
[−],− = SO(2, 1)/SO(1, 1)

• All these geometries appear realized in Nature
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The many faces of κ1, κ2 [1]

• Projective view

? κ1 >,=, < 0 ≡ Eliptic, Parabolic, Hyperbolic type of measure of distances

? κ2 >,=, < 0 ≡ Eliptic, Parabolic, Hyperbolic type of measure of angles

• Old synthetic view

? κ1 >,=, < 0 ≡ a number 0, 1,∞ of lines through a given point P and not
meeting a given line l (not through P ).

? κ2 >,=, < 0 ≡ a number 0, 1,∞ of points on a given actual line l and not
joined to a given point P by an actual line (P not on l).

• Differential Geometry view

? κ1 >,=, < 0 ≡ Positive, Zero, Negative constant curvature κ1

? κ2 >,=, < 0 ≡ Positive Definite, Degenerate, Lorentzian, metric reducible to
diag{+1, κ2} at each point: signature κ2.

• Limiting view: Cases where either κ1, κ2 are zero are limiting approximations to
the generic cases where both κ1, κ2 are different from zero

? κ1 → 0 limit around a point

? κ2 → 0 limit around a line
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¿Two separate families? Riemannian . . . and Lorentzian

• Riemannian spaces Riemann’s far-reaching extension of the Euclidean space En

? Two steps Zero Curvature → Constant Curvature → General Curvature.

• Constant curvature Riemannian spaces

X Essentially, a one-parameter family of n-d Riemannian spaces of constant cur-

vature grouped in three types Snκ,E
n,Hn

k according as κ > 0,= 0, < 0.

X Standard choice κ = 1, 0,−1 gives the three standard Sn,En,Hn.

• Lorentzian spaces A (similar) extension of the Lorentz-Minkowski space M1,n

? No essential changes from Riemannian

• Constant Curvature PseudoRiemannian (Lorentzian) spaces

X Essentially, a one-parameter family of (1+n)-d Lorentzian spaces of constant

curvature AdS1+n
κ , M1+n,dS1+n

k according as κ > 0,= 0, < 0.

X Standard choice κ = 1, 0,−1 gives the three standard AdS1+n
κ ,M1+n,dS1+n

k .
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CK Spaces Versus CK Geometries

• The spaces discussed so far can be seen under the Riemannian and Klei-
nian perspectives

• Simplest example: Ordinary Euclidean space E2 is a symmetric homogeneous
space of the Euclidean group ISO(2), E2 ≈ ISO(2)/SO(2).

X Elements of this space are the points in Euclidean geometry, and the involution

Π1 correspond to reflection in a point.

• Yet there is another symmetric homogeneous space in Euclidean Geo-
metry: The set of all lines in E2 . This is Ẽ2 ≈ ISO(2)/ISO(1).

X Elements of this space are the lines in Euclidean geometry, and the involution

Π2 correspond to reflection in a line.

• (Symmetric) Geometry: An interlinked set of homogeneous spaces associated
to the same group G but with a set of commuting involutive automorphisms.
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Symmetric homogeneous spaces of ‘Cayley-Klein type’ [1]

• I discuss only the real 2d case, everything works for the real, Hermitian complex
and quaternionic spaces, in any n.

• Look for 3d Lie groups G which allow for two commuting involutive
automorphisms in the corresponding Lie algebra.

? These would provide two symmetric homogeneous spaces of the Lie
group G

• Approach Look in the common eigenbasis {P1, P2, J} The more general such
(quasi-simple) Lie algebra having Π(1),Π(2) as automorphisms depends on two
real parameters κ1, κ2

Π(1) : (P1, P2, J)→ (−P1,−P2, J), Π(2) : (P1, P2, J)→ (P1,−P2,−J)

[P1, P2] = κ1J [J, P1] = P2 [J, P2] = −κ2P1

• Denote SOκ1,κ2(3) the Lie groups obtained by exponentiation

? One-parameter subgroup invariant under involution Π(1) generated by J :

exp(γJ) =

 1 0 0
0 Cκ2(γ) −κ2Sκ2(γ)
0 Sκ2(γ) Cκ2(γ)

 SOκ2(2)
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Symmetric homogeneous spaces of Cayley-Klein type’ [2]

• Labeled Trigonometric functions: Labelled ‘cosine’ Cκ(x) and ‘sine’ Sκ(x):

Cκ(x) :=


cos
√
κx

1
cosh

√
−κx

Sκ(x) :=


1√
κ

sin
√
κx κ > 0

x κ = 0
1√
−κ sinh

√
−κx κ < 0

.

? Deformations of the two basic functions 1 and x

• Natural realization of the CK group SOκ1,κ2(3) as a group of linear transfor-
mations in an ambient linear space R3 = (x0, x1, x2).

? Therefore SOκ1,κ2(3) acts in R3 as linear isometries of a bilinear form
with Λκ1,κ2 = diag{+1, κ1, κ1κ2} as metric matrix.

? CK space as Homogeneous symmetric space: S2
[κ1],κ2

≡ SOκ1,κ2(3)/SOκ2(2)

• Natural structures in these homogeneous symmetric spaces:

? A canonical connection (compatible with the metric).

? A metric coming from the Killing-Cartan form in the Lie algebra. The
metric is of constant curvature κ1 and of ‘signature type’ κ2 .

• Hence this family includes precisely the spaces of constant curvature (either
> 0,−0, < 0) and (quadratic) metric of either signature type
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The nine CK 2d spaces as ‘spheres’ in ambient space coordinates

Spherical: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

Oscillating NH: NH1+1
+ Galilean: G1+1 Expanding NH: NH1+1

−
(Co-Euclidean) (Co-Minkowskian)
S2
[+],0 = ISO(2)/ISO(1) S2

[0],0 = IISO(1)/ISO(1) S2
[−],0 = ISO(1, 1)/ISO(1)

Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

(Co-Hyperbolic) (Doubly Hyperbolic)
S2
[+],− = SO(2, 1)/SO(1, 1) S2

[0],− = ISO(1, 1)/SO(1, 1) S2
[−],− = SO(2, 1)/SO(1, 1)

? Weierstrass ambient description as ‘CK spheres’

(x0)2 + κ1(x
1)2 + κ1κ2(x

2)2 = 1

κ1 = 1, 0,−1 (columns, left to right) κ2 = 1, 0,−1 (rows, up to down)

? Metric in the ambient space dl2 = (dx0)2 + κ1(dx
1)2 + κ1κ2(dx

2)2.

X Metric in the CK space ds2 := 1
κ1
dl2
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The nine CK 2d spaces as ‘spheres’ in ambient space coordinates
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The three S2, E2, H2 CK 2d spaces

X For distances r and angles θ, business as usual
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Something new in the three AdS2, M2, dS2 spaces? I

X In Minkowski space, rapidities appear through hyperbolic trig functions. κ2 < 0

is a negative (hyperbolic) label. Standard choice κ2 = −1

X But real rapidities (‘angles’) do not cover the full Minkowski, AntiDeSitter or

DeSitter spaces

X Introduce a ‘quadrant’ with negative label κ = −1 defined so that ·−1 is the

‘rapidity’ between ortoghonal vectors in this space. ·−1 =
π

2i
X Allow values χ, χ+ ·−1, χ+ 2 ·−1, χ+ 3 ·−1 for the rapidity

X Now rapidities cover the full Minkowski space (and AdS and dS too)
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Something new in the three AdS2, M2, dS2 spaces? II

? In Minkowski space (κ1 = 0 , proper times (the ‘distances’, denoted r)
appear through parabolic trig functions

X These real ‘distances’ do not cover the full Minkowski M2

X The basic metric is a quadratic form which is not definite positive

X Introduce ‘ideal’ distances and allow the ‘distances’ to be either real r or pure

imaginary ir

X Now these ‘distances’ jointly with the extended ‘angles’ cover all M2

X How about to extend this idea to all CK spaces?
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Natural coordinates: beyond the reals . . .

• Labeled Trigonometric functions: Recall ‘cosine’ Cκ(x) and ‘sine’ Sκ(x) with
‘label’ κ are defined initially for real variable x (later for some particular complex
values of x) as:

Cκ(x) :=


cos
√
κx

1
cosh

√
−κx

Sκ(x) :=


1√
κ

sin
√
κx κ > 0

x κ = 0
1√
−κ sinh

√
−κx κ < 0

.

• Define a quadrant: · κ = π
2
√
κ

.

X Expression for the ambient space coordinates in terms of ‘naive’ polar coordinatesx0

x1

x2

 =

 Cκ1(r)
Sκ1(r)Cκ2(θ)
Sκ1(r)Sκ2(θ)


X but, what is the domain of the coordinates r, θ?

X For an hyperbolic quantity, (e.g, the minkowskian rapidity angle θ), ·−1 is a

pure imaginary quantity. Should this mean that we have to accept any complex

argument in the sine and cosine functions?
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The full CK domain for the CK trigonometric functions

X No!. The natural requirement is to enforce that the squares of Sκ(x) and Cκ(x)

should be real.

X This determines a subset of the complex plane, which is a kind of ‘branched one

dimensional set’. This is called the full domain of the CK variable with label κ

X This the the full CK domain with label κ = −1

X Branching points at 0, ± ·−1, ±2 ·−1 ≡ 0−1 and as ±∞
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The full CK domain of a variable with positive label κ

16



17

The full CK domain of a variable with any label κ

X The CK domain of a CK variable, for any value of κ is the set of the following

values (here x, y are real, and 0 ≡ 2 ·)
X Actual and antiactual values, x, 2 ·+x (depicted in deep blue)

X Coactual and anticoactual values, ± ·+x (depicted in cyan)

X Ideal and antiideal values, iy, 2 ·+iy (depicted in red and orange)

X Coideal and anticoideal values, ± ·+iy (depicted in magenta)

X Essential fact: The domain of a variable depends on its label
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The stereocentral (stereognomonic) model of the nine CK spaces

• A new ‘projection’ to display the nine spaces at once

X Essentially, extends the visually ‘good’ traits of the stereographic projection in

the S2
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The stereocentral model of the nine CK spaces

X For any CK space, geodesics are represented as ‘affine’ circles cutting the equator

antipodally

X The ‘North’ and ‘South’ hemispaces are represented as the interior and exterior

of the ‘Equator’ circle
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The basic coordinate: distance to a point

• Fix the point O at the origin

? For any other point P (in the ‘full’ CHK space) passes a unique geodesic
linking P to O

X Antipodal exception

? Define r the coordinate r as the ‘extended’ parameter of separation
along this geodesic

• This r is defined in the ‘full’ CK space

X r could be either actual, coactual or ideal, coideal, or its anti versions
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Coordinate lines r = cte in the nine CK spaces

X The coordinate lines r=cte are circles with center at O0 in the geometry of each

CK space
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Coordinate lines θ = cte in the nine CK spaces

X The coordinate lines θ=cte are geodesics through O0 in the geometry of each

CK space
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The duality in the CK scheme [1]

• Duality is an interchange between the basic elements in the CK original
space and the ones in the dual, according to:

Dual CK space D(S) versus Original CK space S

Points (invariant under J=−P1) • Actual lines (invariant under P1)
Distance between points (along P1 =−J) • Angle between actual lines (along J)
Actual lines (invariant under P1 =−J) • Points (invariant under J)
Angle between actual lines (along J=−P1) • Distance between points (along P1)
Ideal lines (invariant under P2 =−P2) • Ideal lines (invariant under P2)
Angle between ideal lines (along J=−P1) • Actual distance between ideal lines (along P1)

? The map D leaves the Lie algebra invariant, interchanges the two constants
κ1 ↔ κ2, and hence the space of points with the space of (actual) lines,
S2
[κ1],κ2

↔ S2
κ1,[κ2]

.

? In the sphere S2 this is the well known polarity.

? Duality relates two CK geometries which are different in general. Only
when κ1 = κ2 the CK geometry is self-dual. Examples: S2,G1+1,dS1+1.

• Theorem The dual of a CK space with curvature κ1 and metric of signature
type (+, κ2) is the CK space with curvature κ2 and metric of signature type
(+, κ1).
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The duality in the CK scheme [3]

Spherical: S2 Euclidean: E2 Hyperbolic: H2

S2
[+],+ = SO(3)/SO(2) S2

[0],+ = ISO(2)/SO(2) S2
[−],+ = SO(2, 1)/SO(2)

Oscillating NH: NH1+1
+ Galilean: G1+1 Expanding NH: NH1+1

−
(Co-Euclidean) (Co-Minkowskian)
S2
[+],0 = ISO(2)/ISO(1) S2

[0],0 = IISO(1)/ISO(1) S2
[−],0 = ISO(1, 1)/ISO(1)

Anti-de Sitter: AdS1+1 Minkowskian: M1+1 De Sitter: dS1+1

(Co-Hyperbolic) (Doubly Hyperbolic)
S2
[+],− = SO(2, 1)/SO(1, 1) S2

[0],− = ISO(1, 1)/SO(1, 1) S2
[−],− = SO(2, 1)/SO(1, 1)

• Duality is realized by a symmetry along the main diagonal.

D :
S2

(1, 1)
←→ S2

(1, 1)
, D :

H2

(−1, 1)
←→AdS1+1

(1,−1)
, D :

dS1+1

(−1,−1)
←→ dS1+1

(−1,−1)
.

? The sphere S2 and the DeSitter space dS1+1 are autodual

? Hyperbolic plane H2 and the AntiDeSitter space AdS1+1 are mutually
dual.
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Visualizing duality in the stereocentral model: The dual of H2 is AdS1+1

• All the lines orthogonal to l1 meet
in a single point.

• This point is in the Ideal sector of H2,
which is AdS1+1.

• Lines orthogonal to l1 and the complete
system of associated orthogonal coordi-
nate net, covering the Actual and Ideal
Sectors of H2.
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Some applications: The classification of the confocal coordinate systems

• Generic systems

X Elliptic (actual foci, actual focal separation)

X Parabolic (one foci actual, other focus coactual, coactual focal separation)

X CoElliptic (coactual foci, actual focal separation)

• Limiting systems (non generic)

• Particular systems, for special values of the focal separation, e.g.

X Equiparabolic systems, with focal separation equal to a quadrant

X Isoelliptic (two focus with isotropic separation)

X . . .

? Horosystems

X HoroElliptic (one actual focus, other focus at infinity)

X HoroCoElliptic (one coactual focus, other focus at infinity)

? Coalescing foci

X Polar, parallel, horocyclic
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A sample
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Beyond

• The scheme encompasses all symetric homogeneous spaces

X Real, complex, quaternionic type symetric homogeneous spaces in any dimension,

and exceptional ones as well (connection with octonions).

? For instance, in the complex hermitian case (the CK general version of
su(N)), it turns out that there are n commuting involutions). The extra invo-
lution appear as a Cayley-Dickson parameter, leading to spaces over the three
composition algebras of complex numbers, Study numbers and split complex
numbers.

? Dynamics, Integrability and superintegrability in CK spaces
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Congratulations, Miguel Angel

General Properties or propositions should be more easily demonstrable
than any special case of it

• J. I. Sylvester Note on Spherical Harmonics, Phil. Mag. (1876)

Thank you very much,
Any comment, criticism, reference, . . . , welcome at msn@fta.uva.es
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